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TILTING BUNDLES ON HYPERTORIC VARIETIES

ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

Abstract. Recently McBreen and Webster constructed a tilting bundle on a
smooth hypertoric variety (using reduction to finite characteristic) and showed
that its endomorphism ring is Koszul.

In this short note we present alternative proofs for these results. We simply
observe that the tilting bundle constructed by Halpern-Leistner and Sam on
a generic open GIT substack of the ambient linear space restricts to a tilting
bundle on the hypertoric variety. The fact that the hypertoric variety is defined
by a quadratic regular sequence then also yields an easy proof of Koszulity.

1. Introduction

Below k is an algebraically closed ground field of characteristic 0. Let T be
torus and let W be a symplectic representation of T . Then W is equipped with a
canonical moment map1 µ : W → t

∗ with t = Lie(T ). Throughout we assume that

the action of T is faithful which implies that µ is surjective and flat.

Let X(T ) be the characters of T . For χ ∈ X(T ) let W ss,χ be the semi-stable part
of W with respect to the linearization χ⊗OW . Recall that X(T )R is equipped with
a so-called secondary fan such that χ is in the interior of a maximal cone if and only
if W ss,χ/T is a (smooth) Deligne-Mumford stack [CLS11, Theorem 14.3.14]. We
will call such χ generic. For generic χ, the DM stackW ss,χ/T is a crepant resolution
of the GIT quotient W//T [ŠVdB17c, Lemma A.2 and its proof]. Building on the
methods developed in [ŠVdB17a] Halpern-Leistner and Sam constructed a tilting
bundle on W ss,χ/T [HLS16]. See Theorem 3.2 below.

For ξ ∈ t
∗ the hypertoric variety associated to the data (χ, ξ) is the GIT quotient

µ−1(ξ)ss,χ//T . For χ generic, µ−1(ξ)ss,χ/T is also a smooth Deligne-Mumford stack
which is a crepant resolution of the hypertoric variety µ−1(ξ)//T (see §4).

The following is our main result.

Theorem 1.1. Let χ be generic and let T be the tilting bundle on W ss,χ/T
constructed in [HLS16] (see Theorem 3.2).
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1If 〈−,−〉 is the symplectic bilinear form on W , then one has µ(w)(v) = (1/2)〈vw, w〉 for
w ∈ W,v ∈ t.
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(1) For ξ ∈ t
∗ the restriction Tξ of T to µ−1(ξ)ss,χ/T is a tilting bundle.

(2) Put Λ = EndW ss,χ/T (T ), Λξ = Endµ−1(ξ)ss,χ/T (Tξ). Then Λξ is the quo-

tient of Λ by the defining relations of µ−1(ξ) which form a regular sequence.
(3) Λξ is a “non-commutative crepant resolution” [VdB04] of k[µ−1(ξ)//T ].
(4) Λ0 is Koszul when graded using the dilation Gm-action on W .

The fact that µ−1(ξ)ss,χ/T admits a tilting bundle with Koszul endomorphism
ring when ξ = 0 was proved in [MW18] using the Bezrukavnikov-Kaledin method
based on reduction mod p.

Remark 1.2. Λ is an NCCR forW//T (see Remark 3.3) but it is not Koszul, except
in trivial cases. This follows from Proposition 4.1 applied in the same way as in the
proof of Theorem 1.1(4). For example in the case of the conifold (Gm acting with
weights 1, 1,−1,−1 on a 4-dimensional representation) Λ has cubic relations. This
is in fact expected as explained in the next remark.

Remark 1.3. From the fact that Λ0 is Koszul one obtains in particular that it is
quadratic. Using the explicit form of T (see Theorem 3.2) one then quite easily
obtains a quiver presentation of Λ0. See [MW18, Corollary 3.18]. This presentation
of Λ0 may be lifted to a quadratic non-homogeneous presentation of Λ as Sym(t)-
algebra (with |t| = 2). This then yields a more complicated presentation of Λ as
k-algebra, possibly involving extra quadratic generators and cubic and even quartic
relations.

Similar results as those of McBreen and Webster have been announced by Tat-
suyuki Hikita [Hik17].

2. Acknowledgement

This note is mostly the result of a discussion with Travis Schedler during the con-
ference “Quantum geometric and algebraic representation theory” at the Hausdorff
Institute in October 2017, which was attended by both authors. We are grateful to
Travis for his interest in this work. We would also like to thank Theo Raedschelders
for drawing our attention to the work of McBreen and Webster.

3. The tilting bundle on W ss,χ/T

Recall that a tilting bundle on an algebraic stack Y is a vector bundle T such
that Ext>0

Y (T , T ) = 0 and such that T generatesDQch(Y) in the sense that T ⊥ = 0.

For benefit of the reader we now describe explicitly the tilting bundle onW ss,χ/T
constructed in [HLS16]. The construction in fact only requires that W is quasi-

symmetric [ŠVdB17a], i.e. the sum of weights of W on each line through the origin
is zero.

Let (βi)
2e
i=1 be the T -weights of W . Let ε ∈ X(T ). Put

Σ =

{

∑

i

aiβi | ai ∈]− 1, 0]

}

⊂ X(T )R, Σ̄ε =
⋃

r>0

Σ̄ ∩ (rε + Σ̄).

The following result indicates the combinatorial significance of the zonotope Σ̄.

Proposition 3.1 ([HLS16, Proposition 2.1]). Assume that W is quasi-symmetric.
A character χ ∈ X(T ) is generic if and only if it is not parallel to any face of Σ̄.
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For ε ∈ X(T ) put Lε = X(T )∩ (1/2)Σ̄ǫ. The following is one of the main results
of [HLS16].

Theorem 3.2 ([HLS16, Corollary 4.2].). Assume that W is quasi-symmetric and
that χ ∈ X(T ) is generic. Then for any generic ε ∈ X(T )

T =
⊕

µ∈Lε

OW ss,χ ⊗k µ

defines a tilting bundle on W ss,χ/T .

Remark 3.3. If W is “generic” in the sense of [ŠVdB17a, Definition 1.3.4], i.e.
the complement of {x ∈ W | Tx is closed and Stabx = {e}} has codimension ≥ 2
then Λ = EndW ss,χ/T (T ) = (Endk(

⊕

µ∈Lε
µ)⊗k k[W ])T is the NCCR of W//T con-

structed in [ŠVdB17a]. Assuming that T acts faithfully and that W is symplectic,
one can always reduce to the case of generic W .

If W is not generic then all except for two T -weights of W (whose sum is 0) lie
in a hyperplane. Let W ′ be a vector subspace of W spanned by the weight vectors
whose weights lie in this hyperplane. Then T = T ′×Gm, where Gm acts trivially on
W ′ and the action of T ′ is faithful on W ′. This induces the decomposition of X(T )
and t. The corresponding projections onto X(T ′) and t

′ will be denoted by ′. We

have W//T = W ′//T ′ ×k A
1, and for a generic χ also W ss,χ/T = W ss,χ′

/T ′ ×k A
1.

Moreover, Lε = L′
ε′×{m} (L′

ε′ with respect to (W ′, T ′)) for somem ∈ Z. Repeating
if necessary we reduce to the case that W is generic.

We also note that the corresponding hypertoric varieties do not change. Let µ, µ′

correspond to the moment maps associated to W , W ′, resp. Then µ−1(ξ)//T =

µ′−1(ξ′)//T ′, µ−1(ξ)ss,χ/T = µ′−1(ξ′)ss,χ
′

/T ′ (for a generic χ).

4. Proofs

We revert to the setting of the introduction, i.e. W is a symplectic representation
of the torus T . Assume χ ∈ X(T ) is a generic character. As explained in the
introduction W ss,χ/T is a DM stack which yields a (stacky) crepant resolution
π : W ss,χ/T → W//T of the Gorenstein variety [Sta83, Cororllary 13.3] W//T . The
fact that the stabilizers of the T -action on W ss,χ are finite yields by the defining
property of the moment map that µ|W ss,χ is smooth. Hence for every ξ ∈ t

∗,
µ−1(ξ)ss,χ/T is also a smooth Deligne-Mumford stack.

Since T is commutative, µ−1(ξ) ⊂ W is cut out by a T -invariant regular se-
quence of global sections (see [Vin86, Theorem 2] and [Sch95, Proposition 9.4]). In
particular µ−1(ξ)//T is cut out by a regular sequence in W//T and the same regular
sequence cuts out µ−1(ξ)ss,χ/T in W ss,χ/T . It follows from this that µ−1(ξ)//T
is Gorenstein and that π restricts to a crepant resolution πξ : µ−1(ξ)ss,χ/T →
µ−1(ξ)//T .

Finally note that µ−1(ξ)//T is normal. For ξ = 0 this is shown in the proof of
[BK12, Proposition 4.11]. For the benefit of the reader we give an elementary proof
valid for general ξ. Using Remark 3.3 we first reduce to the generic case and in
that case we will show that µ−1(ξ) is normal (the quotient of a normal variety is
normal). Since µ−1(ξ) is Cohen-Macaulay, it suffices by Serre’s normality criterion
to prove that µ−1(ξ) is regular in codimension 1. Thus, it is sufficient to prove that
codimension in µ−1(ξ) of the intersection of µ−1(ξ) with the non-smooth locus of
µ is ≥ 2. We will in fact verify that this codimension is ≥ 3!
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By the defining property of the moment map, the non-smooth locus of µ is the
locus of points in W whose stabilizer has dimension > 0. This is a union of T -
invariant subspaces of W . Each such subspace W ′ is again a symplectic vector
space with a faithful action of a quotient torus T/T ′ of T , where T ′ denotes the
generic stabilizer of W ′ (hence by hypotheses dimT ′ > 0) and moreover µ restricts
to a moment map for the T/T ′-action. Thus, as above, W ′ ∩ µ−1(ξ) is cut out by
a regular sequence of length dimT/T ′ in W ′. Hence the dimension of W ′ ∩ µ−1(ξ)
is equal to c := dimW ′ − dimT/T ′.

Choose a filtration W = W0 ) W1 ) · · · ) Wt = W ′ of T -invariant symplectic
subspaces such that dimWi+1 = dimWi − 2 and let Ti be the generic stabilizer
of Wi. Write ci = dimWi − dimT/Ti = dimWi ∩ µ−1(ξ).

The dimension of T/Ti is equal to the rank of the sublattice of X(T ) spanned
by the weights of Wi. Hence by genericity we have dimT/T1 = dimT , and thus
c1 = c0 − 2. Since dimT ′ > 0 we have t ≥ 2. In addition for i ≥ 1 we have
ci+1 ≤ ci − 1 (dimWi goes down by 2 but dimT/Ti goes at most down by 1). So
we get c = ct ≤ c0 − 3 and we are done.

Proofs of Theorem 1.1(1) and 1.1(2). Let i : µ−1(ξ)ss,χ/T → W ss,χ/T be the in-
clusion. We have to prove that Tξ = i∗T is a tilting bundle on µ−1(ξ)ss,χ/T . We
have

Ext∗µ−1(ξ)ss,χ/T (i
∗T , i∗T ) = Ext∗W ss,χ/T (T , i∗i

∗T ).

Now µ−1(ξ)ss,χ is cut out in W ss,χ by an invariant regular sequence. Tensor-
ing the corresponding Koszul resolution of i∗Oµ−1(ξ)ss,χ with T we obtain a left
resolution K• of i∗i

∗T which consists of direct sums of T . Using the fact that
Ext>0

W ss,χ/T (T , T ) = 0 we obtain

(4.1) Ext∗W ss,χ/T (T , i∗i
∗T ) = H∗(HomW ss,χ/T (T ,K•)).

Since K• lives in degree ≤ 0 this implies Ext>0
µ−1(ξ)ss,χ/T (i

∗T , i∗T ) = 0. Since also

tautologically Ext<0
µ−1(ξ)ss,χ/T (i

∗T , i∗T ) = 0 we obtain that the right-hand side of

(4.1) is in fact a resolution of Λξ, proving Theorem 1.1(2).
To finish the proof of Theorem 1.1(1) we have to check the generation property.

Assume that RHomµ−1(ξ)ss,χ/T (i
∗T ,G) = 0 for G ∈ DQch(µ

−1(ξ)ss,χ/T ). Then by

adjunction i∗G ∈ T ⊥ and hence i∗G = 0. It follows that G = 0. �

Proof of Theorem 1.1(3). Since πξ is a crepant resolution, it follows that Λξ =

π∗ Endµ−1(ξ)ss,χ/T (Tξ) is an NCCR of µ−1(ξ)//T (see e.g. [ŠVdB17b, Corollary 4.3]
and Corollary 4.7 in loc. cit. with its proof, together with Remark 3.3). �

The proof of Theorem 1.1(4) will be based on the following more general criterion.

Proposition 4.1. Let ∆ be a N-graded homologically homogeneous k-algebra
[BH84] (see also [VdB04, §3], [SVdB08, §2]) such that ∆0 is semi-simple. As-
sume that ∆ is finite as a module over a central subring R of Krull-dimension d.
Then the following are equivalent.

(1) ∆ is Koszul.
(2) The invertible ∆-bimodule ω∆ := HomR(∆, ωR) (see [SVdB08, Proposition

2.6]) is generated as right module in degree d.

Moreover in (2) we may replace “right” by “left”.
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Proof. Note that by [SVdB08, Lemma 2.4(2), Proposition 2.6] ω∆[d] is a “rigid
dualizing complex” for ∆. Hence by the uniqueness of rigid dualizing complexes
together with the proof of2 [VdB97, Proposition 8.2(2)] we obtain as ∆-bimodules:
ω∆[d] = RΓ∆≥1

(∆)∨ where (−)∨ denotes the graded k-dual and RΓ∆≥1
is the

derived functor of lim
−→n

RHom∆(∆/∆≥n,−). Moreover by [VdB97, Theorem 5.1]

for M ∈ D(Gr(∆)) we obtain as objects in D(Gr(∆◦))

RHom∆(M,ω∆[d]) ∼= RΓ∆≥1
(M)∨ .

Applying this with a graded simple ∆-module S, concentrated in degree zero we
find

RHom∆(S, ω∆[d]) = S∗;

i.e. RHom∆(−, ω∆[d]) restricts to the canonical bijection between the graded simple
left and right ∆-modules, concentrated in degree zero.

We will now prove (2) ⇒ (1). Since ω∆ is invertible and generated in degree d we
have that ω∆ ⊗∆ S = S†(−d) where S† is a graded simple ∆-module concentrated
in degree zero. Hence we obtain

(4.2) RHom∆(S,∆) = RHom∆(ω∆[d]⊗∆ S, ω∆[d]) = S†∗(d)[−d]

Let P• = · · · → P1 → P0 be the minimal graded projective resolution of S over ∆.
As ∆ is homologically homogeneous, P• is of length d, and by (4.2) Hom∆(P•,∆)[d]
is a projective resolution of S†∗(d). Hence Pd = P (S†)(−d), where P (S†) is the
graded projective cover of S†.

Let fi be the minimal degree of an element in Pi. We claim fi−1 < fi. To see this
note that the graded Jacobson radical of ∆ is equal to ∆≥1 (as ∆0 is semi-simple).
Hence the image of di : Pi → Pi−1 is in ∆≥1Pi−1.

An element x of degree fi in Pi is not in ∆≥1Pi and therefore it is not in the
image of di+1. As P• is acyclic it follows that di(x) 6= 0. Writing di(x) =

∑

j ljyj
with homogeneous lj ∈ ∆≥1, yj ∈ Pi−1, we see that some yj must be non-zero.
The fact lj has strictly positive degree implies deg(yj) < deg(x) which proves our
claim.

From the inequalities

d = fd > fd−1 > · · · > f1 > f0 = 0

we obtain fi = i.
We now use a dual argument. Let f∗

i be the maximal degree of a generator of Pi.
Using the dual resolution Hom∆(P•,∆)(−d)[d] of S† (which is also minimal) we get
that −d+ f∗

d−i = −i, i.e. f∗
i = i. Therefore Pi is purely generated in degree i and

so the resolution P• is linear.

The implication (1) ⇒ (2) is similar. From the nature of the minimal resolutions
of the simples we get ω∆ ⊗∆ S = S†(d) for all S. This implies that ω∆ is right
generated in degree d.

Since Koszulity is left right symmetric, the hypothesis of right generation in (2)
may indeed be replaced by left generation. �

2The reference [VdB97] is concerned with the case ∆0 = k but this hypothesis is not used in
an essential way.
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Proof of Theorem 1.1(4). Let s = dim T , 2e = dimW and d = dimµ−1(0)//T .
Thus d = 2e− 2s.

By Theorem 3.2 have Λ0 = (Endk(
⊕

µ∈Lξ
µ) ⊗k k[µ−1(0)])T . Hence Λ0 is N-

graded and its part of degree zero is semi-simple.3 Therefore by Proposition 4.1 we
have to prove that ωΛ0

is generated in degree d.
Put R = k[W//T ], R0 = k[µ−1(0)//T ]. We have

ωR0
= ExtsR(R0, ωR) = ExtsR(R0, R(−2e)) = R0(2s− 2e) = R0(−d)

where the first equality is the adjunction formula, the second equality follows
from [Sta83, Corollary 13.3] and the third equality follows from the fact that
R0 is cut out from R by a quadratic regular sequence of length s. As Λ0 is
an NCCR by Theorem 1.1(3) we have HomR0

(Λ0, R0) = Λ0. It follows that
ωΛ0

= HomR0
(Λ0, ωR0

) = Λ0(−d), finishing the proof. �
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