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ABSTRACT

We provide a refined interpretation of a gravitational Wilson line in AdS3 in terms of Ishibashi states

in the dual CFT2. Our strategy is to give a method to evaluate the Wilson line that accounts for

all the information contained in the representation, and clarify the role of boundary conditions at

the endpoints of the line operator. This gives a novel way to explore and reconstruct the local bulk

dynamics which we discuss. We also compare our findings with other interpretations of Ishibashi

states in AdS3/CFT2.

February 24, 2020

http://arxiv.org/abs/1805.05398v4


Contents

1 Introduction 2

2 Path integral representation 4

2.1 Path integral representation of the Wilson line . . . . . . . . . . . . . . . . . . . . . 5

2.2 Geometric interpretation: proper distances . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Hilbert space representation 9

3.1 Highest weight representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Rotated Ishibashi states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The Green’s function on the group manifold . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Relationship to path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Wilson lines: Local Fields and Geometry 17

4.1 Gravitational Wilson line as an overlap of two states . . . . . . . . . . . . . . . . . . 17

4.2 Algebra meets geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Global AdS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 BTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 CFT interpretation 32

5.1 Example: CFT on the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Discussion 35

A Properties of so(2, 2) representations 38

A.1 sl(2,R) conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2 Completeness of rotated Ishibashi states . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



B Chern-Simons formulation of AdS3 gravity 40

B.1 Metrics, connections, and geodesic distances . . . . . . . . . . . . . . . . . . . . . . . 41

C Generating function of Jacobi polynomials 43

D Inner product with quasi-normal modes eigenfunctions 44

E Integral kernels in CFT representation 45

1 Introduction

In this paper we discuss 3d gravity with negative cosmological constant. This is a topological

theory with no local degrees of freedom. This fact can be made manifest by rewriting 3d gravity

as a Chern-Simons theory with gauge group SO(2, 2) = SL(2,R) × SL(2,R) [1, 2]. The Chern-

Simons formulation has many advantages: BTZ black holes appear very naturally as topological

defects around which the sl(2,R) gauge fields have non-trivial holonomies. Boundary gravitons

can be understood as the usual edge excitations that appear when Chern-Simons theories are

formulated on manifolds with boundary [3]. Diffeomorphisms may be easily understood on-shell as

gauge transformations [2]. Finally, the Chern-Simons formulation is also very convenient for the

extension to theories of higher spin gravity [4–8].

While the Chern-Simons formulation makes manifest the topological character of 3d gravity,

it does so at a cost, by greatly obscuring geometric aspects. Simple geometric concepts such as

proper distances or volumes are not at all transparent in the Chern-Simons formulation. The

problem becomes even more acute if we consider coupling matter – e.g. a simple scalar field – to

3d gravity: this is very difficult to do in the Chern-Simons formulation, presumably because the

theory is no longer purely topological (see however [9] for some previous work in this direction).

These facts make it very difficult to probe local bulk physics in the Chern-Simons formulation.

This appears to be related to the fact that typical bulk observables such as (e.g.) the bulk-to-bulk

propagator of a probe scalar field are not actually invariant under diffeomorphisms, and thus are

difficult to formulate in a suitably gauge-invariant manner in Chern-Simons theory.

Nevertheless, in AdS3 the presence of a boundary allows the formulation of suitably diffeomor-

phism invariant observables – the correlation functions of the dual CFT2 – and thus one would

expect that it would be possible to compute such objects in the Chern-Simons formulation. Some

progress in this direction was made in [10–14], motivated largely by the computation of entangle-

ment entropy of field theories dual to 3d bulk higher spin gravity. In this work we will develop further
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the approach initiated by [10], where it was argued that a Wilson line in an infinite-dimensional

highest-weight representation R under the bulk SL(2,R)×SL(2,R) gauge group could be used to

compute boundary theory correlators, i.e.:

WR(xi, xf ) =
r→∞

〈Ψ|O(yi)O(yf )|Ψ〉 , (1.1)

where we have picked coordinates xµ = (r, yi) with r an AdS holographic coordinate and yi a

CFT coordinate. Here the Wilson line WR ends on the boundary at r → ∞, and Ψ denotes the

CFT2 state dual to a particular configuration of Chern-Simons gauge fields that constitute the

gravitational background in the interior.

The representation space R was generated from the Hilbert space of an auxiliary SL(2,R)-

valued quantum mechanical degree of freedom U(s) that lives on the Wilson line. The quadratic

Casimirs of the representation R mapped in the usual manner to the conformal dimensions (h, h̄) of

the dual CFT operator. While this represented progress towards extracting geometric observables

from the Chern-Simons formulation of 3d gravity, several issues remained obscure:

1. The relation (1.1) was understood to hold only if a particular boundary condition was used

for the auxiliary field U , demanding that it approached the identity element of SL(2,R) at

the two endpoints of the Wilson line. While this is perhaps a somewhat natural choice, its

precise interpretation in the CFT was not made clear.

2. All previous treatment of the U(s) path integral was performed in a semi-classical limit, i.e.

one in which h ≫ 1. At a calculational level this allowed the path integral to be evaluated

using its saddle-point; nevertheless this restriction seems somewhat artificial from the point

of view of the dual CFT. Is it possible to go away from this limit?

3. How can one obtain other bulk observables from the Chern-Simons formulation, e.g. bulk-to-

bulk propagators or one-loop determinants for scalar fields on the gravitational background?

In this work we answer these questions by providing a careful and fully quantum mechanical

treatment of the Wilson line described above. In particular, we will show that the U(s) worldline

degree of freedom originally introduced in [10] can be understood as a particular SL(2,R) rotation

of the global part of an Ishibashi state (familiar from boundary CFT). We use this technology

to develop a purely algebraic method for computing open-ended Wilson lines, and demonstrate

equivalence (in the semi-classical limit) with the path-integral techniques used in [10].

The outline of this paper is as follows. In Sec. 2 we review the path integral representation of

WR(xi, xf ) proposed in [10], which will serve as a comparison to our quantum mechanical analysis.

In Sec. 3 we turn to a detailed analysis of the quantum mechanics responsible of the geometrical
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features in WR(xi, xf ). This motivates the introduction of coherent states which we denote as

rotated Ishibashi states. Using these states, we relate WR(xi, xf ) to their inner product; we rederive

the path integral formulation by discretizing this inner product; and we show that WR(xi, xf ) is

a Green’s function on the group manifold SO(2, 2). In Sec. 4 we tie the quantum mechanical

aspects of WR(xi, xf ) to its geometrical features. We show that WR(xi, xf ) is a Green’s function

on spacetime created by the Chern-Simons connections (which is a distinct statement from the

properties on the group manifold). For global AdS3 and the BTZ black hole, we show how to build

local bulk fields by a suitable decomposition of WR(xi, xf ). This provides a new local probe of

AdS3 in the Chern-Simons formulation of 3d gravity. In Sec. 5 we discuss the CFT interpretation

of our results. And in Sec. 6 we discuss future directions and related results in AdS/CFT that

make use of Ishibashi states.

2 Path integral representation

In this section we will consider the path integral representation of a Wilson line operator in the

Chern-Simons theory. As we review below, this object should be thought of as the Chern-Simons

description of the worldline of a massive particle moving in the bulk. This section is a brief summary

of the results in [10].

The gauge group of the Chern-Simons theory is SO(2, 2) ≃ SL(2,R) × SL(2,R), and the bulk

sl(2,R) gauge connections are A, Ā.1 The natural observables in Chern-Simons theory are Wilson

loops in a certain representation R of the bulk gauge group; in this work we will always take R to

be a product of two infinite-dimensional highest-weight representations in sl(2,R)⊕ sl(2,R).

We may now consider the following Wilson loop operator:

WR(C) = TrR

(

P exp

(

−
∮

C
A

)

P exp

(

−
∮

C
Ā

))

, (2.1)

and C is a closed loop in the bulk of AdS3. This observable is fully gauge-invariant, and will

typically be an interesting observable if the bulk loop wraps some non-trivial object in the bulk

(e.g. the horizon of a BTZ black hole). Note that the trace involves a sum over the infinitely many

states of the highest-weight representation.

We may also consider an open-ended Wilson line operator. To define this object we specify the

locations of its endpoints (xi, xf ). We must also specify boundary data in the form of two specific

1In appendix B we present our conventions on the Chern-Simons description of AdS3 gravity.
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states |Ui〉, |Uf 〉 ∈ R at these endpoints. We may then define the following operator:

WR(xi, xf ) = 〈Uf |P exp

(

−
∫

γ
A

)

P exp

(

−
∫

γ
Ā

)

|Ui〉 , (2.2)

where now γ(s) is a curve with bulk endpoints (xi, xf ) parametrized by s. WR(xi, xf ) is no longer

fully gauge-invariant; clearly it depends in a gauge-covariant manner on the choice of boundary

data |Ui〉, |Uf 〉. Nevertheless, for flat connections, WR(xi, xf ) only depends on the topology of γ,

but not on the shape of the curve.

From a geometric point of view, the Wilson line described above describes the physics of a

massive point particle propagating from xi to xf on AdS3. A point particle in the classical limit is

characterized by at least one continuous parameter: the mass m. This data is stored in the choice of

highest-weight representation R that defines the Wilson line. Further details of this representation

are given in full detail in Sec. 3. For now we require only that the representation is specified by

two constants (h, h̄) which determine the Casimirs of the sl(2) algebra. Their identification with

the mass m and orbital spin ŝ of the particle is given by

m2 = c2 + c̄2 , ŝ = h̄− h , (2.3)

where c2 = 2h(h − 1) and c̄2 = 2h̄(h̄ − 1) are the quadratic Casimirs; note that the AdS radius is

set to unity.

From the point of view of AdS/CFT, the developments in [10–14] show that if the endpoints xi,

xf are taken to infinity, the Wilson line operator defined in (2.2) is a bulk observable that computes

correlation functions of light operators 〈Ψ|O(yi)O(yf )|Ψ〉 in the dual CFT. Here |Ψ〉 is a “heavy”

state whose gravitational dual is given by the bulk connections (A, Ā) and O(y) is a “light” operator

whose scaling dimensions (h, h̄) are encoded in the choice of representation2 R.

In what follows we limit the discussion to h = h̄; see [15,16] for a discussion when ŝ 6= 0.

2.1 Path integral representation of the Wilson line

This particular Wilson line is somewhat more complex than those normally studied in compact

gauge theories, simply due to the fact that R has infinitely many states in it. We now review the

work of [10], who constructed R as the Hilbert space of an auxiliary quantum mechanical system

that lives on the Wilson line, replacing the trace over R by a path integral over a worldline field

U . We pick the dynamics of U so that upon quantization the Hilbert space of the system is the

2 Here light denotes an operator that, as the central charge c goes to infinity, its conformal weight is fixed, while
a heavy operator has a scaling dimension that is linear with c. Equivalently, in gravity we would say that it is a
particle with a small mass in Planck units.
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desired representation R. More concretely, we rewrite (2.1) as

WR(xi, xf ) =

∫

DU e−S(U,A,Ā)γ , (2.4)

where the the auxiliary system can be described by the following action:

S(U,A, Ā)γ =
√
c2

∫

γ
ds

√

Tr (U−1DsU)2 (2.5)

The variable s parametrizes the curve γ, and we pick s ∈ [si, sf ]. Here the trace Tr(...) is a short-cut

notation for the contraction using the Killing forms, i.e. if P ∈ sl(2,R)

Tr(P 2) = ηabP
aP b , (2.6)

where P = P aLa and La is a generator of sl(2,R). There is also a (classically) equivalent first-order

formulation of this action that is more convenient for certain applications (such as the generalization

to higher spin gravity). In the first order formulation it is manifest that c2 is the Casimir of the

representation, and satisfies c2 = 2h(h − 1). This action requires that h = h̄. As the entire action

is multiplied by a factor of
√
c2, h → ∞ defines a semi-classical limit of the path integral, and for

the remainder of this section we will follow [10] and work only in this limit. In subsequent sections

we relax this restriction.

This action is invariant under a local SL(2,R)×SL(2,R) symmetry: in particular the covariant

derivative is defined as

DsU ≡ d

ds
U +AsU − UĀs , As ≡ Aµ

dxµ

ds
, Ās ≡ Āµ

dxµ

ds
, (2.7)

where A(x) and Ā(x) are the connections that determine the background, and in the action (2.5)

they are pulled back to the worldline xµ(s). Under an SL(2,R) × SL(2,R) gauge transformation

by finite group elements L(x), R(x), the gauge fields transform as

Aµ(x) → L(x)(Aµ(x) + ∂µ)L
−1(x) ,

Āµ(x) → R−1(x)(Āµ(x) + ∂µ)R(x) . (2.8)

The worldline action is then invariant under the following transformation of the worldline field:

U(s) → L(xµ(s))U(s)R(xµ(s)) (2.9)

Now for an open ended Wilson line as in (2.2), we must still specify boundary data on U(s)
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at the endpoints of the curve.3 We thus pick two SL(2,R) elements Ui, Uf and require that

U(s = si) = Ui, U(s = sf ) = Uf . For a semi-classical level this is sufficient, and in later sections

we will explain in detail the relationship between this choice of boundary data and the quantum

states |Ui〉 and |Uf 〉 defined in (2.2).

We now consider the evaluation of this Wilson line on a fixed classical background defined by

A and Ā. In the h → ∞ limit, this can be done by evaluating the on-shell action (2.5) for the

field U(s) subject to the boundary conditions described above. This computation was explained in

detail in [10]. Here we write the answer in a way that will generalize simply to our results in the

next section. In particular the answer only depends on the SL(2,R) evolution of the state from

the starting point to the endpoint. If we thus consider flat connections

A(x) = gL(x)dgL(x)
−1 , Ā(x) = gR(x)

−1dgR(x) , (2.10)

and the following group elements

gL(xf )gL(xi)
−1 = P exp

(

−
∫ xf

xi

A

)

, g−1
R (xf )gR(xi) = P exp

(

−
∫ xf

xi

Ā

)

, (2.11)

then the on-shell action S can be written as

Son-shell =

√

c2
2
α , V exp(−αL0)V

−1 ≡ gL(xf )gL(xi)
−1UigR(xi)

−1gR(xf )U
−1
f , (2.12)

where α labels the conjugacy class of the group element gL(xf )gL(xi)
−1UigR(xi)

−1gR(xf )U
−1
f . The

Wilson line (3.43) in this state is then given by

WR(xi, xf ) = exp

(

−
√

c2
2
α

)

. (2.13)

Note that the role of the boundary data Ui, Uf in (2.12) is to tie together the two sectors, left and

right; we will return to this point in what follows.

2.2 Geometric interpretation: proper distances

So far, our review has been very abstract, with no physical interpretation given to A and Ā. However

we know that for appropriate choices of these gauge connections, this system should represent the

physics of a particle moving on AdS3; we now explain how the result above is related to geometry.

In particular, α defined in (2.12) turns out to be related to the proper distance from xi to xf .

3For a closed Wilson loop as in (2.1), we simply require that the field U(s) be single-valued.
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To understand this, note that the action (2.5) can be suggestively written as

S =
√
c2

∫

γ
ds

√

Tr

(

(

Aµ − ˜̄Aµ

)(

Aν − ˜̄Aν

) dxµ

ds

dxν

ds

)

, (2.14)

where the dependence on U(s) in (2.18) has been hidden in the definition of ˜̄Aν :

˜̄As ≡ UĀsU
−1 − d

ds
U U−1 . (2.15)

Note that if we now define a generalized vielbein4 along the trajectory as

eµ =
1

2

(

Aµ − ˜̄Aµ

)

(2.16)

then we may write the action very simply in terms of the metric associated to this vielbein as

gµν = 2 Trfeµeν , i.e.

S =
√
2c2

∫

γ
ds

√

gµν(x)
dxµ

ds

dxν

ds
, (2.17)

which is manifestly the proper distance associated to the metric gµν . Thus the Wilson line is

probing a geometry that is assembled in a particular manner from the connections A, Ā, where

the dynamics of the auxiliary field U is playing a role in tying together the two connections into

a vielbein. Note that the prefactor
√
c2 indicates that the value of the Casimir controls the bulk

mass of the probe, as we alluded to previously.

We also consider the equations of motion obtained from varying (2.5) with respect to U :

d

ds

(

(A− ˜̄A)µ
dxµ

ds

)

+ [ ˜̄Aµ, Aν ]
dxµ

ds

dxν

ds
= 0 . (2.18)

Normally one considers these as equations for U(s): nevertheless, if one fixes U(s) and thinks of

the variable as being the choice of path xµ(s), then this is precisely the geodesic equation for the

metric gµν . From here it is clear that the value of the Wilson line between any two bulk points is

WR(xi, xf ) ∼ exp (−2hD(xi, xf )) , (2.19)

where D(xi, xf ) = 2α is the length of the bulk geodesic connecting these two points. Here ‘∼’

denotes the limit of large c2, where c2 = 2h(h − 1) ∼ 2h2, and hence the classical saddle point

approximation is valid.

4Technically we can only define the components of the vielbein along the trajectory; in the considerations of this
section this does not matter.
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In what follows we will provide a proper quantum-mechanical treatment of this Wilson line.

3 Hilbert space representation

The path integral approach to evaluate (2.2) provides insight into the transformation properties for

the field U : this choice is in great part responsible of the geometric interpretation of WR(xi, xf ) in

AdS3 gravity. Based on this, in this section we will carefully explain the relationship between the

field U(x) and quantum mechanical states in the highest-weight representation. This will allow us

to evaluate WR(xi, xf ) without the need of taking a classical limit –in contrast to (2.19)– and, in

later sections, have a refined geometric and holographic interpretation of our Wilson line.

3.1 Highest weight representations

We first review some facts associated with highest-weight representations. Some words on notation

are appropriate: when we are discussing an abstract realization of the sl(2,R) algebra with no

particular representation in mind, we will denote the generators with capital La. We denote the

generators of sl(2,R) acting on the highest weight state by ℓa. A highest-weight representation is

defined with respect to a reference state |h〉 that is an eigenstate of ℓ0 and is annihilated by ℓ1:

ℓ0|h〉 = h|h〉 , ℓ1|h〉 = 0 . (3.1)

We may now define excited states by acting on |h〉 with ℓ−1, and the correctly normalized states

are defined by

ℓ−1|h, k〉 =
√

(k + 1)(k + 2h)|h, k + 1〉 , ℓ1|h, k〉 =
√

k(k + 2h− 1)|h, k − 1〉 , (3.2)

where the state |h, k〉 has L0 eigenvalue (k + h): i.e. k counts the energy above the ground state,

and |h, 0〉 = |h〉. The Casimir of this representation is 2h(h − 1):

ηabℓaℓb|h, k〉 = 2h(h − 1)|h, k〉 , (3.3)

where ηab is the Killing form.

We will be interested in states that transform in a highest-weight representation under a tensor

product of two independent copies of sl(2,R) × sl(2,R) with h = h̄, and so we will label them

as |h, k〉 ⊗ |h, k̄〉 ≡ |h; k, k̄〉, where the ground state is |h, 0, 0〉. We denote the sl(2,R) generators

acting on the first k index (the “left”) by ℓa and those acting on the k̄ index (the “right”) as ℓa.
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These form two independent sl(2,R) algebras, and we have

[ℓa, ℓa] = 0 . (3.4)

The group action of each copy of SL(2,R) on these states is the usual one: in particular, we

have

G(M−1)ℓaG(M) = D a′
a (M)ℓa′ , G(M−1)ℓaG(M) = D a′

a (M)ℓa′ , (3.5)

with the D’s the representation matrices for the adjoint representation of sl(2,R). Note that we

have

G(M1)G(M2) = G(M1M2) , D b
a (M1)D

c
b (M2) = D c

a (M1M2) . (3.6)

3.2 Rotated Ishibashi states

We will now define a family of quantum states that have the same transformation as the classical

field U(x) in (2.9). To do so it is convenient to consider the following triplet of sl(2,R) operators,

labeled by an element U ∈ SL(2,R):

Qa(U) ≡ ℓa +D a′
a (U)ℓa′ . (3.7)

This is a linear combination of the generators on the two sides, with one side rotated by U . We

will denote a state that is annihilated by Qa(U) for all a as |U〉, i.e.

Qa(U)|U〉 = 0 . (3.8)

This defines a rotated state, each labeled by an element U of SL(2,R). We now explore some of

the properties of these states. First consider commuting G(L)G(R) through Qm(U). We find

G(L)G(R−1)Qa(U) = D a′

a (L−1)Qa′(LUR)G(L)G(R−1) . (3.9)

Acting with this relation on the state |U〉, we find that the state G(L)G(R−1)|U〉 is annihilated by

Qa(LUR). But by the definition of the U states, this means that

G(L)G(R−1)|U〉 = |LUR〉 . (3.10)

Thus we see that acting on a U state with an element of SL(2,R)×SL(2,R) causes it to transform

inhomogenously precisely as the classical U field did in (2.9). We also note that every U state is

left invariant under some diagonal subgroup of SL(2,R) × SL(2,R), that with L = UR−1U−1.

It will be useful to have some explicit examples of |U〉 in terms of the highest weight repre-
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sentation discussed above. As a start let us consider the state |U〉 = |ΣIsh〉 whose action on the

generators is

D a′

a (ΣIsh) ℓa′ = ΣIsh ℓaΣ
−1
Ish = −ℓ−a , (3.11)

and as a group element is

ΣIsh ≡ exp
(

−i
π

2
(L1 − L−1)

)

. (3.12)

Using (3.11), (3.8) becomes
(

ℓa − ℓ−a

)

|ΣIsh〉 = 0 . (3.13)

This equation has the following unique solution,

|ΣIsh〉 =
∞
∑

k=0

|h; k, k〉 , (3.14)

which is (in its Virasoso incarnation [17]) called the “Ishibashi state.” Another choice for our states

is setting |U〉 = |Σcross〉 whose action is

D a′
a (Σcross) ℓa′ = Σcross ℓaΣ

−1
cross = −(−1)aℓ−a , (3.15)

and as a group element it reads

Σcross ≡ exp
(π

2
(L1 + L−1)

)

. (3.16)

For this choice (3.8) becomes
(

ℓa − (−1)aℓ−a

)

|Σcross〉 = 0 , (3.17)

and the unique solution to this equation is

|Σcross〉 =
∞
∑

k=0

(−1)k|h; k, k〉 , (3.18)

which is usually referred to as the “crosscap (or twisted) Ishibashi state” [17]. The state |Σcross〉
(rather than |ΣIsh〉) will play an important role in section 4, for reasons that we will elaborate on

there.

If we can construct any reference state in this family, then we can find any other state by acting

on it with an appropriately chosen G(L) and/or Ḡ(R−1).5 And for this reason we will call the

5Note that we are allowed to rotate a |U〉 state if G(L) has a well defined action on the representation. This
implies that not any rotation is allowed. For example, we cannot rotate |Σcross〉 to the state |U = 1〉, which is ill
defined since setting U = 1 in (3.8) has no solution in the highest weight representation. The reason is that Σcross

is an outer automorphism: it has a well defined action on the group elements as signalled by (3.15), but not on the
states of representation (it would flip the sign of L0 eigenvalue). Similar statements hold for ΣIsh.
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states |U〉 (in a slight abuse of notation) rotated Ishibashi states. Our rotated Ishibashi states are

coherent states that live in the product of two highest weight representations and only involve the

global part of the conformal group, unlike the states used for boundary CFT [17,18].

3.3 Inner product

An important object in our analysis is the inner product of a rotated Ishibashi state. These states

are not orthogonal– they form an overcomplete basis– which leads to a non-trivial expression. The

relevant matrix element to evaluate any such inner product is

〈Σ|G(L)G(R−1)|Σ〉 , (3.19)

where |Σ〉 is a reference state from our family of rotated Ishibashi states. For concreteness we will

take |Σ〉 to be either

|ΣIsh〉 or |Σcross〉 , (3.20)

as defined in (3.14) and (3.18).

Evaluating (3.19) leads to

〈Σ|G(L)G(R−1)|Σ〉 = 〈Σ|G(LΣRΣ−1)|Σ〉

=
∞
∑

k=0

|ak|2〈h, k|G(LΣRΣ−1)|h, k〉

=

∞
∑

k=0

〈h, k|G(LΣRΣ−1)|h, k〉

=

∞
∑

k=0

exp(−α(k + h)) =
e−αh

1− e−α
. (3.21)

In the first equality we used (3.10). In the second line we used (3.14) and (3.18); the coefficient ak

is equal to 1 and (−1)k, respectively. In the third line we used that |ak|2 = 1, which reduces the

computation to a trace of the group element inside the bracket. In the last line we decomposed the

group element as

LΣRΣ−1 ≡ V exp(−αL0)V
−1 , (3.22)

where α controls the conjugacy class of the group element in question. The last equality is our final

result, which is just a sl(2,R) character of G(LΣRΣ−1). From here the role of |Σ〉 is becoming

more evident: it controls how the right element R would act as left element relative to L and vice

versa.

The result (3.21) immediately generalizes to the inner product between any two of the U -states
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as defined in (3.8): any rotated state continuously connected to Σ will satisfy

〈U1|U2〉 =
e−αh

1− e−α
, U−1

1 U2 ≡ V exp(−αL0)V
−1 . (3.23)

In other words, the inner product between any two U -states U1 and U2 is a function only the

“magnitude” α of the conjugacy class of the group element that relates U1 to U2. α can be thought

of as an invariant distance between the two elements on the group manifold (and indeed we will

develop its geometric interpretation in the next subsection). Note that as U1 approaches U2, α → 0

and thus the norm of any U state itself is infinite: this divergence can be seen immediately from

noting that the norm of |Σ〉 diverges.

Finally, the U states satisfy a completeness relation. It is shown in Appendix A.2 through

explicit computation that for 2h > 1 we have

∫

dU |U〉〈U | = (2π)2

2(2h− 1)
1 , (3.24)

where dU is the Haar measure on SL(2,R). In pedestrian terms, this simply means that we treat

SL(2,R) as being locally AdS3 and integrate over it using the usual volume measure, taking care

to integrate over SL(2,R) and not over its universal cover.

3.4 The Green’s function on the group manifold

Here we discuss a few further properties of the inner product 〈U1|U2〉 computed above. In particular,

the inner product (3.23) is actually a Green’s function with respect to the invariant Laplacian on

the SL(2,R) group manifold.

We begin by placing coordinates σα on the group manifold SL(2,R). Let us denote the usual

generators of sl(2,R) in the fundamental representation by La. As SL(2,R) is a group manifold,

there exist vector fields ξαa and ξ̄αa that generate the group action on a point in the manifold from

the left and from the right, i.e.

ξαa
∂U(σ)

∂σα
= LaU(σ) , ξ̄αa

∂U(σ)

∂σα
= U(σ)La . (3.25)

As the U -states (3.10) transform in the same way, they satisfy:

ξαa ∂α|U(σ)〉 = |LaU(σ)〉 = ℓa|U(σ)〉 , (3.26)

as well as a similar relation for the barred sector. Now we act with this relation twice on the σ2

coordinates parametrizing the inner product 〈U(σ1)|U(σ2)〉 with U(σ1) 6= U(σ2). In particular,
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denote the Killing form on sl(2,R) by ηab and compute

ηab〈U(σ1)|ξαa ∂α
(

ξβb ∂β|U(σ2)
)

〉 = ηab〈U(σ1)|ℓbℓa|U(σ2)〉 = 2h(h− 1)〈U(σ1)|U(σ2)〉 , (3.27)

where in the last equality we have used the Casimir relation (4.31). It is straightforward to verify

that the second-order differential operator on the left-hand side of (3.27) is (up to a factor of
1
2) the invariant Laplacian on SL(2,R), which we denote by �U . As our analysis holds only for

non-coincident U1, U2, we conclude that

(

1

2
�U2

− 2h(h − 1)

)

〈U1|U2〉 =
1

8π
δ(U1, U2) . (3.28)

Here δ(U1, U2) is a delta function on the group manifold that is nonzero only if U1 = U2, and

which is normalized to satisfy
∫

dUδ(U0, U) = 1 with dU the Haar measure on SL(2,R) and U0

a reference group element. This can of course also be checked by explicitly verifying that (3.23)

satisfies the appropriate Laplacian; this is also the fastest way to verify the existence of the delta

function on the right-hand side.

3.5 Relationship to path integral

In this section we will demonstrate that the in the large-h limit, the inner product defined above

can be computed from a path integral over a classical field U(s), as used in [10] and reviewed in

Sec. 2. Essentially we will perform the analogue of the usual construction of the path integral for

quantum mechanical systems, where the non-compact nature of the representation, and therefore

of the U states, provide some extra wrinkles.

Consider computing an inner product of the form

〈Uf |G(L)Ḡ(R−1)|Ui〉 . (3.29)

To give this a quantum-mechanical interpretation, we will represent the group elements L and R as

path-ordered exponentials of gauge fields A(s) and Ā(s), where s should be thought of as “time”,

i.e.

L = P exp

(

−
∫ sf

si

Asds

)

, R−1 = P exp

(

−
∫ sf

si

Āsds

)

. (3.30)

To make contact with conventional quantum mechanics, one can imagine that A and Ā define a

Hamiltonian for the system defining time-evolution along s. We will now derive a path integral

expression for the inner product (3.29). We follow the normal algorithm of dividing the path from

si to sf into many small intervals of size ǫ, discretizing the path as si, si+1, si+2 · · · sf−1, sf , where

the time step is sj − sj−1 = ǫ.
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We may then break up each path-ordered exponential:

P exp

(

−
∫ sf

si

Asds

)

= e−ǫAs(sf )e−ǫAs(sf−1) · · · e−ǫAs(si) =
∏

j

e−ǫAs(sj) , (3.31)

and similarly for the right sector. The inner product takes the form

〈Uf |G(L)Ḡ(R−1)|Ui〉 = 〈Uf |
∏

j

[

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)]

|Ui〉 . (3.32)

We now use (3.24) to insert a complete set of U states at each time step. We find

〈Uf |G(L)Ḡ(R−1)|Ui〉 = N〈Uf |
∏

j

[

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

∫

dU |U(sj)〉〈U(sj)|
]

|Ui〉 , (3.33)

where we have introduced an overall prefactor N to absorb factors of the form (2h− 1)∞ into the

usual ambiguities in the measure of the path integral. We see that we must evaluate many inner

products of the form

〈U(sj+1)|G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

|U(sj)〉 . (3.34)

To evaluate this inner product, we make the usual assumption that most contributions to the path

integral come from reasonably smoothly varying U(s), so that we may assume that U(sj+1) =

U(sj) + ǫ
dU(sj)

ds +O(ǫ2). Thus to lowest order in ǫ we are evaluating

〈

U(sj)

(

1+ U(sj)
−1ǫ

dU(sj)

ds

) ∣

∣

∣

∣

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

∣

∣

∣

∣

U(sj)

〉

. (3.35)

We use the transformation property of the U states (3.10) to move all of the group elements to the

ket on the right to obtain

〈

U(sj)

∣

∣

∣

∣

e−ǫAs(sj)U(sj)e
−ǫĀs(sj)

(

1− U(sj)
−1ǫ

dU

ds
(sj)

)〉

. (3.36)

Next, we use the general form for the inner product (3.23) to conclude that

〈U(sj+1)|G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

|U(sj)〉 =
e−α(sj)h

1− e−α(sj)
, (3.37)

where α(sj) is given by the conjugacy class of the SL(2,R) element

M(sj) ≡ exp

(

−ǫ

(

U−1 dU

ds
+ U−1AsU − Ās

)) ∣

∣

∣

∣

s=sj

M(sj) = V −1 exp(−α(sj)L0)V , (3.38)

where to obtain this expression we expanded all terms up to order ǫ, and then re-exponentiated the
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resulting expression. It should be understood that this expression is correct only up to order ǫ. We

have encountered a version of (3.38) in (3.22) and (3.23), and we will encounter again in subsequent

sections. The a simple way to read off α(sj) is by noticing that (3.38) –and its counsins (3.22)

and (3.23)– are independent of the sl(2) representation. With these freedom, we choose to solve

this equation in the fundamental representation of sl(2), described by the 2× 2 traceless matrices,

where α is given by a trace:

α(sj) = 2ǫ

√

Trf (U−1DsU)2
∣

∣

∣

∣

s=sj

. (3.39)

Here the gauge-covariant derivative DsU is that defined in (2.7), and our conventions for the

fundamental representation are given in appendix A.

We have thus computed the contribution of one infinitesimal piece of the path. Assembling all

of these pieces by taking the product, we see that the full inner product (3.29) is given by

〈Uf |G(L)Ḡ(R−1)|Ui〉 = N

∏

j

(

∫

dU(sj)
e−α(sj)h

1− e−α(sj)

)

∣

∣

∣

∣

U(si)=Ui,U(sf )=Uf

. (3.40)

We now consider taking the continuum limit ǫ → 0; the product of integrals dU(sj) over each group

element at each point on the path becomes a path integral [DU ] over a continuous worldline field

U(s). We first consider the numerator of the above expression: this naturally becomes an integral

over a smooth action:

∏

j

exp (−hα(sj)) → exp

(

−2h

∫ sf

si

ds

√

Trf (U−1DsU)2
)

, (3.41)

i.e. precisely the exponential of the action S[U ] postulated on physics grounds in [10].

We now turn to the denominator 1 − e−α(sj). In the limit ǫ → 0, each α(sj) is infinitesimal,

and thus we may write:

∏

j

(1− e−α(sj))−1 ≈
∏

j

(α(sj))
−1 =

∏

j

√

ǫ

2π

∫

dσ(sj) exp
(

− ǫ

2
σ(sj)

2α(sj)
2
)

, (3.42)

where we have introduced a new auxiliary field σ(sj) at each point on the worldline; integrating

out this field generates the denominator (up to an overall ill-defined prefactor that depends on the

discretization). The full path integral is thus

∫ U(sf )=Uf

U(si)=Ui

[DU ] exp (−S[U, σ]) . (3.43)
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where the full continuum action is

S[U, σ] =

∫ sf

si

ds

(

2h

√

Trf (U−1DsU)2 +
1

2
σ(s)2 Trf

(

U−1DsU
)2
)

. (3.44)

In the h → ∞ limit, we may ignore the second term in the action: this is then precisely the

path integral (3.43)-(2.5) which was proposed on symmetry grounds in [10].

We can now see that at finite h, the path integral proposed in [10] must be corrected by

additional “quantum” terms arising from the measure of the path integral when integrating over

U states. This additional term –the wrinkle we alluded to at the start of this subsection– arises

from the fact that the inner product of two nearby U states is divergent, which is itself a direct

consequence of the non-compactness of SL(2,R) and the resulting infinite tower of highest weight

states. It would be interesting to understand better the physical significance of this term; however

in this paper we will not attempt to treat the path integral (3.43) at finite h, and will instead

simply directly compute matrix elements from the algebraic approach developed above.

4 Wilson lines: Local Fields and Geometry

Our goal in this section is to give a geometric interpretation to the algebraic construction in Sec.

3. We will start in Sec. 4.1, by going through the simple exercise of casting our gravitational

Wilson line in (2.2) along the lines of the discussion in Sec. 3.3. In Sec. 4.2 we will argue that for

invertible connections (A, Ā), we can interpret the transformation properties of the group elements

in the Wilson line as moving the endpoints of the operator in AdS3. This justifies the geometric

interpretation of the algebraic object. And finally, in Sec. 4.3 we will show how to build a local

bulk field from our rotated Ishibashi states; these constructions will be explicitly done for global

AdS and the static BTZ black hole.

4.1 Gravitational Wilson line as an overlap of two states

The results in Sec. 3 gives a prescription to evaluate overlap of states in the highest weight

representation. In this section we would like to implement those results to a gravitational Wilson

line. More concretely, we would like to analyse

WR(xf , xi) = 〈Σ|G
(

Pe−
∫ xf
xi

A
)

Ḡ
(

Pe−
∫ xf
xi

Ā
)

|Σ〉 , (4.1)

as an overlap of a suitable initial and final |U〉 state. We keep the reference state |Σ〉 generic so

far, and we will discuss the different choices ΣIsh, and Σcross in Sec. 4.3. As in Sec. 2, γ(s) is a
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curve with bulk endpoints (xi, xf ); we use the affine parameter s ∈ [si, sf ] where x(s = si) = xi

and x(s = sf ) = xf .

To recast (4.1) as an inner product, it is useful to rewrite the flat connections as

A(x) = gL(x)dgL(x)
−1 , Ā(x) = gR(x)

−1dgR(x) , (4.2)

Using the transformation of the path ordered exponential under (4.2):

P e−
∫
γ
A = gL(xf )gL(xi)

−1 , P e−
∫
γ
Ā = g−1

R (xf )gR(xi) , (4.3)

and therefore

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = 〈Σ|G
(

gL(xf )gL(xi)
−1
)

Ḡ
(

g−1
R (xf )gR(xi)

)

|Σ〉 , (4.4)

To write this expression as an overlap between to states, we define

|U(x)〉 ≡ G
(

gL(x)
−1
)

Ḡ (gR(x)) |Σ〉 . (4.5)

and with this, we can rewrite the previous amplitude as

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = 〈U(xf )|U(xi)〉 . (4.6)

It is important to note that in this expression we have implicitly assumed that the group element

gL obeys

g−1
L = g†L ,

and similarly for gR. All of our manipulations will use group elements that are unitary. And we

should stress that |U(x)〉 is not gauge invariant. In its definition in (4.5) we implicitly made a

choice: we are splitting the path from xi to xf to a mid point where gL = gR = 1, and without any

further specification of the connections, we have not motivated nor justified this choice. This bug

does not affect (4.6), and we will ignore it for now. We will return to this point in Sec. 4.3 when

we directly analyse |U(x)〉.

Having casted the gravitational Wilson line as an inner product in (4.6), we can now use the

same logic that leads to (3.21) and (3.22). In particular we find that

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = e−α(xi,xf )h

1− e−α(xi,xf )
(4.7)
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where, following (3.22) for this case, α(xi, xf ) is given by the solution to

gL(xf )gL(xi)
−1g̃R(xi)

−1g̃R(xf ) = V exp(−α(xi, xf )L0)V
−1 . (4.8)

and we define

g̃R ≡ Σ−1gRΣ , ˜̄A ≡ Σ−1ĀΣ . (4.9)

Note that while, by definition, A and Ā act on different spaces, the role of Σ is to tie together these

two sectors; ˜̄A can be thought of as the ‘left’ version of the ‘right’ connection.

To solve for α(xi, xf ) in (4.8), it is useful to note that this equation is independent of the

sl(2,R) representation, and hence we can simply use a finite dimensional representation.6 Using

the fundamental representation of sl(2,R) (see appendix A), and after taking the trace both sides

of (4.8), gives

cosh

(

α(xi, xf )

2

)

=

(

1

2
Trf

(

gL(xf )gL(xi)
−1g̃R(xi)

−1g̃R(xf )
)

)

. (4.10)

where Trf is the trace in the fundamental representation. Using (4.2) together with (B.7) and

(B.8), we find that α(si, sf ) = 2D(si, sf ) is the geodesic length of an effective metric given by

gµν =
1

2
Tr(Aµ − ˜̄Aµ)(Aν − ˜̄Aν) . (4.11)

The relevant metric for global AdS and BTZ is given in (B.9). Therefore, the inner product is

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = e−2hD(xi,xf )

1− e−2D(xi,xf )
. (4.12)

This is the familiar bulk-to-bulk propagator of a minimally coupled scalar field in a locally AdS3

background [19, 20]. In the semi-classical limit, where the numerator is negligible and h is large,

the saddle point approximation of the path integral in (4.12) precisely agrees with (2.19). The

background metric (4.11) is in agreement with (2.17), and (4.8) is equivalent to (2.12).

At the level of evaluating (4.12), the detailed nature of |Σ〉 can be overlooked: provided the

endpoint states satisfies

G(L)G(R−1)|Σ〉 = |LΣR〉 , (4.13)

we will obtain (4.12), and interpret it as the bulk-to-bulk propagator of a scalar field with back-

ground metric (4.11). With this perspective, if the input is gµν , we could just infer the values of

(A, ˜̄A) and use them in (4.12), without making explicit reference to the difference between Ā and

6There is an ambiguity in the sign in front of α when (4.8) is considered in a finite dimensional representation.
However, α > 0 as required by the convergence of (3.21).
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˜̄A, and hence neglect the role of |Σ〉. However, |U(x)〉 is an object sensitive to |Σ〉, and as we will

discuss in section 4.3, this will disentangle the different features that |Σ〉 captures as we build local

probes in AdS3.

4.2 Algebra meets geometry

An expression such as (4.12) makes rather evident that the Wilson line is a propagator, and hence

its ties to geometry. The drawback however is the brut aspect of the observation: it relied on

evaluating explicitly the observable on AdS3 and the BTZ background. In this section we will do

better. We will show that the object

WR(xf , xi) = 〈Σ|G
(

Pe−
∫ xf
xi

A
)

G
(

Pe−
∫ xf
xi

Ā
)

|Σ〉 (4.14)

can be understood as a bulk-to-bulk propagator with respect to the bulk spacetime metric associated

with the flat connections A, Ā. The important improvement here relative to our prior observations

is that here we treat the Wilson line quantum mechanically, and as such it will capture the geometry

as perceived by a bulk field of an arbitrary mass.

We begin by assuming that the bulk spacetime is simply connected (e.g. for pure AdS3). In

this case all paths from xi to xf are topologically equivalent, and (4.14) is a well-defined function

of the two endpoints.

We first recall that in (3.28) it was shown that the object 〈U1|U2〉 was a Green’s function on the

group manifold SL(2,R). This is logically distinct from showing that the matrix element (4.14) is

a Green’s function on the bulk metric defined by A, Ā.

To make a connection between these two objects, we first need to establish how the matrix

elements in (4.14) change if we move, for instance, the point xf . The dependence on endpoints xi

and xf enters in (4.14) as follows: using (4.2)-(4.3), the matrix element reads

WR(xf , xi) = 〈Σ|G(gL(xf )gL(xi)
−1)Ḡ(gR(xf )

−1gR(xi))|Σ〉
= 〈Σ|G(gL(xf )gL(xi)

−1g̃R(xi)
−1g̃R(xf ))|Σ〉 . (4.15)

In the second line we made use of the transformation properties of our reference states (3.10), and

used the definition g̃R ≡ Σ−1gRΣ . We note that this is where the choice of |U〉 to be rotated

states is crucial: the state combines both sectors, which will lead to a geometric interpretation of

WR(xf , xi) in the subsequent steps. From (4.15), the full dependence on xi and xf enters through

the following group element

G(xf , xi) ≡ gL(xf )gL(xi)
−1g̃R(xi)

−1g̃R(xf ) . (4.16)
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Taking an xf derivative of this group element, we have

∂

∂xµf
G(xf , xi) = −Aµ(xf )G(xi, xf ) +G(xi, xf )

˜̄Aµ(xf ) . (4.17)

Recall now that (3.28) was shown by exploiting the fact that the left and right action of the group

generated a set of vector fields on the group manifold (3.25). We would now like to extend this

idea to the geometric bulk, i.e. we seek a set of vector fields ζµa , ζ̄
µ
a defined on AdS3 such that

ζµa
∂

∂xµf
G(xf , xi) = LaG(xf , xi) , ζ̄µa

∂

∂xµf
G(xf , xi) = G(xf , xi)La . (4.18)

Multiplying both sides of these equations by Lb and taking a trace, we see that the defining relations

become

ζµa trf

((

−Aµ +G
˜̄AµG

−1
)

Lb

)

= ηab , ζ̄µa trf

((

−G−1AµG + ˜̄Aµ

)

Lb

)

= ηab . (4.19)

These equations will have solutions for ζ, ζ̄ if the 3 × 3 matrices (with rows labaled by µ and

columns by b) multiplying them from the right are invertible. However from (B.3), we see that

these matrices are closely related to the usual vielbein e ∼ A − ˜̄A in the metric formulation of 3d

gravity, with one side rotated by the SL(2,R) transformation defined by G(xf , xi). The condition

that the generalized vielbeins above be invertible appears to be required for a simple geometric

interpretation of the bulk spacetime.

If the generalized vielbeins shown above are invertible, then the ζ, ζ̄ exist, and we have shown

that movement in bulk spacetime is equivalent to movement on the group manifold. Furthermore

the condition (4.18) guarantees that they satisfy the sl(2,R) × sl(2,R) algebra as Killing vectors

on the bulk spacetime. Thus following through the same steps as in (3.28), we conclude that

(

1

2
�xf

− 2h(h − 1)

)

WR(xf , xi) =
1

8π

δ(xf , xi)√−g
(4.20)

where now �xf
is the Laplacian on the bulk AdS3 spacetime. The construction of ζ, ζ̄ will be

carried out explicitly in Sec. 4.3.

We now consider the case where the bulk spacetime is not simply connected, e.g. the BTZ

black hole. For a black hole the bulk connections have a nontrivial holonomy around the black

hole horizon. In this case the definition of the open-ended Wilson line WR(xf , xi) in (4.14) is

incomplete: as there are multiple inequivalent bulk paths that connect xi and xf , we must specify

a path, and different choices of path will result in different answers.

In this case, if we would like to obtain an unambiguous answer that depends only on the
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endpoints, one prescription is to sum over all inequivalent paths, i.e., we define a path-summed

Wilson line as

WR(xf , xi) =
∑

C(xf ,xi)

WR(C(xf , xi)) (4.21)

where the sum is over all topologically inequivalent paths C(xf , xi) that connect xf to xi. An

example of such situation is nicely capture by the BTZ black hole. In this case the inequivalent paths

correspond to geodesics winding around the horizon multiple times, and the resulting propagator

is a sum over these windings. For the static black hole, the resulting propagator is

WR(xf , xi)BTZ =
∑

n∈Z

e−2hDn(xi,xf )

1− e−2Dn(xi,xf )
, (4.22)

with

Dn(xi, xf ) =
1

r2+

(

rfri cosh(r+∆φ+ 2πr+n)−
√

(r2f − r2+)(r
2
i − r2+) cosh(r+∆t)

)

. (4.23)

Here we are using the geodesic length in (B.14), and n controls the number of times the path encloses

the horizon. In the metric formulation this sum can be understood as the sum over images that

gives the propagator the correct periodicity condition (see e.g. [21]), which in complete agreement

with our expression.

4.3 Local fields

In the last portion of this section we will evaluate and interpret |U(x)〉 as defined in (4.5). As

mentioned there, this definition is gauge dependent. A definition of |U(x)〉 that reinstates this

dependence is

|U(x)〉 = G
(

gL(x0)gL(x)
−1
)

Ḡ
(

g−1
R (x0)gR(x)

)

|Σ〉 . (4.24)

where xµ0 is a bulk reference point where |U(x0)〉 = |Σ〉. In other words, the point xµ0 defines where

in the bulk we should locate the state |Σ〉. Once this choice is made, |U(x)〉 is a prescription on

how to move through the bulk the state |Σ〉 from xµ0 to a point xµ.

We will decompose the state (4.24) as a sum over local functions in the infinite-dimensional

representation

|U(x)〉 =
∞
∑

k,k̄=0

Φ∗
k,k̄(x)|h, k, k̄〉 , (4.25)
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and evaluate Φk,k̄(x). Alternatively, the function Φk,k̄(x) is

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈h, k, k̄|U(x)〉† . (4.26)

This function is the object that will provide local bulk information in the Chern-Simons formulation

of 3D gravity.

The explicit calculation of this Φk,k̄(x) can be a complicated task. A way to proceed is by using

the technique in Appendix A of [22]. The aim there is to find a differential operators La(x) whose

action in the inner product (4.26) is

〈U(x)|ℓa|h, k, k̄〉 = La(x) 〈U(x)|h, k, k̄〉 . (4.27)

where ℓa is the infinite-dimensional generator that acts as in (3.2), and La(x) is a differential opera-

tor acting on the x variables, whose explicit form depends on the state |U(x)〉. Analogous formulas

can be found for the barred sector. These operators are precisely the vector fields introduced in

(4.18), i.e. we have

La(x) = ζµa
∂

∂xµ
, L̄a(x) = ζ̄µa

∂

∂xµ
. (4.28)

Equation (4.27), together with (3.2), implies that

L−1Φk,k̄(x) =
√

(k + 1)(k + 2h)Φk+1,k̄(x) ,

L̄−1Φk,k̄(x) =

√

(k̄ + 1)(k̄ + 2h)Φk,k̄+1(x) . (4.29)

Φ0,0(x) can be fully determined by solving following differential equations

L0(x)Φ0,0(x) = hΦ0,0(x) , L1(x)Φ0,0(x) = 0 , (4.30)

together with its barred version. Therefore, we will be able to infer the form of Φk,k̄(x), by

successively applying L−1(x), and L̄−1(x) to the seed Φ0,0(x). From here it follows that Φk,k̄(x)

obeys the Casimir equation

(

L
2(x) + L̄

2(x)
)

Φk,k̄(x) = 4h(h− 1)Φk,k̄(x) , (4.31)

where L
2 = −(L−1L1 + L1L−1) + 2L2

0 . In other words, Φk,k̄(x) is a local bulk field of mass

m2 = 4h(h− 1) and whose boundary conditions are given by the highest weight conditions (4.29)-

(4.30).

Finally, once we have the explicit expression of the functions Φk,k̄(x), we will compute the inner
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products of two states (4.25) as

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

Φk,k̄(xf )Φ
∗
k,k̄(xi) . (4.32)

Note that when we evaluate (4.32) we will not make use of (3.21), and hence the derivations in

this portion give an alternative and more direct derivation of (4.12). In the following, we will carry

out this procedure for two explicit backgrounds. Sec. 4.3.1 is devoted to global AdS3, which agrees

completely with the results in [22], and Sec. 4.3.2 focuses on the static BTZ black hole.

4.3.1 Global AdS3

Let us consider the state |U〉 for global AdS3 and build explicitly Φk,k̄(x) for this background. To

start we will first infer the group elements from the standard metric for AdS3, i.e.

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2 . (4.33)

Using (4.11), it is straight forward to read from (4.33) unitary group elements gL and g̃R. Details

are presented in App. B.1, and the resulting elements are

gL(x) = e(ℓ1−ℓ−1)ρ/2e−iℓ0x+

, g̃R(x) = e−iℓ0x−

e(ℓ1−ℓ−1)ρ/2 , (4.34)

where x± = t ± φ. We will use the definition (4.24) with gL(x0) = 1 = gR(x0); this places |Σ〉 at
the origin of AdS in accordance with the results in [22–24]. This gives

|U(x)〉AdS = G
(

gL(x)
−1
)

Ḡ (gR(x)) |Σ〉
= G

(

gL(x)
−1g̃R(x)

−1
)

|Σ〉
= eix

+ℓ0e−ρ(ℓ1−ℓ−1)eix
−ℓ0 |Σ〉 , (4.35)

where we used (3.10) and (4.34). For most of the following derivations we will drop the subscript

“AdS” and restore it when needed.

The next step is to find the differential operators La(x) in (4.27) for global AdS3. For that we

use the inner product as

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)e−ix+ℓ0 |h, k, k̄〉 , (4.36)
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Taking derivatives with respect to the global coordinates gives

∂x+〈U(x)|h, k, k̄〉 = −i〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)e−ix+ℓ0ℓ0|h, k, k̄〉 ,
∂ρ〈U(x)|h, k, k̄〉 = 〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)(ℓ1 − ℓ−1)e

−ix+ℓ0 |h, k, k̄〉 ,
∂x−〈U(x)|h, k, k̄〉 = −i〈Σ|e−ix−ℓ0ℓ0e

ρ(ℓ1−ℓ−1)e−ix+ℓ0 |h, k, k̄〉 , (4.37)

and using commutation relations, we can move the generators that are not in the exponents to the

right, to get

∂x+〈U(x)|h, k, k̄〉 = −i〈U(x)|ℓ0|h, k, k̄〉 ,
∂ρ〈U(x)|h, k, k̄〉 = 〈U(x)|(e−ix+

ℓ1 − eix
+

ℓ−1)|h, k, k̄〉 ,

∂x−〈U(x)|h, k, k̄〉 = −i〈U(x)| cosh 2ρ ℓ0 +
sinh 2ρ

2
(e−ix+

ℓ1 + eix
+

ℓ−1)|h, k, k̄〉 . (4.38)

Now, it is straight forward to obtain the differential operators that follow (4.27) for global AdS3;

these read

L0 = i∂x+ ,

L±1 = ie±ix+

[

cosh 2ρ

sinh 2ρ
∂x+ − 1

sinh 2ρ
∂x− ∓ i

2
∂ρ

]

. (4.39)

It is important to remark that these differential operators were built without making direct reference

to |Σ〉.

To find the barred differential operators we follow a procedure analogous to what we did in

(4.37)-(4.38), but using the following inner product:

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈Σ|Σ−1eix
+ℓ0e−ρ(ℓ1−ℓ−1)eix

−ℓ0Σ|h, k, k̄〉 , (4.40)

where we are rewriting the action of the left group elements as an action via the right, i.e.

|U(x)〉AdS = G
(

gL(x)
−1
)

Ḡ (gR(x)) |Σ〉
= Ḡ

(

Σ−1g̃R(x)gL(x)Σ
)

|Σ〉 . (4.41)

While in (4.36) we could ignore Σ, we are now forced to understand how Σ acts on the states to

infer the differential operators L̄a. A sensible choice is to require that L̄a are related to La by
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replacing x+ ↔ x−, i.e.

L̄0 = i∂x− , (4.42)

L̄±1 = ie±ix−

[

cosh 2ρ

sinh 2ρ
∂x− − 1

sinh 2ρ
∂x+ ∓ i

2
∂ρ

]

.

This is the familiar assignment of Killing vectors in AdS3; the interesting twist here is that not any

choice of probe Σ will achieve this assignment. A choice of |Σ〉 that delivers (4.42) for the group

element (4.40) is the crosscap state in (3.18):

|Σ〉 = |Σcross〉 . (4.43)

The Ishibashi state |ΣIsh〉 has a different effect. Using (3.11) in (4.40) would lead to operators L̄a

that are related to La through x+ ↔ x−, and ρ → −ρ. Still, the resulting differential operators are

Killing vectors in the metric (4.33), and they follow the sl(2,R)L × sl(2,R)R algebra. Therefore,

the choice of the Ishibashi state has also an interpretation in the geometrical description of fields

in AdS3. The only minor drawback is that the relation of Killing vectors and algebra elements has

a different normalization relative to the standard choices in global AdS3.

Our starting point in this subsection was the metric for AdS3 in (4.33). Another starting point

is to use the fact that global AdS3 is maximally symmetric, and the group elements that label

rotations and translations in this space are

|U(x)〉AdS = eiℓ0x
+

eiℓ0x
−

e−
ρ
2
(ℓ1−ℓ−1+ℓ1−ℓ−1)|Σcross〉 , (4.44)

as it was done in [22,25]. For the crosscap state, (4.44) is in complete agreement with (4.34). The

choice |ΣIsh〉 would lead to different group elements, which is tied to the fact that in this case we

have a non-stantard relation between algebra elements and Killing vectors of the geometry.

The differential operators (4.39), and (4.42) are Killing vectors of global AdS3, as advocated in

Sec. 4.2. Moreover,
(

L
2(x) + L̄

2(x)
)

in (4.31) is the usual d’Alembertian for AdS3. Therefore,

Φk,k̄(s) is a scalar field with mass m2 = 4h(h− 1) in a global AdS background. Now, we can solve

(4.30) using the previous differential operators, as done in [26]; the highest weight state is

Φ0,0(x) = 〈U(x)|h, 0, 0〉 = e−2iht

(cosh ρ)2h
. (4.45)

To find Φk,k̄(x) we simply need to identify the solutions to (4.31) and organize them as L−1(x),

and L̄−1(x) acting on (4.45). This leads to

Φk,k̄(x) = Ck,k̄ e
−ih(x++x−)e−i(kx++k̄x−)(tanh ρ)k̄−k(cosh ρ)−2hP

(k̄−k,2h−1)
k (1− 2 tanh2 ρ) , (4.46)

26



where P
(a, b)
n are Jacobi polynomials, and Ck,k̄ = (−1)k

√

k!(2h+k̄−1)!

k̄!(2h+k−1)!
is a constant that has been

chosen to match the normalizations in (4.29). Therefore, we found the state (4.25) in a global AdS

background. This is in complete agreement with the known results of normalizable wavefunction

in AdS3 as in, e.g., [27].

We are ready to compute the overlap of two states at different positions in the bulk. Using

(4.32) with (4.46) gives

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄=0

e−ih(∆x++∆x−)e−i(k∆x++k̄∆x−) k!(2h + k̄ − 1)!

k̄!(2h + k − 1)!
(tanh ρf tanh ρi)

k̄−k(cosh ρf cosh ρi)
−2h

× P
(k̄−k, 2h−1)
k (1− 2 tanh2 ρf )P

(k̄−k, 2h−1)
k (1− 2 tanh2 ρi) . (4.47)

The previous sum is performed in the Appendix C. If we choose x = tanh2 ρi, y = tanh2 ρf ,

r = e−i∆x−
, and s = e−i∆x+

, the left hand side of (C.3) is equal to (4.47). Applying (C.3), we find

〈U(xf )|U(xi)〉 =
(

σ(xi, xf ) +
√

σ2(xi, xf )− 1
)−(2h−1)

2
√

σ2(xi, xf )− 1
=

e−2hD(xi,xf )

1− e−2D(xi,xf )
. (4.48)

where D(xi, xf ) is the geodesic length of global AdS, given in (B.13) with C = −1/4. This in

complete agreement with the result in (4.12).

4.3.2 BTZ

As we did for global AdS3, we will now find the local functions Φk,k̄(x) for the static BTZ back-

ground. Our starting point is to build the group elements (gL, g̃R) from the metric, which for the

black hole reads

ds2 = −(r2 − r2+)dt
2 +

dr2

r2 − r2+
+ r2dφ2 . (4.49)

In Appendix B.1 we build the appropriate connections for the black hole are (B.8) that are com-

patible with (4.49) and unitary in the highest weight representation. The resulting BTZ state

is7

|U(x)〉BTZ = G
(

gL(x)
−1g̃R(x)

−1
)

|Σ〉

= e−
i
4
((8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x+

e−ρ(ℓ1−ℓ−1)e−
i
4
((8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x− |Σ〉 , (4.50)

7Following the discussion around (4.24) and (4.34), we have chosen here gL(x0) = 1 = g̃R(x0). In contrast to
global AdS3, there is no physical motivation to make this choice for BTZ: it simply makes some of the subsequent
manipulations easier. It would be interesting to investigate what is a physically sound choice of xµ

0 in future work.
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where we casted all the elements as acting on the left, and we introduced

r = r+ cosh2(ρ− ρ∗) , 4C = e2ρ∗ = r2+ , x± = t± φ . (4.51)

Following the same procedure as in Sec. 4.3.1, we can find differential operators defined as (4.27)

for the BTZ state. Using8

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 (4.52)

= 〈Σ|e i
4
((8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x−

eρ(ℓ1−ℓ−1)e
i
4
((8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x+ |h, k, k̄〉 ,

we find the non-barred differential operators

L0 = −2α+

√
C sinh

(

2
√
Cx+

)

∂ρ +

(

α− +
1 + f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx+

)

)

∂x+

+
1− f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx+

)

∂x− ,

L±1 =

(

±1

2
cosh

(

2
√
Cx+

)

− 2α−

√
C sinh

(

2
√
Cx+

)

)

∂ρ

+

(

α+ +
1 + f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx+

)

∓ sinh
(

2
√
Cx+

))

)

∂x+

+

(

α+ +
1− f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx+

)

∓ sinh
(

2
√
Cx+

))

)

∂x− . (4.53)

with

f(ρ) ≡ e2ρ − 4C

4C + e2ρ
, α± ≡ i(4C ± 1)

16C
. (4.54)

In order to obtain the barred generators, we proceed as done for global AdS3 in (4.40)-(4.41), i.e.

we rewrite the state |U(x)〉BTZ as having an action only via right group elements. This gives

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 (4.55)

= 〈Σ|Σ−1e
i
4(−(8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x+

e−ρ(ℓ1−ℓ−1)e
i
4(−(8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x−

Σ|h, k, k̄〉 .

As before, we will fix Σ such that the barred differential operators, L̄a, are equal to the non-barred

operators with x+ ↔ x−, as it is natural in the metric formulation. A quick inspection singles out

8For simplicity, we will omit the subscript ‘BTZ’ in most of this section, and restore it when needed.
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|Σcross〉 as the appropriate choice rather than |ΣIsh〉. Using |Σ〉 = |Σcross〉 in (4.55) we find

L̄0 = −2α+

√
C sinh

(

2
√
Cx−

)

∂ρ +

(

α− +
1 + f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx−

)

)

∂x−

+
1− f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx−

)

∂x+ ,

L̄±1 =

(

±1

2
cosh

(

2
√
Cx−

)

− 2α−

√
C sinh

(

2
√
Cx−

)

)

∂ρ

+

(

α+ +
1 + f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx−

)

∓ sinh
(

2
√
Cx−

))

)

∂x−

+

(

α+ +
1− f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx−

)

∓ sinh
(

2
√
Cx−

))

)

∂x+ . (4.56)

The differential operators (4.53) and (4.56) might not look like the standard basis for the local

Killing vectors on BTZ. Nevertheless, they locally satisfy the Killing equation for (4.49) and the

expected sl(2,R)L × sl(2,R)R algebra.

Having evidence that the state |Σcross〉 is a natural probe (with usual geometric properties we

associate to BTZ), we can infer from (4.50) that

|U(x)〉BTZ =

e−
i
4
((8C−2)ℓ0−(1+4C)(ℓ1+ℓ−1))x+

e−
i
4((8C−2)ℓ0−(1+4C)(ℓ1+ℓ−1))x−

e−
ρ
2
(ℓ1−ℓ−1+ℓ1−ℓ−1)|Σcross〉 .(4.57)

One can obtain |U(x)〉BTZ from the gauge transformation that relates global AdS3 and BTZ, and

using (4.44). We found, however, instructive to take a perspective where the metric is the first

input and from there build (4.57).

The Ishibashi state |ΣIsh〉 also leads to barred differential operators. Acting on (4.55) with

(3.11), we get barred differential operators similar to those in (4.56), but with an overall minus sign

in L̄±. These differential operators are still Killing vectors and they follow the sl(2,R)L×sl(2,R)R

algebra by definition.

We now return to building Φk,k̄(x). To start consider (4.30): given (4.53), it is clear that

Φ0,0(x) is non-separable in any of its variables, which makes (4.30) very difficult to solve. In order
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to simplify (4.30), we will make a change of variables; using (B.15) we now have

L0 = − i
(

r2+ + 1
)

Z2∂X+ + Z
(

r2+(X
− + 1) +X− − 1

)

∂Z +
(

r2+(X
− + 1)2 + (X− − 1)2

)

∂X−

4r+
,

L1 = − i(r+ − i)2Z2∂X+ + ((r+ − i)X− + r+ + i) (((r+ − i)X− + r+ + i)∂X− + (r+ − i)Z∂Z)

4r+
,

L−1 = − i(r+ + i)2Z2∂X+ + ((r+ + i)X− + r+ − i) (((r+ + i)X− + r+ − i)∂X− + (r+ + i)Z∂Z)

4r+
.

(4.58)

The barred operators are defined analogously with X+ ↔ X−. The advantage of (4.58), relative

to (4.53), is that the differential operators just involve powers on the coordinates, and hence we

can find a suitable polynomial solution to (4.30). The unique solution to (4.30) reads

Φ0,0(x) = Z−2h



−1 +

(

X− + r++i
r+−i

)(

X+ + r++i
r+−i

)

Z2





−2h

(4.59)

=

(

2r
(

r2+ + 1
)

cosh(r+φ) +
√

r2 − r2+
(

(r+ − i)2e−r+t + (r+ + i)2er+t
)

)−2h

where in the second line we have changed to BTZ coordinates in (B.11). And as expected the

solution (4.59) not separable in this coordinate system. Acting with L−1(x), and L̄−1(x) in (4.59),

and inspired by the the Jacobi polynomial form of the global case (4.46), the general expression for

a descendant of (4.59) reads

Φk,k̄(x) = Ck,k̄

(

Z

(X− + a)(X+ + a)− Z2

)2h
(

a
(X− + a)(X+ + 1

a)− Z2

(X− + a)(X+ + a)− Z2

)k̄(

a
(X− + 1

a)(X
+ + 1

a)− Z2

(X− + a)(X+ + 1
a)− Z2

)k

(

a2 − 1
)2h

P
(k̄−k,2h−1)
k

(

1− 2
(X− + a)(X+ + 1

a)− Z2

(X− + a)(X+ + a)− Z2
· (X

− + 1
a))(X

+ + a)− Z2

(X− + 1
a)(X

+ + 1
a)− Z2

)

,

(4.60)

where a ≡ i+r+
−i+r+

, and Ck,k̄ is same factor as in (4.46). It is straight forward to verify that Φk,k̄(x)

in (4.60) satisfies the d’Alembertian equation on the static BTZ background.

Having an explicit expression for Φk,k̄(x), we can compute the overlap of two states (4.25) for

the BTZ black hole. Using (4.60), we see that he sum we need to perform in (4.32) is exactly equal

to (C.3), where

X =
|τi|
|γi|

, Y =
|τf |
|γf |

, r = |a|2
√

τfγ
∗
f

τ∗f γf

τ∗i γi
τiγ∗i

, s = |a|2
√

τ∗f γ
∗
f

τfγf

τiγi
τ∗i γ

∗
i

, (4.61)
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and

γi,f ≡ (X−
f,i + a)(X+

f,i + a)− Z2
f,i , τi,f ≡ (X−

f,i +
1

a
)(X+

f,i + a)− Z2
f,i . (4.62)

Using the result for the sum (C.3), with the previous definition for X,Y, r, and s, we find the the

overlap of the two states in the BTZ black hole:

〈U(xf )|U(xi)〉 =
(

σ(xi, xf ) +
√

σ2(xi, xf )− 1
)−(2h−1)

2
√

σ2(xi, xf )− 1
, (4.63)

where σ(xi, xf ) is the geodesic distance for Poincare (B.17), which can be rewritten as the geodesic

length in BTZ (B.14) using (B.18). With no surprises, this is in complete agreement with (4.12).

It is interesting to analyse the behaviour of the field (4.60) in the BTZ coordinates. Looking

at (B.18), we see that the BTZ boundary r → ∞ is located at Z → 0, and in this limit we have

Φk,k̄ → 0. The horizon r = r+ is at the Poincare boundary (X+,X−, Z) → ∞, where Φk,k̄ as

well vanishes. This behaviour, together with the fact that solves the BTZ wave equation, shows

that (4.60) behaves as a quasi-normal mode for the black hole. However, it is not a traditional

BTZ quasi-normal mode as those built in, e.g., [28–31]. There are a few discrepancies, and a few

similarities, with this literature that are worth highlighting.

1. Highest weight condition. As it was observed in [32,33], imposing the highest weight conditions

(4.29)-(4.30) leads to eigenfunctions that obey the quasinormal modes conditions. This is a

first indication that Φk,k̄(x) should have been regular throughout, as they certainly are.

2. Separability of eigenfunctions. The most canonical way to find solutions to the Casimir equa-

tion (4.31) is by casting the basis of solutions in a Fourier decomposition in (t, φ), which are

the natural directions for the Killing symmetries of the black hole. This leads a eigenfunctions

that are separable functions in the coordinate system (r, t, φ), in strike contrast to (4.60). The

construction of the operators La in [32], which is used to build a basis for quasinormal modes,

is as well compatible with the separability ansatz. From a technical point of view, our lack of

separability could be attributed to the unitary condition we enforce in (4.57): this leads to a

group elements that are simply different to those used in prior work.9

3. Periodicity conditions. By design, the connections (A, Ā) that characterize BTZ in the Chern-

Simons formulation have the following feature [34,35]: they are single valued along the thermal

cycle in Euclidean signature (smoothness of the Euclidean cigar geometry), and carry a non-

trivial holonomy around the spatial cycle (an indication that the connection has a finite size

horizon). This is reflected in (4.60) by the fact that our eigenfunctions are not periodic as

we take φ ∼ φ + 2π, but are periodic under t ∼ t + i2π/r+. This is clearly not a feature

9We could have parametrized the group elements in (4.57) so that we obtain the same basis for La in [32] that
leads to separability. However, with this choice the state is not unitary and hence 〈U | 6= (|U〉)†.
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of the modes built in [28–31], which are decomposed in periodic Fourier modes along the φ

direction.

4. Inner Product. Despite the two differences above, it is interesting to note that if we evaluated

the overlap (4.32) using the quasinormal modes in [29], it would lead to (4.63). The derivations

are shown in appendix D. This indicates that the bulk-to-bulk correlation functions are not

sensitive to how we represent Φk,k̄(x).

5 CFT interpretation

Here we discuss the CFT interpretation of the results above. In particular, consider computing

a Wilson line in AdS3, ending at the AdS boundary at the two boundary points z1, z2 at radial

coordinate ρ1, ρ2 with generic boundary conditions U1, U2 at each endpoint. What, precisely, is

this object in the CFT?

The considerations of the previous section should make it clear that the resulting object is a

suitably smeared two-point function, and here we simply provide a purely boundary interpretation

of this smearing procedure. The kinematics of these procedure are very familiar from the language

of the the HKLL construction [36,37] and this section may be understood as a translation of some

of those results into the language of Chern-Simons gravity. Since |Σcross〉 leads to the standard

conventions in the metric formulation, relative to |ΣIsh〉, we will focus on the role of the crosscap

Ishibashi state in this section.

Let us first consider what data we have; at each endpoint zi in the CFT we are supplied with

a length scale e−ρi arising from the cutoff and an SL(2,R) element arising from the boundary

conditions on the Wilson line. There is a natural way to associate this data with the global

descendants of a boundary operator O: first, act on the Ishibashi crosscap state |Σcross〉 with the

SL(2,R) elements Ui as explained in detail in Section 3 to construct a state |Ui〉, where the states

in the highest weight representation are understood as conformal descendants of O. Next, remove

two discs from the CFT, each centered at zi with radius e−ρi ; on each of these discs place the

boundary data appropriate to |Ui〉. This is the CFT dual to the open-ended Wilson line with

boundary condition Ui.

Mathematically this is essentially the same construction as [22–24]. There are two main dif-

ferences: in all of these works the specification of the SL(2,R) element was interpreted to specify

a point in AdS3 rather than a boundary condition on a Wilson line. Furthermore in [23, 38, 39]

the full Virasoro group was considered rather than just its global subgroup. The former is just a

matter of interpretation, and we will touch briefly on the latter in the conclusion.
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5.1 Example: CFT on the plane

We now present some elementary computations to explain how this works in the basic case of

Poincaré AdS3 in coordinates:

ds2 = dρ2 + e2ρdzdz̄ , (5.1)

dual to the CFT on the plane with complex coordinates z, z̄. Rather than working with boundary

data on the edge of an excised disc at each endpoint, it is more convenient to perform the state-

operator correspondence to map each descendant on the edge to a local operator at the center of

the disc. As there are an infinite number of states in the sum, this is a very non-local operator

which we denote by OUi
(zi, z̄i). We will use a variant of the HKLL construction to compute the

two-point function

〈OU1
(z1, z̄1)OU2

(z2, z̄2)〉 , (5.2)

and then reproduce this answer from a Wilson line computation.

Focus on the first endpoint at (z1, z̄1). We first consider the case where the boundary state U1

is the crosscap Ishibashi state |Σcross〉 itself. Consider the disc centered at z1 in the CFT, with

radius e−ρ; we would like to place the boundary data corresponding to the crosscap Ishibashi state:

|Σcross〉 =
∑

m

(−1)m|m,m〉 =
∑

m

(−1)mc2mℓm−1ℓ̄
m
−1|h, h〉 , (5.3)

where the normalization constant in each sector is cm =
√

Γ(2h)
Γ(m+1)Γ(m+2h) . We now use the state-

operator correspondence to replace each state on the disc ℓm−1ℓ̄
m
−1|0〉 with the operator ∂m∂̄m

O(z1)

at the center. However, we should note that the evolution from the center of the disc to the edge

will cause each state’s amplitude to be multiplied by a factor of e+ρ(2h+2m). Compensating for this,

the operator that creates the crosscap state on a disc of radius e−ρ1 is

|Σcross〉 → O
(ρ1)
Σ (z1, z̄1) =

∑

m

c2m(−1)me−ρ1(2h+2m)∂m∂̄m
O(z1, z̄1) . (5.4)

The sum over derivatives of the local operator O can be written as an integral over the following

kernel [25, 40]

O
(ρ1)
Σ (z1, z̄1) =

2h− 1

π

∫

dzdz̄

(

e−2ρ1 − (z − z1)(z̄ − z̄1)

e−ρ1

)2h−2

O(iz, iz̄)

≡ K(ρ1, z1, z̄1)[O] , (5.5)

where in the last line we have introduced some new notation. We note that this is nothing but

the usual HKLL smearing kernel in Euclidean signature, though our interpretation is somewhat
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different.

We now consider deforming away from the crosscap state to a more general U -state. The

SL(2,R) generators have a simple geometric action on the plane, and this geometric action results

in a transformation of the parameters in kernel K. In particular, if we parametrize the SL(2,R)

element U1 in a convenient way as

U1 = e−w1
i
2
(−2L0−L1−L−1)eµ1(L−1−L1)ew̄1

i
2
(−2L0+(L1+L−1)) , (5.6)

then it is shown in Appendix E that the appropriate smeared operator is

O
(ρ1)
U1

(z1, z̄1) = K(ρ1 + µ1, z1 + e−ρ1w, z̄1 + e−ρ1w̄1)[O] . (5.7)

We now pause to interpret this result from the point of view of HKLL. Recall that the smearing

function (5.7) corresponds to the HKLL representation of a bulk field in Poincaré coordinates (5.1),

where the precise coordinate values of the bulk reconstructed field are

(ρa, za, z̄a) = (ρ1 + µ1, z1 + eρ1w1, z̄1 + e−ρ1w̄1) , (5.8)

In particular, the proper distance D within AdS3 between two points with coordinate values

(ρa, za, z̄a) and (ρb, zb, z̄b) satisfies coshD = σ where

σ =
e−2ρa + e−2ρb + (za − zb)(z̄a − z̄b)

2e−ρa−ρb
. (5.9)

Let us now consider computing the two-point function (5.2) of two U states inserted at distinct

points on the boundary z1, z2. This is a well-posed CFT computation involving integrals over two

K kernels. Rather than repeat it here, we simply note that it is a standard HKLL computation, and

by construction the result is the usual bulk-to-bulk AdS3 propagator between points with Poincare

coordinate values given by (5.8) (and a corresponding relation relating (ρa, za, z̄a) to (ρ2, z2, z̄2)),

i.e.

〈O(ρ1)
U1

(z1, z̄1)O
(ρ2)
U2

(z1, z̄1)〉 =
e−2hD

1− e−2D
. (5.10)

Such expressions are by now very familiar.

We will now reproduce this CFT result from a Chern-Simons computation. In particular, we

consider the following gauge connections for Poincaré AdS3 in Euclidean signature:

a = − i

2
(−2L0 − L1 − L−1)) dz , ā = − i

2
(−2L0 + L1 + L−1) dz̄ , b = e(L−1−L1)

ρ
2 . (5.11)

As usual the full connections are related to the objects recorded here by A = b−1 (a+ d) b, Ā =

b(ā+ d)b−1. Full conventions are in Appendix B; in particular these connections are equivalent to
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those in (B.8) with C → 0, together with the usual Euclidean continuation x+ → z, x− → −z̄ and

a rescaling of the field-theory directions by a factor of 2; the last step is convenient so that the

resulting coordinate system is precisely equivalent to (5.1).

The prescription above states that the two point-function (5.2) is calculated in the Chern-Simosn

representation by the following matrix element:

〈O(ρ1)
U1

(z1, z̄1)O
(ρ2)
U2

(z1, z̄1)〉 = 〈U2|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|U1〉 . (5.12)

We may easily verify this relation. (3.23) now tells us that the right-hand side of this expression is

equal to this matrix element is equal to

〈U2|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|U1〉 =
e−hα

1− e−α
, (5.13)

where as usual α is defined as the L0 conjugacy class of the following group element:

V e−αL0V −1 = g̃R(x2)U
−1
2 gL(x2)gL(x1)

−1U1g̃R(x1)
−1 , (5.14)

with

g̃R(x) = eρ
L1−L−1

2 e−azz gL(x) = eāz z̄eρ
L1−L−1

2 . (5.15)

Computing α from here and the explicit representation of U1,2 as in (5.6), we find that it is equal to

2D as defined above (5.9); thus we find that the Chern-Simons computation agrees with the CFT

result, confirming (5.12).

Note that everything in this computation is fixed by kinematics, and we have simply shown

how the SL(2,R) parameters characterizing the boundary conditions combines with the geometric

data to give the familiar HKLL result.

6 Discussion

We provided a full quantum mechanical description treatment of worldline degree of freedom of a

Wilson line in SO(2, 2) Chern-Simons theory. This degree of freedom allowed us to build a local

probe in the Chern-Simons description of AdS3 gravity. There are a few striking features of this

probe which we highlight.

1. We designed states in the worldline quantum mechanics such that they would couple to both

(A, Ā). This condition naturally introduced the notion of rotated Ishibashi states, which we
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denote as |U〉, and their coupling to the connections creates a background spacetime metric

gµν =
1

2
Tr(Aµ − ˜̄Aµ)(Aν − ˜̄Aν) , (6.1)

where ˜̄A = U−1ĀU . These rotated Ishibashi states are at the core of giving a geometric,

and hence local, interpretation to WR(xf , xi). In particular, we showed that WR(xf , xi) is

the bulk-to-bulk propagator of a scalar field propagating on (6.1). The most natural choice

of rotated state that leads to regular background metrics is the crosscap state (3.18), i.e.

|U〉 = |Σcross〉.

2. Using purely the Chern-Simons formulation, we can build local bulk fields that probe the

background geometry (6.1). These local probes are defined in (4.26) and we investigated

some their properties for global AdS3 and the static BTZ black hole.

It is very satisfactory that our choice |U〉 = |Σcross〉 is compatible with the proposals in [22–24],

and we also reproduce the smearing functions of the HKKL [36,37] proposal for vacuum solutions.

This is expected since the symmetries of AdS3 constrain heavily the resulting bulk field, leaving

little room for disagreement at this level of discussion. Perhaps the interesting difference of our

approach is that our construction leaves room to consider other probes |U〉, and highlights some of

the gauge dependence in the construction of the local field Φk,k̄(x), which we emphasised around

(4.24). For black holes the situation is more delicate: for instance, it would be interesting to

compare and complement the proposals in [25, 41–44] with our derivations in Sec. 4.3.2. Along

these lines it would be interesting to carry out our derivations for the rotating BTZ black holes,

and other backgrounds in 3D gravity we have not explored.

We comment very briefly on one other aspect; as we have been able to reproduce bulk-to-

bulk propagators from the Chern-Simons description of 3d gravity, it is worth wondering whether

all of the aspects of the quantum field theory of a scalar field on a gravitational background

can be obtained from the Chern-Simons computation, e.g. can we obtain a one-loop scalar field

determinant on a BTZ black hole background? As this is essentially the same information as

the bulk-to-bulk propagator, we might think so. Indeed we expect the logarithm of the one-loop

determinant W to be the sum over connected Feynman diagrams, which in our context is the sum

of Wilson lines that each wrap the horizon n times on topologically distinct paths Cn. We find:

W = 2

∞
∑

n=1

1

n
TrR

[

P exp

(

−
∮

Cn

A

)

P exp

(

−
∮

Cn

Ā

)]

= 2
∑

n

1

n

(

e−hnα

1− e−nα

)2

, (6.2)

Here we have assumed that the topologically trivial path does not contribute; the factor of 2 arises
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from positive and negative n. The combinatoric factor 1
n is a symmetry factor10 and as usual α is

the conjugacy class of the holonomy of A (or Ā) around the black hole; on the BTZ background

it evaluates to α = 2πr+. The result above is then precisely the logarithm of the usual one-loop

scalar determinant on a black-hole background; see e.g. [45] for details and a repackaging of this

result in CFT language.

An important issue that we have not addressed is quantum corrections due to fluctuations of

the background connections. This would capture 1/c corrections, i.e. corrections controlled by the

AdS radius in Planck units, or equivalently subleading terms controlled by the level of the Chern-

Simons theory. Work in this direction has been done for SL(2) Chern-Simons theory, where Virasoro

conformal blocks are known to be tied to appropriate Wilson line in Chern-Simons [46–48]. Recent

developments for this holomorphic theory include [49–54]. It would be interesting to evaluate 1/c

corrections of our worldline quantum mechanics; in this case we expect that the intertwining of the

two copies of sl(2) will produce interesting features. For example, we should be able to probe if the

global conditions in (3.17) are enhanced to the Virasoro conditions on the Ishibashi state [38,39], or

something completely different, such as the conditions proposed in [40]. We leave these questions

for future work.

Another natural direction forward is to use our construction to build probes in SL(N)×SL(N)

Chern-Simons theory. This would provide a unique way to build local probes in higher spin gravity.

A discussion of Ishibashi states for W3 algebra was done in [55], which is a natural starting point

for future investigations.
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A Properties of so(2, 2) representations

In this appendix we collect a set of definitions, conventions and identities that are relevant for our

manipulations in the highest weight representation, and the rotated Ishibashi states.

A.1 sl(2,R) conventions

The Lie algebra for sl(2,R) is given by

[L0, L±] = ∓L± , [L1, L−1] = 2L0 , (A.1)

Our conventions for the fundamental representation of sl(2,R) is

L0 =

(

1/2 0

0 −1/2

)

, L1 =

(

0 0

−1 0

)

, L−1 =

(

0 1

0 0

)

. (A.2)

In our conventions, the Lie algebra metric reads

η00 =
1

2
, η+− = η−+ = −1 . (A.3)

For the highest weight representation of sl(2,R)× sl(2,R), we denote the generators as (ℓa, ℓ̄a).

Some of the basic relations we use in the main text are

ℓ0|h, k, k̄〉 = (h+ k) |h, k, k̄〉 ,
ℓ−1|h, k, k̄〉 =

√

(k + 1)(k + 2h)|h, k + 1, k̄〉 , (A.4)

ℓ1|h, k, k̄〉 =
√

k(k + 2h− 1)|h, k − 1, k̄〉 ,

where k = 0, ...,∞. The barred operators ℓa act analogously as (A.4), but in the states labeled by

k̄.

A.2 Completeness of rotated Ishibashi states

Here we establish a completeness relation for the |U〉 states:
∫

dU |U〉〈U | = (2π)2

2(2h− 1)
1 . (A.5)

We note that if the right-hand side exists, it must be equal to a multiple of the identity by SL(2,R)

invariance; thus the only question is whether or not the integral converges, and what the normal-
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ization factor is if it does. As the group is non-compact the convergence is not (to our knowledge)

actually guaranteed. Thus we perform an explicit computation in coordinates. In particular we

view the SL(2,R) group manifold as global AdS3 and place on it the usual global coordinates

(ρ, t, φ). It is important to note that we work here not SL(2,R) and not with its universal cover,

and thus both coordinates t and φ are periodic with period 2π.

The explicit matrix elements between the |U(ρ, t, φ)〉 states and the discrete highest-weight

states |h, k, k̄〉 can be constructed via the usual methods of finding the highest-weight state and

systematically acting with the raising operators. The result is precisely that given in a (slightly)

different context in the bulk of the paper (4.46):

〈U(ρ, t, φ)|h; k, k̄〉 = Ck,k̄ e
−2ihte−it(k+k̄)−iφ(k−k̄)(tanh ρ)k̄−k(cosh ρ)−2hP

(k̄−k, 2h−1)
k (1− 2 tanh2 ρ) ,

(A.6)

where P
(a, b)
n are Jacobi polynomials, and Ck,k̄ ≡ (−1)k

√

k!(2h+k̄−1)!
k̄!(2h+k−1)!

. Note also that in these

coordinates on the group manifold the Haar measure is just the usual volume element on AdS3, i.e.

∫

dU =

∫

dρdtdφ sinh ρ cosh ρ . (A.7)

With this in hand, we simply directly compute the following matrix elements:

Im,m̄;k,k̄ ≡
∫

dU〈h;m, m̄|U〉〈U |h; k, k̄〉 . (A.8)

From the matrix elements above, we see that this integral is proportional to e−it(k+k̄−m−m̄)e−iφ(k−k̄−m+m̄);

thus the integrals over t and φ result in a vanishing matrix element unless k = m and m̄ = k̄. We

conclude then that

Im,m̄;k,k̄ = δm,kδm̄,k̄Nk,k̄ . (A.9)

The normalization factor is given by

Nk,k̄ = (2π)2
∫

dρ sinh ρ cosh ρ
(

(tanh ρ)k̄−k(cosh ρ)−2hP
(k̄−k, 2h−1)
k (1− 2 tanh2 ρ)

)2
, (A.10)

This is difficult to evaluate for generic k. However by SL(2,R) invariance it must be independent

of k, k̄ (a fact we have also checked directly by numerical evaluation of the integral), allowing the

integral to be performed for k = k̄ = 0, resulting in

Nk,k̄ = N0,0 =
(2π)2

2(2h − 1)
. (A.11)
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Assembling the pieces we find

Im,m̄;k,k̄ =
(2π)2

2(2h − 1)
δm,kδm̄,k̄ , (A.12)

which is precisely the completeness relation (A.5) that we set out to show.

B Chern-Simons formulation of AdS3 gravity

With the purpose of setting up conventions, in this appendix we give a very short review of the

Chern-Simons formulation of AdS3 gravity. We refer the reader to the original articles [1, 2] and

more recently in, e.g., [56, 57] for further details.

The relevant Chern-Simons gauge group for AdS3 gravity is G = SO(2, 2). The Einstein-Hilbert

action can be written as

SEH[e, ω] = SCS [A]

=
k

4π

∫

M

Tr

(

A ∧ dA +
2

3
A ∧A ∧A

)

, (B.1)

with A ∈ so(2, 2). Here k is the level of the Chern-Simons theory. The relation to the conventional

gravitational vielbein and spin connection is

Ai = eai Pa + ωa
i Ma , (B.2)

where Ma are Lorentz generators and Pa are translations in so(2, 2).

It will be convenient to write the gauge group SO(2, 2) as SL(2,R) × SL(2,R). The flat

connection A can then be decomposed as two pairs of connections

A = (ωa +
1

ℓ
ea)La , Ā = (ωa − 1

ℓ
ea)L̄a , (B.3)

with La = 1
2(Ma + ℓPa), and L̄a = 1

2(Ma − ℓPa). Here ℓ is the AdS radius, which for most of our

work we will set ℓ = 1, and Newton’s constant is related to the Chern-Simons level via

k =
ℓ

4G3
. (B.4)

We will denote the generators of sl(2,R) simply as La. After performing this decomposition the

action can be written

SEH = SCS [A]− SCS[Ā] , (B.5)
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where the trace operation used in defining the Chern-Simons form is now the usual bilinear form

on the sl(2,R) Lie algebra.

B.1 Metrics, connections, and geodesic distances

In this appendix we gather various properties used for global AdS and the BTZ background. We

present the relevant information in Chern-Simons formulation, and the metric formulation. For the

later, we gather the different coordinate systems used and the relevant geodesic distances.

In Chern-Simons formulation, we write the pair of sl(2,R)× sl(2,R) as

A(x) = gL(x)dgL(x)
−1 , ˜̄A(x) = g̃R(x)

−1dg̃R(x) , (B.6)

In this section we add the tilde in the right sector, for consistency with the conventions used in

the main text. When the connections are constant in boundary coordinates, we can cast the group

elements as

gL(x) = b(ρ)−1e−aµyµ , g̃R(x) = eāµy
µ

b(ρ)−1 yµ = (t, φ) , (B.7)

where b(ρ) parametrizes the choice of radial variable, and aµ, and āµ are constant elements of

the sl(2) algebra. We can use the previous reparametrization to express the BTZ and global AdS

metric, with11

a = − i

4
((8C − 2)L0 − (1 + 4C)(L1 + L−1)) dx

+ , b(ρ) = e−(L1−L−1)ρ/2 ,

ā =
i

4
((8C − 2)L0 + (1 + 4C)(L1 + L−1)) dx

− . (B.8)

Here ρ is the radial direction and x± = t± φ with φ ∼ φ+ 2π. Via (4.11), these connections (B.8)

correspond to the metric:

ds2 = dρ2 − 1

4
(eρ − 4Ce−ρ)2dt2 +

1

4
(eρ + 4Ce−ρ)2dφ2 . (B.9)

11We chose these explicit form of the connections because they result into unitary group elements (B.7) when we
consider the highest weight representation with (ℓn)

† = ℓ−n. This is required by the purposes of the main text. For
readers familiar with the previous literature in 3d gravity in CS formalism, it will be comforting to know that (B.8)
is related to the more familiar form of the BTZ connections:

a = (Le
+ − C Le

−) dx
+ , ā = − (Le

− − C Le
+) dx

− , b(ρ) = exp(ρLe
0) .

via the following automorphisms:

L : Le
1 = i(2L0 + L1 + L−1)/4 , Le

−1 = 2iL0 − iL1 − iL−1 , Le
0 = −(L1 − L−1)/2 ,

R : Le
1 = 2iL0 + iL1 + iL−1 , Le

−1 = i(2L0 − L1 − L−1)/4 , Le
0 = −(L1 − L−1)/2 ,

The automorphism labelled by R is performed in the right sector, and analogously for the left sector.
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For C > 0, it is useful to define

r = r+ cosh2(ρ− ρ∗) , 4C = e2ρ∗ = r2+ , (B.10)

which brings (B.9) to the more familiar version of the (non-rotating) BTZ black hole:

ds2 = −(r2 − r2+)dt
2 +

dr2

r2 − r2+
+ r2dφ2 , (B.11)

For C < 0 the background (B.9) corresponds generically to a conical deficit. Setting C = −1/4, we

recover from (B.9) the global AdS3 spacetime:

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2 . (B.12)

In the next sections, we will need as well that the geodesic distance between two spacelike sep-

arated points in the bulk (xf , xi). For the metric in (B.9), the geodesic distance is D(xf , xi) =

arcoshσ(xf , xi), with

σ(xf , xi) = cosh(ρf − ρi) cosh
(√

C(∆t+∆φ)
)

cosh
(√

C(∆t−∆φ)
)

− 1

2

(

4C e−(ρf+ρi) +
eρf+ρi

4C

)

sinh
(√

C(∆t+∆φ)
)

sinh
(√

C(∆t−∆φ)
)

. (B.13)

which in the coordinates in (B.11) is :

σ(xf , xi) =
1

r2+

(

rfri cosh(r+∆φ)−
√

(r2f − r2+)(r
2
i − r2+) cosh(r+∆t)

)

. (B.14)

Moreover, the BTZ metric is locally isomorphic to AdS3 Poincare. Using the following coordinate

change

R2 − T 2 +X2 + Z2

2Z
=

√

r2 − r2+ sinh(r+t)

r+
,

RT

Z
=

r cosh(r+φ)

r+
, (B.15)

R2 + T 2 −X2 − Z2

2Z
=

√

r2 − r2+ cosh(r+t)

r+
,

RX

Z
=

r sinh(r+φ)

r+
,

the metric (B.11) becomes

ds2 =
1

Z2
(−dT 2 + dX2 + dZ2) , (B.16)

Null coordinates in this system are defined as X+ = X + T , and X+ = X − T . The geodesic

distance is

σ(xf , xi) =
(Tf − Ti)

2 + (Xf −Xi)
2 + Z2

f + Z2
i

2ZiZf
. (B.17)
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A solution of (B.15), in the quadrant where X,T,Z > 0 , 1 ≥ T 2 −X2 − Z2 > 0 , and T > X is:

Z =
r+e

−r+t

√

r2 − r2+

, T =
r e−r+t cosh(r+φ)

√

r2 − r2+

, X =
r e−r+t sinh(r+φ)
√

r2 − r2+

. (B.18)

C Generating function of Jacobi polynomials

In this Appendix we will perform a double sum of multiplication of two Jacobi polynomials which

is used in the main text. For that, we use the review on generating functions in [58]; formula (62)

in Sec. 2.3 of [58] reads

∞
∑

n

n!(−α− β)!

(−α− β + n)!
(x− 1)n(y − 1)ntnP (α−n,β−n)

n

(

x+ 1

x− 1

)

P (β−n,α−n)
n

(

y + 1

y − 1

)

= (1− xt)α(1− yt)β 2F1

(

−α,−β,−α− β,
(x− 1)(y − 1)t

(1− xt)(1− yt)

)

, (C.1)

We need also the identity

∞
∑

n

P (α,β)
n (x)zn =

2α+β

R(1 +R− z)α(1 +R+ z)β
, R ≡

√

−2xz + z2 + 1 . (C.2)

Combining the previous formulas, with y → 1/y, and other basic identities of hypergeometric

functions, we can derive the following sum:

√

(1− x)(1− y)
2h
rhsh

∞
∑

k,k̄=0

k!(2h + k̄ − 1)!

k̄!(2h + k − 1)!
rksk̄(xy)

k̄−k
2 P

(k̄−k,2h−1)
k (1− 2x)P

(k̄−k,2h−1)
k (1− 2y)

=

(√
σ2 − 1 + σ

)1−2h

2
√
σ2 − 1

(C.3)

where σ is defined as

σ ≡ −√
x
√
y(r + s) + rs+ 1

2
√
1− x

√
1− y

√
rs

. (C.4)

For the examples worked out in section 4.3, σ is directly related to the geodesic distance between

two endpoints.
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D Inner product with quasi-normal modes eigenfunctions

In this appendix we explore what will happen if in (4.32), given by

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

Φk,k̄(sf )Φ
∗
k,k̄(xi) . (D.1)

we replaced (without justification) Φk,k̄ the more familiar quasi-normal modes for the BTZ black

hole.

The quasi-normal modes are defined as the fields in black hole geometries that are purely ingoing

at the horizon, and that vanish at infinity. For the BTZ black hole, solutions to �
2Φ = m2Φ with

these conditions are found in [29], imposing separability in its variables:

ΦQNM(x) = e−iωteilφ
(r+

r

)2h
(

1− r2+
r2

)− iω
2r+

2F1

(

h+
i

2r+
(l − ω) , h− i

2r+
(l + ω) , 2h,

r2+
r2

)

(D.2)

where we have considered the non-rotating case (r− = 0), and that the mass of the scalar field is

related to the conformal dimension as h = 1
2(1 +

√
1 +m2). The vanishing boundary condition

gives the left and right quasi-normal modes:

ω± = ±l − 2ir+(n+ h) . (D.3)

Using the positive root in (D.3), and defining l = ir+(k − k̄):

ΦQNM
k,k̄

(x) = Ck,k̄e
−r+(2ht+kx++k̄x−)

(

r2

r2+
− 1

)−h(

1− r2+
r2

)

k−k̄
2

P
(k̄−k,2h−1)
k

(

r2+ + r2

r2+ − r2

)

(D.4)

We have named the previous field Φk,k̄ by analogy with the global case, but it does not follow (4.29)

for the BTZ differential operators in (4.53).

Inspired by the global case, we will compute the overlap of two states (4.25) in the bulk. Evaluating
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(D.1) with (D.4) gives

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

ΦQNM
k,k̄

(sf )Φ
∗QNM
k,k̄

(xi) (D.5)

=
∞
∑

k,k̄=0

e−r+h(∆x++∆x−)e−r+(k∆x++k̄∆x−) k!(2h + k̄ − 1)!

k̄!(2h + k − 1)!

(

1− r2+
r2i

)

k−k̄
2

(

1− r2+
r2f

)
k−k̄
2

×
(

r2i
r2+

− 1

)−h
(

r2f
r2+

− 1

)−h

P
(k̄−k, 2h−1)
k

(

r2+ + r2f
r2+ − r2f

)

P
(k̄−k,2h−1)
k

(

r2+ + r2i
r2+ − r2i

)

.

Using again (C.3), this time with x =
(

1− r2+
r2i

)−1

, y =

(

1− r2+
r2
f

)−1

, r = e−r+∆x−
, and s =

e−r+∆x+

, we see that the result for the results is as well (4.48), with the geodesic length for the

BTZ in (B.14).

E Integral kernels in CFT representation

In this Appendix we describe the mapping between a general |U〉 state at the boundary in Poincaré

coordinates and a CFT smearing kernel (5.7) in Euclidean signature. Though our interpretation is

different, the manipulations here are mathematically very similar to those in e.g. [25].

We parametrize the group element in terms of three parameters (σ,w, w̄) as

U1 = e−w1
i
2
(−2L0−L1−L−1)eσ1(L−1−L1)e+w̄1

i
2
(−2L0+(L1+L−1)) . (E.1)

By acting on the Ishibashi state we can rotate it, where the splitting into G and G is arbitrary and

was picked in this way for later convenience:

G(e−w1
i
2
(−2L0−L1−L−1)eσ1(L−1−L1))G(e−w̄1

i
2
(−2L0+(L1+L−1)))|ΣIsh〉 = |U〉 . (E.2)

We now want to realize the SL(2,R) generators geometrically in terms of differential operators

acting on R
2. We note that this assignment of generators to operators is not fixed by the algebra

alone, as conjugation by any SL(2,R) element (or an outer automorphism such as ΣIsh) will leave

the algebra invariant. The assignment is instead fixed by the boundary behavior of the gauge

45



connection chosen to be the AdS3 connection; for the choice (5.11) the assignment is:

∂ =
i

2
(2ℓ0 + ℓ1 + ℓ−1) , z∂ = −1

2
(ℓ1 − ℓ−1) , z2∂ =

i

2
(2ℓ0 − ℓ1 − ℓ−1)) , (E.3)

∂̄ =
i

2

(

2ℓ0 − ℓ1 − ℓ−1

)

, z̄∂̄ =
1

2

(

ℓ1 − ℓ−1

)

, z̄2∂̄ =
i

2

(

2ℓ0 + ℓ1 + ℓ−1

)

. (E.4)

Thus the operation we want to realize is

O
(0)
U (z1, z̄1) = ew∂z1e2µz1∂z1ew̄∂̄z1K(0, z1, z̄1)[O] . (E.5)

We will now understand how these operators act on the integral kernel. Clearly two of them are

just translations in z1 and z̄1:

exp (w∂1)K(ρ, z1, z̄1)[O] = K(ρ, z1 + w, z̄1)[O] ,

exp
(

w̄∂̄1
)

K(ρ, z1, z̄1)[O] = K(ρ, z1, z̄1 + w̄)[O] , (E.6)

where we use the notation from (5.5). The more interesting one is the dilatation, which acts by

rescaling z1 (note: actually z1, not the second argument of K) by a factor of e2σ:

exp (2µz1∂1)K(ρ, z1, z̄1) = K(ρ, e2µz1, z̄1)[O] . (E.7)

However, due to the form of the integral kernel, we have the following relation:

K(ρ, e2µz1, z̄1) = K(ρ+ µ, z1, z̄1) . (E.8)

(where this is now a relation that works for the arguments of K). To see this, note that

∫

dzdz̄

(

e−2ρ − (z − e2µz1)(z̄ − z̄1)

e−ρ

)2h−2

O(iz, iz̄)

=

∫

dz′dz̄

(

e−2ρ′ − (z′ − z1)(z̄ − z̄1)

e−ρ′

)2h−2

O(iz′, iz̄) , (E.9)

where ρ′ = ρ+ µ, z′ = e−2µz and we used the scaling property of O(λz, z̄) = λ−h
O(z, z̄). Thus we

conclude that

exp (2µz1∂1)K(ρ, z1 + w, z̄1) = K(ρ+ µ, z1 + e−2µw, z̄1)[O] . (E.10)
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We now construct the desired object:

O
(0)
U (z1, z̄1) = ew∂z1e−2µz1∂z1ew̄∂̄z1K(0, z1, z̄1)[O]

= ew∂z1e2µz1∂z1K(0, z1, z̄1 + w̄)[O]

= ew∂z1K(µ, z1, z̄1 + w̄)[O]

= K(µ, z1 + w, z̄1 + w̄)[O] . (E.11)

Now we finally need to act with the overall compensating ρ dilatation:

O
(ρ)
U (z1, z̄1) = eρz∂z1eρz̄∂z̄1K(µ, z1 + w, z̄1 + w)[O]

= K(µ, eρz1 + w, eρz̄1 + w)[O]

= K(ρ+ µ, z1 + e−ρw, z̄1 + e−ρw)[O] . (E.12)

The final relation is thus

O
(ρ)
U (z1, z̄1) = K(ρ+ µ, z1 + e−ρw, z̄1 + e−ρw)[O] , (E.13)

which is (5.7) in the text.
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