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Abstract. In this paper we consider the question of when Seshadri constants on
abelian surfaces are integers. Our first result concerns self-products E × E of elliptic
curves: If E has complex multiplication in Z[i] or in Z[ 1

2
(1 + i

√
3)] or if E has no

complex multiplication at all, then it is known that for every ample line bundle L on
E ×E, the Seshadri constant ε(L) is an integer. We show that, contrary to what one
might expect, these are in fact the only elliptic curves for which this integrality state-
ment holds. Our second result answers the question how – on any abelian surface –
integrality of Seshadri constants is related to elliptic curves.

1. Introduction

For an ample line bundle L on a smooth projective variety X, the Seshadri constant
of L at a point x ∈ X is by definition the real number

ε(L, x) = inf

{

L · C
multx(C)

C irreducible curve through x

}

.

On abelian varieties, where they are independent of the chosen point x, these invari-
ants have been the focus of a great deal of attention [8, 11, 1]. In the two-dimensional
case, they are completely understood in the case when the Picard number of the
abelian surface is one [3]. At the other extreme, self-products E × E of elliptic
curves were studied in [4], where E is either an elliptic curve without complex mul-
tiplication or with End(E) = Z[i] or End(E) = Z[1

2
(1 + i

√
3)]. In those cases, the

Seshadri constants ε(L) of all ample line bundles L on E × E were found to be
integers – they are in fact computed by elliptic curves. It is natural to expect that
this should in effect hold on all surfaces E×E, where E is an elliptic curve. Surpris-
ingly, however, it turns out that the exact opposite is the case: Fractional Seshadri
constants do occur on all self-products E ×E except for the ones considered so far.
The following theorem provides the complete picture:

Theorem 1 Let E be an elliptic curve with complex multiplication. Then the fol-
lowing conditions are equivalent:

(i) For every ample line bundle L on E × E, the Seshadri constant ε(L) is an
integer.
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(ii) Either End(E) = Z[i] or End(E) = Z[1
2
(1 + i

√
3)].

For the proof of Theorem 1 we will first establish how integrality is related
to elliptic curves. One direction is obvious: If all Seshadri constants on a given
abelian surface are computed by elliptic curves, then certainly those numbers are
all integers. It is however less clear to what extent the converse statement holds
true. The following theorem answers this question; it holds on any abelian surface,
regardless of whether it splits as a product or not.

Theorem 2 Let X be an abelian surface. The following conditions are equivalent:

(i) For every ample line bundle L on X, the Seshadri constant ε(L) is an integer.
(ii) For every ample line bundle L on X, either ε(L) =

√
L2 and

√
L2 is an

integer, or ε(L) is computed by an elliptic curve, i.e., there exists an elliptic
curve E ⊂ X such that

ε(L) = L ·E .

If one is interested in constructing explicit examples of line bundles with frac-
tional Seshadri constants on products E×E, then a natural approach is to look for
irreducible principal polarizations on these surfaces. In other words, one asks under
which circumstances E×E is the Jacobian of a smooth genus 2 curve. This question
was first studied by Hayashida and Nishi [7] in the case where the Endomorphism
ring is the maximal order in the Endomorphism algebra. We extend their result in
Prop. 4.5 to cases which include non-maximal orders.

Looking at Theorem 2, one might be tempted to hope that an analogous equiv-
alence might hold for each individual line bundle. However, as we will show in
Prop. 4.8, ε(L) can be an integer without this being accounted for by the conditions
in (ii).

We work throughout over the field of complex numbers.

2. Background

We will use a number of previous results concerning Seshadri constants on abelian
surfaces in the proof of Thm. 1 and Thm. 2. In this preliminary section we briefly
review some of these results. For more general background on Seshadri constants
also see [9, Chapt. 5] and [5]

Submaximal divisors. For any ample line bundle L an a smooth projective surface
X and any point x ∈ X, one has the basic bound ε(L, x) 6

√
L2. A divisor D

on X is called L-submaximal at x if its Seshadri quotient L ·D/mult0D is strictly
smaller than

√
L2. In other words, a divisor D is L-submaximal if it forces ε(L, x)

to be smaller than the theoretical upper bound
√
L2. It is a crucial observation

that if D is an L-submaximal divisor that belongs to the linear series |kL| for some
integer k > 1, then every irreducible curve C that is L-submaximal at x must occur
as a component of D. (see [3, Lemma 5.2 and Lemma 6.2]). It is for this fact
that submaximal divisors are in many cases instrumental to explicitly determining
Seshadri constants. One such situation is as follows: Suppose that C is an irreducible
curve that is L-submaximal at x for some ample line bundle L. If the line bundle



3

OX(C) is ample, then by [4, Prop. 1.2] the curve C is also OX(C)-submaximal at
x, and in fact C computes ε(OX (C), x) in the sense that

ε(OX (C), x) =
OX(C) · C
multxC

.

Symmetric divisors on abelian surfaces. Consider now an abelian surface X. A di-
visor D on X is symmetric, if D is invariant under the involution x 7→ −x. Similarly,
a line bundle L is symmetric, if (−1)∗L = L in Pic(X). Symmetric line bundles enjoy
important properties: The sixteen halfperiods on X are divided into even and odd
halfperiods (with respect to L), and if D is a symmetric divisor with OX(D) = L,
then the multiplicities of D at either of these sets of halfperiods are all even or all
odd. (See [6, Sect. 4.7] for these facts and for further properties of symmetric line
bundles.)

Let L be an ample line bundle on an abelian surface. As far as Seshadri constants
are concerned we may assume that L is symmetric, since ε(L) depends only on the
algebraic equivalence class and every algebraic equivalence class contains contains
symmetric line bundles. It was proven in [2] that if L is primitive and

√
L2 is

irrational, then ε(L) <
√
L2. This is shown by constructing a symmetric submaximal

divisor, the Pell divisor, Pell(L) in |2kL| with multiplicity at least 2ℓ, where (k, ℓ)
is the minimal solution of the Pell equation ℓ2 − L2k2 = 1. One has

L · Pell(L)
mult0 Pell(L)

6 L2 · k
ℓ
<

√
L2 .

3. Integral Seshadri constants

In this section we prove Theorem 2. As mentioned in the previous section, one has
ε(L) 6

√
L2 for any ample line bundle. We start by giving an example showing that

in condition (ii) of the theorem it can in fact happen that ε(L) =
√
L2, even though

ε(L) is not computed by an elliptic curve.

Example 3.1 For any positive integer n consider a polarized abelian surface (X,L)
of type (1, 2n2) with ρ(X) = 1. As L2 = 4n2 is a perfect square, one has ε(L) =√
L2 = 2n by [12, Prop. 1], but of course ε(L) is not computed by an elliptic curve,

since there are no such curves on X.

Proof of Theorem 2. The implication (ii) ⇒ (i) being obvious, let us suppose (i).
Assume by way of contradiction that there are ample line bundles L on X whose
Seshadri constant is less than

√
L2 and not computed by elliptic curves. Consider a

primitive such line bundle L. Replacing L by an algebraically equivalent line bundle,
we may assume that L is symmetric. We will now make use of the Pell divisor of L,
i.e., the divisor D = Pell(L) ∈ |2kL| with mult0(D) > 2ℓ, where (k, ℓ) is the minimal
solution of Pell’s equation

ℓ2 − 2dk2 = 1 ,

having the property that
L ·D

mult0(D)
<

√
L2
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(see [2]). It follows from [3, Lemma 5.2] that every irreducible curve computing ε(L)
is a component of D. Let C be one of these curves (which by assumption is not
elliptic). As C is sub-maximal for L, it follows from [4, Prop. 1.2] that C computes
its own Seshadri constant ε(OX (C)). The curves C and (−1)∗C have the same mul-
tiplicity at the point 0 and they are algebraically equivalent. Therefore, by applying
[3, Lemma 5.2] to the bundle OX(C), we see that these two curves must coincide,
i.e., that C is symmetric. So C descends to a curve C on the smooth Kummer
surface of X. With an argument as in the proof of [3, Thm. 6.1], this curve C must
be a (−2)-curve. (Otherwise C would move in a pencil of L-submaximal curves, but
there can only be finitely many of those.) The upshot of these considerations is that
the multiplicities mi = multei(C) of C at the sixteen halfperiods ei of X satisfy the
equation

C2 −
16
∑

i=1

m2
i = −4 . (1)

On the other hand, one has
C2 −m2

1 < 0 (2)

(where m1 = mult0(C)), since otherwise

L · C
m1

>

√
L2

√
C2

m1

>

√
L2 ·m1

m1

=
√
L2

contradicting the fact that C is submaximal for L. We claim now that

C2 −m2
1 = −1 or C2 −m2

1 = −4 . (3)

For the proof of (3), note first that, by (1) and (2), the only other possibilities
for C2 − m2

1 are −2 and −3. In the case where C2 − m2
1 = −2, we see that the

number m1 must be even and we have
∑

16

i=2
m2

i
= 2 by (1). So there are exactly

two half-periods at which C has odd multiplicity. But this cannot happen since
a symmetric divisor can only have 4, 6, 10 or 12 half-periods with odd multiplicity
(see [10, Sect. 2, Cor. 3] or [6, Prop. 4.7.5]). In the other case, C2 −m2

1 = −3, the
number m1 is odd and we have

∑

16

i=2
m2

i
= 1 by (1). This leads to the same kind of

contradiction as before.
We know that C computes its own Seshadri constant, i.e.,

ε(OX(C)) =
C · C

mult0 C
.

But by (3), this number equals

m2
1 − s

m1

= m1 −
s

m1

where s = 1 or s = 4. As by assumption ε(OX (C)) is a positive integer, this means
that necessarily

m1 = 4 and C2 = 12 .

In this case the multiplicities mi at the non-zero half-periods are all zero. So in
particular, all multiplicities mi are even. Therefore the line bundle OX(C) is totally
symmetric, and hence it is a square of another line bundle (see [10, Sect. 2, Cor. 4]).
But because of C2 = 12 this is impossible. So we have arrived at a contradiction,
and this completes the proof of the theorem. �
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4. Products of elliptic curves with complex multiplication

In this section we prove Theorem 1. Let E be an elliptic curve that has complex
multiplication, i.e., End(E) ⊗ Q = Q(

√
d) for some square-free integer d < 0. The

endomorphism ring End(E) is then an order in Q(
√
d), and hence it is of the form

End(E) ≃ Z[fω]

where f is a positive integer and

ω =

{√
d if d ≡ 2, 3 (mod 4)

1

2
(1 +

√
d) if d ≡ 1 (mod 4) .

It turns out that for our purposes it is more practical to use an equivalent but slightly
different description: We write End(E) = Z[σ], where

σ =
√
−e with e ∈ N

or σ = 1

2
(1 +

√
−e) with e ∈ N and e ≡ 3 (mod 4) .

On the product surface E×E, denote by F1 = {0}×E and F2 = E×{0} the fibers
of the projections, by ∆ the diagonal, and by Γ the graph of the endomorphism
corresponding to σ. The classes of these four curves form a basis of NS(E ×E) (see
[13, Thm. 22] or [6, Thm. 11.5.1]).

Proposition 4.1 Let E be an elliptic curve with complex multiplication. Write
End(E) = Z[σ] with σ as above. Then the intersection matrix of (F1, F2,∆,Γ) is













0 1 1 1

1 0 1 |σ|2

1 1 0 |1− σ|2

1 |σ|2 |1− σ|2 0













.

Proof. All four curves are elliptic, so we have

F 2
1 = F 2

2 = ∆2 = Γ2 = 0 .

As each curve intersects the other ones transversely, it is enough to count the number
of intersection points. So we have

F1 · F2 = F1 ·∆ = F1 · Γ = F2 ·∆ = 1 ,

since these curves intersect only in the origin. For F2 and Γ one has

F2 · Γ = #{(x, 0) |x ∈ E} ∩ {(x, σx) |x ∈ E} ,

and this shows that we need to count the number of solutions x ∈ E of the equation
σx = 0. But this number equals the degree of the isogeny σ : E → E, and so we get

F2 · Γ = deg σ = |σ|2 .

Finally, for ∆ and Γ we have

∆ · Γ = #{(x, x) |x ∈ E} ∩ {(x, σx) |x ∈ E} ,
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and this is the number of fixed points of the isogeny σ. Hence by the Holomorphic
Lefschetz Fixed-Point Formula [6, Thm. 13.1.2], we have

∆ · Γ = #Fix(σ) = |1− σ|2 ,

and this concludes the proof of the proposition. �

We will need an explicit description of the ample cone of E × E:

Proposition 4.2 Let E be an elliptic curve with complex multiplication. Write
End(E) = Z[σ] as above. A line bundle

L = OE×E(a1F1 + a2F2 + a3∆+ a4Γ)

is ample if and only if the two inequalities

a1 + a2 + 2a3 + (|σ|2 + 1)a4 > 0

a1a2 + a1a3 + a1a4 + a2a3 + |σ|2a2a4 + |1− σ|2a3a4 > 0

are satisfied.

Proof. This follows from the fact that a line bundle L is ample if and only if both
L2 and the intersection of L with the ample line bundle OE×E(F1 +F2) are positive
(by the improvement of the Nakai-Moishezon criterion valid on abelian varieties [6,
Cor. 4.3.3]). �

Next, we apply a change of basis to the Néron–Severi group to make calculations
easier by choosing two basis elements which are orthogonal to F1 and F2. We define
∇ := ∆−F1−F2 and Σ := Γ−|σ|2F1−F2. The intersection matrix of (F1, F2,∇,Σ)
is then













0 1 0 0

1 0 0 0

0 0 −2 −2Re(σ)

0 0 −2Re(σ) −2|σ|2













.

In terms of this new basis, the ampleness condition for a line bundle

L = OE×E(a1F1 + a2F2 + a3∇+ a4Σ)

is expressed by the two inequalities

a1 + a2 > 0

a1a2 − a23 − |σ|2a24 − 2Re(σ)a3a4 > 0 .

It was shown in [4] that if End(E) = Z[i] or End(E) = Z[1
2
(1 + i

√
3)], then the

Seshadri constants on E × E are computed by elliptic curves, and hence they are
integers. We now show that in all other cases there exist ample line bundles on E×E,
whose Seshadri constants cannot be computed by elliptic curves. With Theorem 2
this will imply that there are line bundles with fractional Seshadri constants on the
surface.
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Proposition 4.3 Let E be an elliptic curve with complex multiplication. Write
End(E) = Z[σ] as above. If σ /∈

{

i, 1
2
(1 + i

√
3)
}

, then there exist ample line bundles

L on E ×E such that
√
L2 is not an integer and such that ε(L) is not computed by

an elliptic curve.

Proof. Our strategy is to exhibit ample line bundles L whose intersection number
with any nef line bundle – and therefore in particular with every elliptic curve –
is bigger than

√
L2. For such L, the Seshadri constant cannot be computed by an

elliptic curve, since ε(L) 6
√
L2 (see [9, Prop. 5.1.9]).

We first treat the case σ =
√
−e with e 6= 1. For k ∈ Z consider the line bundle

Lk := OE×E(2eF1 + 2eF2 + e∇+ kΣ) .

As Lk · (F1 +F2) = 4e, the line bundle Lk is ample if and only if L2
k
= 6e2 − 2ek2 >

0. (This is a consequence of [6, Cor. 4.3.3].) Let M be an arbitrary line bundle
numerically written as M ≡ a1F1+a2F2+a3∇+a4Σ. Then the intersection number
of Lk and M is given by

Lk ·M = 2ea2 + 2ea1 − 2ea3 − 2eka4 .

The crucial point in this construction is that Lk · M is a multiple of 2e. So in
particular the intersection number of Lk with any elliptic curve on E×E is at least
2e, if Lk is ample. We will show that we can choose k in such a way that

(i) Lk is ample and
√

L2
k
< 2e,

(ii) L2
k
is not a perfect square.

If this is achieved, then we have an ample line bundle as claimed in the proposition.
Turning to the proof of that claim, note that (i) is equivalent to the condition

that k lies in the interval (
√
e,
√
3e). So we have to show that if e 6= 1 then this

interval contains an integer k such that also condition (ii) is fulfilled. The subsequent
Lemma 4.4 shows that if L2

k
is a perfect square, then L2

k+1
cannot be a perfect square.

As the interval (
√
e,
√
3e) contains at least two integers when e > 6, we are thus

reduced to treating the range 2 ≤ e ≤ 5. For these values of e we can do explicit
calculations, which show that integers k as required exist:

e 2 3 4 5

k 2 2 3 3
L2
k

8 30 24 60

Now we treat the second case, i.e., σ = 1

2
(1 +

√
−e) with e ≡ 3 (mod 4) and

e 6= 3. In this case, we consider for odd k ∈ Z the line bundles

Lk := OE×E(2eF1 + 2eF2 + (e− k)∇ + 2kΣ) .

Analogously to the case before, Lk is ample if and only if L2
k
= 6e2−2ek2 > 0. Since

k is odd, it follows that the intersection number of Lk and M , which is given by

Lk ·M = 2ea2 + 2ea1 − 2ea3 − e(k + 1)a4 ,
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is a multiple of 2e. If e 6= 3, then it is possible to choose an integer k ∈ (
√
e,
√
3e).

This ensures that Lk is ample and that
√

L2
k
< 2e. (Note that the interval does not

contain an odd integer for e = 3.)
By the subsequent Lemma 4.4 we know that if L2

k
is a perfect square then L2

k+2

is not. Since the interval (
√
e,
√
3e) contains at least four integers when e > 30, we

are reduced to the cases 7 ≤ e ≤ 27. We finish the proof by providing explicit values
of k for the remaining six cases:

e 7 11 15 19 23 27

k 3 5 5 5 5 7
L2
k

168 176 600 1216 2024 1728

This completes the proof of the proposition. �

Lemma 4.4 Let e > 2 be an integer and let e = m2 n be its unique representation
as a product of a square and a square-free integer. For positive integers k we define
Ak := 6e2−2ek2. Then either Ak or Ak+1 is not a perfect square, and if furthermore
n > 3, then either Ak or Ak+2 is not a perfect square.

Proof. First, we treat the case n > 3. Suppose that Ak = m2n (6m2n − 2k2) is a
perfect square. Since n is square-free, it follows that 6m2n−2k2 = nr2 for an integer
r. We deduce that either n or n/2 is a divisor of k2, and hence it is a divisor of k.
Consequently, neither Ak+1 nor Ak+2 can be a perfect square, because n and n/2,
respectively, cannot be a divisor of k + 1 and k + 2.

Next, we consider the case n = 2. Suppose that Ak = 4m2 (6m2−k2) is a perfect
square. Then the factor 6m2 − k2 must itself be a perfect square, and this implies
that the equation k2 + r2 = 6m2 has an integral solution (k, r,m). By cancelling
common factors we then find also a solution with gcd(k, r) = 1. We will now obtain
a contradiction by considering the equation modulo 8: On the one hand, r2 + k2 is
either 1, 2 or 5 modulo 8, and on the other hand 6m2 is either 0 or 6 modulo 8.

Finally, we treat the case n = 1. Suppose that Ak = m2 (6m2 − 2k2) is a perfect
square. As before, it follows that 6m2−2k2 = r2 for some integer r. Assume by way
of contradiction that Ak+1 = m2 (r2 − 4k − 2) is a perfect square as well. Then the
factor r2 − 4k − 2 must be a perfect square as well. This, however, cannot happen
because it is either 2 or 3 modulo 4. �

Proof of Theorem 1. The implication (ii) ⇒ (i) follows from [4], where it is shown
that all Seshadri constants are computed by elliptic curves in that case. Assume
now that condition (i) holds. By Prop. 4.3 there exist ample line bundles L whose
Seshadri constant is not computed by elliptic curves and such that

√
L2 is not an

integer. Theorem 2 then shows that there are ample line bundles on E × E with
fractional Seshadri constants. �

The method of proof of Theorem 1 shows the existence of line bundles with
fractional Seshadri constants, but does not construct them explicitly. One idea
to find such line bundles very concretely is to look for principal polarizations on
E × E. Those are either irreducible, i.e., they arise from a smooth curve of genus
2, or they correspond to a sum of two elliptic curves (see [14, Thm. 2]). In the
irreducible case one has a fractional Seshadri constant ε(L) = 4

3
by [12, Prop. 2].
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The problem of finding smooth genus two curves on E × E was first studied by
Hayashida and Nishi in [7], where they show that if End(E) is isomorphic to the
maximal order of Q(

√−m), then there exists such principal polarizations L if and
only if m /∈ {1, 3, 7, 15}. Note that this shows in particular that there are cases in
which no such principal polarizations exist. We extend their result by exhibiting
irreducible principal polarizations when End(E) = Z[

√−e] with e ≡ 2, 3 (mod 4).
(Note that these include non-maximal orders.)

Proposition 4.5 Let E be an elliptic curve with complex multiplication such that
End(E) = Z[

√
−e] with e ≡ 2, 3 (mod 4). Then there exist irreducible principal

polarizations L on E × E. In particular, we have ε(L) = 4

3
for these line bundles.

Proof. Note to begin with that for an irreducible principal polarization L one has
ε(L) = 4

3
: This was first shown by Steffens [12] when the Picard number is one,

where the Seshadri constant is computed by a curve in |4L|. Thanks to the fact that
this curve is irreducible, it also computes ε(L) in the general case by [3, Lemma 6.2].

Turning to the proof of the proposition, we first treat the case e ≡ 2 (mod 4).
Writing e = 4n+ 2, consider the line bundle

Ln : = OE×E(2(n + 1)F1 + 2F2 +∇+Σ)

= OE×E(−(2n+ 1)F1 +∆+ Γ) .

It is a consequence of Ln · (F1 + F2) = 2n + 4 > 0 and L2
n = 2 that Ln is a

principal polarization. Arguing as in the proof of Proposition 4.3, it follows that the
intersection number of Ln with any elliptic curve N ⊂ E ×E is a multiple of 2. So,
L ·N 6= 1 and therefore L must be irreducible.

The case e = 4n + 3 can be dealt with analogously: In this case one can show
that the line bundle

Ln := OE×E(2(n + 1)F1 + 2F2 +Σ)

= OE×E(−(2n + 1)F1 + F2 + Γ)

is an irreducible principal polarization. �

Theorem 1 provides the exact picture, on which surfaces E×E fractional Seshadri
constants occur. It is important to point out that on the other hand there are
always line bundles whose Seshadri constant are integral – in fact this happens for
all bundles in the cone in NS(E × E) generated by the classes of F1, F2,∆,Γ:

Proposition 4.6 For line bundles

L = OE×E(a1F1 + a2F2 + a3∆+ a4Γ)

with non-negative coefficients ai, one has

ε(L) = min {L · F1, L · F2, L ·∆, L · Γ}
= min{a2 + a3 + a4, a1 + a3 + |σ|2a4,

a1 + a2 + |1− σ|2a4, a1 + |σ|2a2 + |1− σ|2a3} .
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Proof. Let D be the divisor a1F1 + a2F2 + a3∆+ a4Γ, and let C be any irreducible
curve C passing through 0, which is not a component of D. As D is effective, we
have

L · C
mult0 C

=
D · C

mult0C
>

mult0 D ·mult0C

mult0C
> a1 + a2 + a3 + a4

> a2 + a3 + a4 = L · F1 .

This implies that ε(L) is computed by one of the components ofD. Their intersection
numbers with L are computed using Prop. 4.1, and this yields the assertion of the
proposition. �

As the following example shows, the line bundles in the cone generated by the
classes of F1, F2,∆,Γ are not the only ones with integral Seshadri constants.

Example 4.7 Consider the line bundle L = OE×E(4F1 + 2F2 −∆). It is ample by
Prop. 4.2. The fact that L · F1 = 1 implies that its Seshadri constant is 1.

Finally, we will discuss whether or not the statement in Theorem 2 can be gener-
alized such that the conditions hold for each individual line bundle. Clearly, if there
exists a line bundle L with a fractional Seshadri constant, then a suitable multiple
of L will lead to a line bundle, whose Seshadri constant is an integer but is not
calculated by an elliptic curve. One might hope that it still holds for primitive line
bundles. This, however, is not the case:

Proposition 4.8 There exists an abelian surface X and a primitive line bundle
L on X such that the Seshadri constant ε(L) is an integer less than

√
L2 and is

calculated by a non-elliptic curve.

Proof. Let E be an elliptic curve with complex multiplication such that End(E) =
Z[
√
−2]. As noted in the proof of Prop. 4.5, the Seshadri constant of the principal

polarization L0 = OE×E(−F1+∆+Γ) on E×E is computed by an irreducible curve
C ∈ |4L0| with mult0(C) = 6. We consider the primitive line bundle L := OE×E(D),
where the divisor D is defined as

D := 3C + F1 + F2 +∆

= −11F1 + F2 + 13∆ + 12Γ .

We claim that the Seshadri constant ε(L) equals 20 and is calculated by C.
We have

L ·D
mult0(D)

=
D2

mult0 D
=

438

21
<

√
438 =

√
L2 ,

so D is submaximal for L. Therefore [3, Lemma 6.2] implies that the Seshadri
constant of L is calculated by a component of D. So checking C, F1, F2 and ∆ we
see that

ε(L) = 20 =
L · C

mult0 C
< 26 = L · F1 = L · F2 = L ·∆ .

�
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