THE LIND-LEHMER CONSTANT FOR $\mathbb{Z}_2^r \times \mathbb{Z}_4^s$

MICHAEL J. MOSSINGHOFF, VINCENT PIGNO, AND CHRISTOPHER PINNER

ABSTRACT. We show that the minimal positive logarithmic Lind-Mahler measure for a group of the form $G = \mathbb{Z}_2^r \times \mathbb{Z}_4^s$ with $|G| \ge 4$ is $\frac{1}{|G|} \log(|G| - 1)$. We also show that for $G = \mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ with $n \ge 3$ this value is $\frac{1}{|G|} \log 9$. Previously the minimal measure was only known for 2-groups of the form \mathbb{Z}_2^k or \mathbb{Z}_{2^k} .

1. INTRODUCTION

Recall that for a polynomial $F(x_1, \ldots, x_k)$ in $\mathbb{Z}[x_1, \ldots, x_k]$, one defines the traditional logarithmic Mahler measure by

$$m(F) = \int_0^1 \cdots \int_0^1 \log |F(e^{2\pi i x_1}, \dots, e^{2\pi i x_k})| \, dx_1 \cdots dx_k$$

In 2005, Lind [6] viewed $[0,1]^k$ as the group $(\mathbb{R}/\mathbb{Z})^k$ and generalized the Mahler measure to arbitrary compact abelian groups. In particular, for the finite abelian group

$$G = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$$

and $F \in \mathbb{Z}[x_1, \ldots, x_k]$, we define the logarithmic Lind-Mahler measure by

$$m_G(F) = \frac{1}{|G|} \sum_{x_1=1}^{n_1} \cdots \sum_{x_k=1}^{n_k} \log |F(e^{2\pi i x_1/n_1}, \dots, e^{2\pi i x_k/n_k})|.$$

The close connection to the group determinant is explored by Vipismakul [8]. Writing

$$w_n := e^{2\pi i/n},$$

we plainly have

$$m_G(F) = \frac{1}{|G|} \log |M_G(F)|,$$

where

$$M_G(F) := \prod_{j_1=1}^{n_1} \cdots \prod_{j_k=1}^{n_k} F\left(w_{n_1}^{j_1}, \dots, w_{n_k}^{j_k}\right)$$

will be in \mathbb{Z} . Analogous to the classical Lehmer problem [4], we can ask for the minimal $m_G(F) > 0$, and to this end we define the *Lind-Lehmer constant* for G by

$$\lambda(G) := \min\{|M_G(F)| > 1 \mid F \in \mathbb{Z}[x_1, \dots, x_k]\}$$

Date: July 10, 2021.

²⁰¹⁰ Mathematics Subject Classification. Primary: 11R06; Secondary: 11B83, 11C08, 11G50, 11R09, 11T22, 43A40.

Key words and phrases. Lind-Lehmer constant, Mahler measure.

This work was supported in part by a grant from the Simons Foundation (#426694 to M. J. Mossinghoff).

We use $|M_G(F)|$ rather than $m_G(F)$ or $|M_G(F)|^{1/|G|}$ so that we are dealing with integers; of course the minimal positive logarithmic measure will be $\frac{1}{|G|} \log \lambda(G)$. As Lind observed, for $|G| \geq 3$ we always have the trivial bound

(1)
$$\lambda(G) \le |G| - 1,$$

achieved, for example, by

$$F(x_1,...,x_k) = -1 + \prod_{i=1}^k \left(\frac{x_i^{n_i} - 1}{x_i - 1}\right).$$

Lind also showed that for prime powers p^α with $\alpha \geq 1$ we have

(2)
$$\lambda(\mathbb{Z}_{p^{\alpha}}) = \begin{cases} 3, & \text{if } p = 2\\ 2, & \text{if } p \ge 3 \end{cases}$$

achieved with $x^2 + x + 1$ if p = 2 and x + 1 if $p \ge 3$. Lind's results for cyclic groups were extended by Kaiblinger [3] and Pigno & Pinner [7] so that $\lambda(\mathbb{Z}_m)$ is now known if 892 371 480 $\nmid m$. The value for the *p*-group \mathbb{Z}_p^k was recently established by De Silva & Pinner [2], but little is known for direct products involving at least one term $\mathbb{Z}_{p^{\alpha}}$ with $\alpha \ge 2$.

Here we are principally interested in the case of 2-groups

(3)
$$G = \mathbb{Z}_{2^{\alpha_1}} \times \cdots \times \mathbb{Z}_{2^{\alpha_k}}.$$

It was shown in [2] that for all $k \geq 2$

(4)
$$\lambda(\mathbb{Z}_2^k) = 2^k - 1.$$

a case of equality in (1). We establish two main results regarding the Lind-Lehmer constant for groups of the form (3). First, we prove that equality occurs in (1) whenever G is a 2-group whose factors are all \mathbb{Z}_2 or \mathbb{Z}_4 .

Theorem 1.1. If $G = \mathbb{Z}_2^r$ or \mathbb{Z}_4^s or $\mathbb{Z}_2^r \times \mathbb{Z}_4^s$, then

$$\lambda(G) = \max\{3, |G| - 1\}.$$

Second, we show that this is not true for all 2-groups: if we allow $\alpha_i \geq 3$ in (3) then (1) need not be sharp.

Theorem 1.2. For $n \ge 3$

$$\lambda(\mathbb{Z}_2 \times \mathbb{Z}_{2^n}) = 9,$$

achieved with $F(x, y) = y^2 + y + 1$.

Crucial to our proofs of these statements will be a congruence satisfied by $M_G(F)$ when G is a p-group. This is a generalization of [2, Lemma 2.1] (see also [8, Theorem 2.1.2]).

Lemma 1.1. If p is a prime and

(5)
$$G = \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_k}},$$

then

$$M_G(F) \equiv F(1,\ldots,1)^{|G|} \mod p^k.$$

Notice that for the p-group (5) we have

$$M_G(F) = \prod_{t_1=0}^{\alpha_1} \cdots \prod_{t_k=0}^{\alpha_k} N_{t_1,\dots,t_k}(F),$$

where

$$N_{t_1,\dots,t_k}(F) = \prod_{\substack{j_1=1\\(j_1,p^{\alpha_1})=p^{t_1}}}^{p^{\alpha_1}} \cdots \prod_{\substack{j_k=1\\(j_k,p^{\alpha_k})=p^{t_k}}}^{p^{\alpha_k}} F(w_{p^{\alpha_1}}^{j_1},\dots,w_{p^{\alpha_k}}^{j_k}) \in \mathbb{Z}.$$

Since $|1 - w_{p^{\alpha}}^{j}|_{p} < 1$ and the $N_{t_{1},...,t_{k}}(F)$ are integers, we have

$$N_{t_1,\ldots,t_k}(F) \equiv F(1,\ldots,1)^{\varphi(p^{\alpha_1-t_1})\cdots\varphi(p^{\alpha_k-t_k})} \mod p.$$

In particular if p | F(1,...,1) we have $p | N_{t_1,...,t_k}(F)$ for all t_i and $|G|p^k | M_G(F)$. So, in view of (1), we can assume for the *p*-group (5) that $p \nmid F(1,...,1)$ for any *F* achieving $\lambda(G)$.

Thus, in the case of 2-groups we can assume an F with minimal measure has $F(1, \ldots, 1)$ odd, and by Lemma 1.1 we see that

(6)
$$M_G(F) \equiv 1 \mod 2^k.$$

Note this immediately produces (4).

Similarly for 3-groups we can assume that an F with minimal measure has $3 \nmid F(1,\ldots,1)$ and $M_G(F) \equiv \pm 1 \mod 3^k$. This produces another case of equality in (1):

$$\lambda(\mathbb{Z}_3^k) = 3^k - 1,$$

as observed in [2]. For $G = \mathbb{Z}_3 \times \mathbb{Z}_{3^n}$, we have $M_G(F) \equiv \pm 1 \mod 9$ and so we immediately obtain the minimal measure for an additional family of 3-groups.

Theorem 1.3. For $n \ge 1$

$$\lambda(\mathbb{Z}_3 \times \mathbb{Z}_{3^n}) = 8,$$

achieved with F(x, y) = y + 1.

Section 2 of this article is devoted to the proof of Lemma 1.1, Section 3 establishes Theorem 1.1, and Section 4 proves Theorem 1.2.

2. Proof of Lemma 1.1

We proceed by induction on $\alpha_1 + \cdots + \alpha_k$. For $G = \mathbb{Z}_p$ we use that $|w_p - 1|_p = p^{-1/(p-1)} < 1$. Since $M_G(F) \in \mathbb{Z}$ and $M_G(F) \equiv F(1)^p \mod (1 - w_p)$ we see that $M_G(F) \equiv F(1)^p \mod p$.

Set

$$g(x_1, \dots, x_k) = \prod_{l_1=1}^{p^{\alpha_1}} \cdots \prod_{l_k=1}^{p^{\alpha_k}} F(x_1^{l_1}, \dots, x_k^{l_k})$$

and let *I* be the ideal in $\mathbb{Z}[x_1, \ldots, x_n]$ generated by $x_1^{p^{\alpha_1}} - 1, \ldots, x_k^{p^{\alpha_k}} - 1$. Expanding, we have

$$g(x_1, \dots, x_k) = \sum_{0 \le \ell_1 < p^{\alpha_1}} \cdots \sum_{0 \le \ell_k < p^{\alpha_k}} a(\ell_1, \dots, \ell_k) x_1^{\ell_1} \cdots x_k^{\ell_k} \mod I.$$

We set

4

$$S := \sum_{j_1=1}^{p^{\alpha_1}} \cdots \sum_{j_k=1}^{p^{\alpha_k}} g(w_{p^{\alpha_1}}^{j_1}, \dots, w_{p^{\alpha_k}}^{j_k})$$
$$= \sum_{0 \le \ell_1 < p^{\alpha_1}} \cdots \sum_{0 \le \ell_k < p^{\alpha_k}} a(\ell_1, \dots, \ell_k) \sum_{j_1=1}^{p^{\alpha_1}} \cdots \sum_{j_k=1}^{p^{\alpha_k}} w_{p^{\alpha_1}}^{j_1 \ell_1} \cdots w_{p^{\alpha_k}}^{j_k \ell_k}$$
$$= a(0, \dots, 0) p^{\alpha_1 + \dots + \alpha_k}.$$

If $(j_1, p^{\alpha_1}) = \cdots = (j_k, p^{\alpha_k}) = 1$, then for these $\varphi(p^{\alpha_1}) \cdots \varphi(p^{\alpha_k})$ values we have $g(w_{p^{\alpha_1}}^{j_1}, \dots, w_{p^{\alpha_k}}^{j_k}) = M_G(F).$

Suppose that $(j_1, p^{\alpha_1}) = p^{t_1}, \ldots, (j_k, p^{\alpha_k}) = p^{t_k}$ with at least one $t_j \neq 0$, and with $L \geq 0$ of the $t_i = \alpha_i$. Suppose without loss of generality that $t_i = \alpha_i$ for any $i = 1, \ldots, L$ and $t_i < \alpha_i$ for any $i = L + 1, \ldots, k$. For these $\varphi(p^{\alpha_{L+1}-t_{L+1}}) \cdots \varphi(p^{\alpha_k-t_k})$ values, applying the induction hypothesis to $G' = \mathbb{Z}_{p^{\alpha_{L+1}-t_{L+1}}} \times \cdots \times \mathbb{Z}_{p^{\alpha_k-t_k}}$, we have

$$g(w_{p^{\alpha_1}}^{j_1}, \dots, w_{p^{\alpha_k}}^{j_k}) = M_{G'} \left(F(1, \dots, 1, x_{L+1}, \dots, x_k) \right)^{p^{t_1 + \dots + t_k}}$$
$$= \left(F(1, \dots, 1)^{p^{(\alpha_{L+1} - t_{L+1}) + \dots + (\alpha_k - t_k)}} + hp^{k-L} \right)^{p^{t_1 + \dots + t_k}}$$
$$\equiv F(1, \dots, 1)^{|G|} \mod p^{k-L+\alpha_1 + \dots + \alpha_L + t_{L+1} + \dots + t_k}.$$

Hence these $(p-1)^{k-L} p^{(\alpha_{L+1}-t_{L+1}-1)+\cdots+(\alpha_k-t_k-1)}$ terms contribute

$$\varphi(p^{\alpha_{L+1}-t_{L+1}})\cdots\varphi(p^{\alpha_k-t_k})F(1,\ldots,1)^{|G|} \mod p^{\alpha_1+\cdots+\alpha_k}$$

to S. Thus

$$0 \equiv \varphi(p^{\alpha_1}) \cdots \varphi(p^{\alpha_k}) M_G(F) + \left(p^{\alpha_1 + \dots + \alpha_k} - \varphi(p^{\alpha_1}) \cdots \varphi(p^{\alpha_k})\right) F(1, \dots, 1)^{|G|}$$
$$\equiv (p-1)^k p^{\alpha_1 + \dots + \alpha_k - k} \left(M_G(F) - F(1, \dots, 1)^{|G|} \right) \mod p^{\alpha_1 + \dots + \alpha_k}$$

and the statement follows.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we require the following lemma.

Lemma 3.1. Suppose that $F \in \mathbb{Z}[x_1, \ldots, x_n]$, and let I denote the ideal of $\mathbb{Z}[x_1, \ldots, x_n]$ generated by $x_1^{n_1} - 1, \ldots, x_k^{n_k} - 1$. Then $F(w_{n_1}^{j_1}, \ldots, w_{n_k}^{j_k}) = 0$ for all $1 \le j_i \le n_i$ if and only if $F \in I$.

Proof. Plainly any F in I will have $F\left(w_{n_1}^{j_1}, \ldots, w_{n_k}^{j_k}\right) = 0$ for all $0 \leq j_i < n_i$. Conversely, suppose that $F\left(w_{n_1}^{j_1}, \ldots, w_{n_k}^{j_k}\right) = 0$ for all $0 \leq j_i < n_i$. Clearly any F can be reduced mod I to a polynomial of degree less than n_i in each x_i :

$$F(x_1, \dots, x_k) = \sum_{t_1=0}^{n_1-1} \cdots \sum_{t_k=0}^{n_k-1} a(t_1, \dots, t_k) x_1^{t_1} \cdots x_k^{t_k} \mod I.$$

Since $\sum_{j_i=0}^{n_i-1} w_{n_i}^{(t_i-T_i)j_i} = 0$ if $t_i \neq T_i \mod n_i$ (and n_i otherwise) we have

$$a(T_1,\ldots,T_k) = \frac{1}{|G|} \sum_{j_1=0}^{n_1-1} \cdots \sum_{j_k=0}^{n_k-1} F\left(w_{n_1}^{j_1},\ldots,w_{n_k}^{j_k}\right) w_{n_1}^{-T_1j_1} \cdots w_{n_k}^{-T_kj_k}.$$

So $a(T_1, \ldots, T_k) = 0$ for all $0 \le T_i < n_i$ and $F = 0 \mod I$.

We now proceed to the proof of our first principal result.

Proof of Theorem 1.1. Suppose that $G = \mathbb{Z}_{2^{\alpha_1}} \times \cdots \times \mathbb{Z}_{2^{\alpha_k}}$ with $2^{\alpha_i} = 4$ for $1 \leq i \leq s$ and $2^{\alpha_i} = 2$ for $s + 1 \leq i \leq k$. We write r = k - s. In view of (2) and (4) we may assume that $k \geq 2$ and $s \geq 1$. Suppose that $F(x_1, \ldots, x_k)$ has

$$1 < |M_G(F)| < |G| - 1 = 2^{k+s} - 1.$$

Suppose that $F(x_1, \ldots, x_k)$ is a non-unit with at least one of the x_j complex, say $x_1 = \pm i$, and set $G' = \mathbb{Z}_{2^{\alpha_2}} \times \cdots \times \mathbb{Z}_{2^{\alpha_k}}$. Plainly we may write

$$M_G(F) = AB,$$

with

$$A := M_{\mathbb{Z}_2 \times G'}(F), \quad B := M_{G'}(F(i, x_2, \dots, x_k)F(-i, x_2, \dots, x_k)).$$

From (6) we know that $M_G(F)$ and A, and hence B, are all congruent to 1 mod 2^k . Also B will be of the form $|a + ib|^2$ and hence cannot be negative. Since it contains a non-unit we have B > 1, hence $B \ge 2^k + 1$. If $A \ne 1$ then $|A| \ge 2^k - 1$ and $|M_G(F)| \ge (2^k - 1)(2^k + 1) = 4^k - 1 \ge |G| - 1$, so we must have A = 1. Thus if $F(x_1, x_2, \ldots, x_k)$ is a non-unit with $x_j = \pm i$, then we may assume $F(y_1, \ldots, y_k)$ is a unit if $y_j = \pm 1$. We have two possibilities:

Case (a). There is at least one non-unit $F(x_1, \ldots, x_k)$ with some $x_j = \pm i$. Case (b). $F(x_1, \ldots, x_k)$ is a unit whenever any of the $x_j = \pm i$.

With *I* denoting the ideal generated by the $x_j^{2^{\alpha_j}} - 1$, and splitting the x_1 dependence into even and odd exponents $p(x_1) = \alpha(x_1^2) + x_1\beta(x_1^2)$, we can write

$$F(x_1, \dots, x_k) = \sum_{\substack{0 \le \varepsilon_2, \dots, \varepsilon_s \le 3, \\ 0 \le \varepsilon_1, \varepsilon_{s+1}, \dots, \varepsilon_k \le 1}} a(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k)(x_1^2) \ x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k} \mod I.$$

Since $F(1, ..., 1) = \sum a(\varepsilon_1, \varepsilon_2, ..., \varepsilon_k)(1)$ is odd, we know that at least one of the $a(\varepsilon_1, \varepsilon_2, ..., \varepsilon_k)(1)$ is odd. Replacing F by $x_1^{\delta_1} \cdots x_n^{\delta_n} F$ with $0 \le \delta_1, \delta_{s+1}, ..., \delta_k \le 1$ and $0 \le \delta_2, ..., \delta_s \le 3$, and reducing mod I, we can reshuffle the $a(\varepsilon_1, ..., \varepsilon_k)(x_1^2)$ and assume that a(0, ..., 0)(1) is odd. Replacing F by -F we can assume that $F(1, ..., 1) \equiv 1 \mod 4$.

Case (a). Suppose we have non-units with complex x_j . Reordering and taking $x_j \mapsto \pm x_1 x_j$ for $2 \leq j \leq s$ and $x_j \mapsto \pm x_j$ for $s < j \leq k$ as necessary, we assume that the first of these is $\gamma_1 = F(i, 1, ..., 1)$. If (after the transformations) there are other non-units with complex entries in positions other than the first, by reordering and substituting $x_j \mapsto x_j x_2$ as necessary for $j \geq 3$, we may assume that $\gamma_2 = F(\pm i, i, \pm 1, ..., \pm 1)$. We repeat this $1 \leq h \leq s$ times until we have h non-units $\gamma_j = F(a_{j1}, ..., a_{jk})$ with $a_{jj} = i$, $a_{j\ell} = \pm i$ for $1 \leq \ell < j$ and $a_{j\ell} = \pm 1$ for $h < \ell \leq k$, and $F(x_1, ..., x_k)$ is a unit whenever $x_\ell = \pm i$ with $h < \ell \leq s$ if h < s.

Since the $F(\pm 1, x_2, \ldots, x_k)$ are all units, with $F(1, \ldots, 1) = 1$, and

$$a(0,\ldots,0)(1) = \frac{2}{|G|} \sum_{\substack{x_2,\ldots,x_s=\pm i,\pm 1\\x_1,x_{s+1},\ldots,x_k=\pm 1}} F(x_1,\ldots,x_k)$$

is odd, plainly the $F(\pm 1, x_2, \ldots, x_k)$ must all be 1. Applying Lemma 3.1, we may therefore assume that

$$F(x_1, \dots, x_k) = 1 + (x_1^2 - 1) \sum_{\substack{0 \le \varepsilon_2, \dots, \varepsilon_s \le 3, \\ 0 \le \varepsilon_1, \varepsilon_{s+1}, \dots, \varepsilon_k \le 1}} a(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

Notice that the $F(\pm i, x_2, \ldots, x_k) \in \mathbb{Z}[i]$ will all have odd real part and even imaginary part. Moreover, writing u = (1 - i) where $u^2 \mid 2$ and $x_j \equiv 1 \mod u$ for any $x_j = \pm 1$ or $\pm i$, the $F(\pm i, x_2, \ldots, x_k)$ must all be congruent mod u^3 in $\mathbb{Z}[i]$. Since $|u|_2 = 2^{-1/2}$ plainly two units $\pm 1, \pm i$, in $\mathbb{Z}[i]$ cannot be congruent mod u^3 unless they are equal. If $h \geq 2$ then we know that the $F(\pm i, \pm 1, x_3, \ldots, x_k)$ will all be units and so must be all 1 or all -1. Replacing F by $x_1^2 F$ we can assume that they are all 1. Applying Lemma 3.1 we get

$$F(x_1,\ldots,x_k) = 1 + (x_1^2 - 1)(x_2^2 - 1) \sum_{\substack{0 \le \varepsilon_3, \ldots, \varepsilon_s \le 3, \\ 0 \le \varepsilon_1, \varepsilon_2, \varepsilon_{s+1}, \ldots, \varepsilon_k \le 1}} a(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

Likewise, if $h \ge 3$ we have that $F(\pm i, \pm 1, x_4, \ldots, x_k)$ are all units and 1 mod 4, so these must all equal 1. Applying the lemma and repeating up to $F(\pm i, \ldots, \pm i, \pm 1, x_{h+1}, \ldots, x_k)$, we deduce that

$$F(x_1,\ldots,x_k) = 1 + \prod_{j=1}^h (x_j^2 - 1) \sum_{\substack{0 \le \varepsilon_{h+1},\ldots,\varepsilon_s \le 3, \\ 0 \le \varepsilon_1,\ldots,\varepsilon_h,\varepsilon_{s+1},\ldots,\varepsilon_k \le 1}} a(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

If s > h, we further have that the $F(\pm i, \ldots, \pm i, x_{h+2}, \ldots, x_k)$ are all units. If $h \ge 2$ they will all be 1 mod 4 and so must all equal 1. If h = 1 then they are all 1 or all -1 and, by replacing F by $x_1^2 F$ if necessary, we may assume they are all 1. Separating into real and imaginary parts, applying Lemma 3.1, then repeating for each variable, we find

$$F(x_1, \dots, x_k) = 1 + \prod_{j=1}^h (x_j^2 - 1) \prod_{j=h+1}^s (x_j^2 + 1) \sum_{0 \le \varepsilon_1, \dots, \varepsilon_k \le 1} a(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

Suppose that there are $t \ge 1$ conjugate pairs of non-units $F(a_{j1}, \ldots, a_{jk}) = \gamma_j$. Then plainly

(7)
$$\gamma_j = a_j + ib_j, \quad a_j \equiv 1 \mod 2^s, \quad b_j \equiv 0 \mod 2^s.$$

Trivially we have $|\gamma_i|^2 \ge 5$, and if $t \ge r+s$ then

$$|M_G(F)| \ge 5^t \ge 5^r \cdot 5^s > 2^r \cdot 4^s - 1,$$

so we can assume that

$$(8) t \le r+s-1.$$

If $t \leq r$ then, by using the transformation $x_{\ell} \mapsto x_{\ell} x_j$ if $x_j = -1$ to remove $x_{\ell} = -1$ with $\ell > j$, we can assume that the *r*-tuples (x_{s+1}, \ldots, x_k) achieving the γ_j take the form

$$(1,\ldots,1), (\pm 1,1,\ldots,1), (\pm 1,\pm 1,1,\ldots,1), \ldots, (\underbrace{\pm 1,\ldots,\pm 1}_{t-1},1,\ldots,1).$$

In particular, $F(x_1, \ldots, x_k)$ will be a unit if $x_j = -1$ for any $s + t \le j \le k$. (If $s \ge 2$ the units will all be 1; if s = 1 we may need to take $x_1^2 F$ to make the value when

 $x_{s+t} = -1$ and hence the rest equal 1.) Successively applying the lemma again, we find

$$F(x_1, \dots, x_k) = 1 + \prod_{j=1}^h (x_j^2 - 1) \prod_{j=h+1}^s (x_j^2 + 1) \prod_{j=s+t}^k (x_j + 1)R$$

with

$$R = \sum_{0 \le \varepsilon_1, \dots, \varepsilon_{s+t-1} \le 1} a(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{s+t-1}) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_{s+t-1}^{\varepsilon_{s+t-1}}.$$

Hence we obtain that

$$\gamma_j = a_j + ib_j, \quad a_j \equiv 1 \mod 2^{s+r+1-t}, \ b_j \equiv 0 \mod 2^{s+r+1-t}.$$

From (8) and (7) this is plainly also valid if t > r. Thus, we have

$$|M_G(F)| = |\gamma_1| \cdots |\gamma_t| \ge (2^{r+s+1-t} - 1)^{2t} > 2^{2t(r+s+.5-t)} \ge 2^{2(r+s-.5)} \ge 2^{r+2s}$$

for $r \ge 1$. If r = 0 and $t \ge 2$ then we have $s \ge 2$, and from (7) we obtain

$$|M_G(F)| \ge (2^s - 1)^{2t} > 2^{2t(s - 0.5)} \ge 2^{4s - 2} \ge 4^s.$$

Finally if t = 1 and r = 0 then, since F(i, 1, ..., 1) and its conjugate are the only non-units, we know that $F(\pm i, -1, x_3, ..., x_k)$ are all units and so equal 1. Hence we can add an extra factor $(x_2 + 1)$ to get

$$|M_G(F)| \ge (2^{s+1} - 1)^2 > 2^{2s}.$$

Case (b). Since $a(0,\ldots,0)(1)$ is odd, we know that $a(0,\ldots,0)(-1)$ is odd. Since the $F(\pm i, x_2, \ldots, x_k)$ are all units and

$$a(0,\ldots,0)(-1) = \frac{1}{|G|/2} \sum_{\substack{x_1=\pm i\\x_2,\ldots,x_s=\pm i,\pm 1\\x_{s+1},\ldots,x_k=\pm 1}} F(x_1,\ldots,x_k)$$

is odd, plainly the $F(\pm i, x_2, \ldots, x_k)$ must all be 1 or all be -1. Replacing F by $x_1^2 F$ we assume $F(\pm i, x_2, \ldots, x_k) = 1$. Applying Lemma 3.1 to the real and imaginary parts we can assume that

$$F(x_1, \dots, x_k) = 1 + (x_1^2 + 1) \sum_{\substack{0 \le \varepsilon_2, \dots, \varepsilon_s \le 3, \\ 0 \le \varepsilon_1, \varepsilon_{s+1}, \dots, \varepsilon_k \le 1}} a(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

Notice that all the $F(\pm 1, x_2, \ldots, x_k) \equiv F(1, \ldots, 1) \equiv 1 \mod u^3$. Hence if s > 1 the units $F(\pm 1, \pm i, x_3, \ldots, x_k)$ are all 1. Applying the Lemma and repeating we obtain

$$F(x_1,\ldots,x_k) = 1 + \prod_{j=1}^s (x_j^2 + 1) \sum_{0 \le \varepsilon_1,\ldots,\varepsilon_k \le 1} a(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k) x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k}.$$

Hence we have

$$M_G(F) = M_{\mathbb{Z}_2^k}(f)$$

where

$$f(x_1,\ldots,x_k) = 1 + 2^s \sum_{0 \le \varepsilon_1,\ldots,\varepsilon_k \le 1} A(\varepsilon_1,\ldots,\varepsilon_k) x_1^{\varepsilon_1} \cdots x_k^{\varepsilon_k}.$$

Suppose that there are t elements $f(\pm 1, \ldots, \pm 1)$ that are not ± 1 . If $t \ge k + s - 1$ then plainly $|M_G(F)| \ge 3^t \ge 3^{k+s-1} > 2^{k+s}$ since $k + s \ge 3$, so we assume that $t \le k + s - 2$. Sending $x_j \mapsto -x_j$ we assume that one of them is $f(1, \ldots, 1) = \gamma_1$. If t > 1 then, reordering and mapping $x_\ell \mapsto x_\ell x_j$ if we have $\ell > j$ with $x_\ell =$ $x_j = -1$, we can assume that the remaining values are $\gamma_2 = f(-1, 1, \ldots, 1), \gamma_3 = f(a_{31}, a_{32}, 1, \ldots, 1), \ldots, \gamma_t = f(a_{t1}, \ldots, a_{t(t-1)}, 1, \ldots, 1)$. If $t \leq k$ then we will have $f(x_1, \ldots, x_k) = 1$ whenever $x_j = -1$ for some $t \leq j \leq k$, and applying the lemma we find

$$f(x_1, \dots, x_k) = 1 + 2^s \prod_{j=t}^k (x_j + 1) \sum_{0 \le \varepsilon_1, \dots, \varepsilon_{t-1} \le 1} A(\varepsilon_1, \dots, \varepsilon_{t-1}) x_1^{\varepsilon_1} \cdots x_{t-1}^{\varepsilon_{t-1}}$$

Thus the

8

$$\gamma_j \equiv 1 \mod 2^{s+k-t+1}$$

(with this trivially holding if $k \leq t - 1$), and

$$M_G(F) \ge (2^{s+k+1-t} - 1)^t.$$

For t = 1 this gives

$$|M_G(F)| \ge 2^{s+k} - 1 = |G| - 1,$$

and for $t\geq 2$

$$M_G(F)| \ge 2^{t(s+k+0.5-t)} \ge 2^{2s+2k-3} \ge 2^{s+k}.$$

4. Proof of Theorem 1.2

Using $\Phi_j(x)$ to denote the *j*th cyclotomic polynomial and recalling (see [1] or [5]) that for j > k the resultant $|\text{Res}(\Phi_j, \Phi_k)| = q^{\varphi(k)}$ if $j = kq^{\alpha}$ for some prime q and 1 otherwise, we see that

$$M_{\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}}(1+y+y^{2}) = M_{\mathbb{Z}_{2^{n}}}(\Phi_{3}(y))^{2} = \left(\prod_{j=0}^{n} |\operatorname{Res}(\Phi_{3}, \Phi_{2^{j}})|\right)^{2} = 9.$$

Let $G = \mathbb{Z}_2 \times \mathbb{Z}_{2^n}$. Reducing mod $x^2 - 1$, we can write our F(x, y) in $\mathbb{Z}[x, y]$ in the form

$$F(x,y) = A_0(y^2) + xA_1(y^2) + yA_2(y^2) + xyA_3(y^2).$$

Plainly,

$$M_G(F(x,y)) = M_{\mathbb{Z}_{2^n}}(F(1,y))M_{\mathbb{Z}_{2^n}}(F(-1,y)),$$

where each of these measures is a product of n + 1 integers,

$$M_{\mathbb{Z}_{2^n}}(f(y)) = \prod_{j=0}^n N_j(f), \quad N_j(f) := \operatorname{Res}(f, \Phi_{2^j}),$$

that is,

$$N_0(f) = f(1), \quad N_1(f) = f(-1), \quad N_2(f) = f(i)f(-i) = |f(i)|^2,$$

and, writing $w_j := e^{2\pi i/2^j}$, for any $j = 3, \ldots, n$, we have

$$N_j(f) = \prod_{\substack{k=1\\k \text{ odd}}}^{2^j} f(w_j^k) = \prod_{\substack{k=1\\k \text{ odd}}}^{2^{j-1}} f(w_j^k) f(-w_j^k) = |R_j(f)|^2,$$

where

$$R_j(f) := \prod_{\substack{k=1\\k\equiv 1 \mod 4}}^{2^{j-1}} f(w_j^k) f(-w_j^k) \in \mathbb{Z}[i], \quad 3 \le j \le n.$$

Note $N_j(f)$ and $R_j(f)$ represent the norms of $f(w_j^k)$ from $\mathbb{Q}(w_j)$ to \mathbb{Q} and $\mathbb{Q}(i)$ respectively, and since they are algebraic integers they will be in \mathbb{Z} and $\mathbb{Z}[i]$, respectively.

Since $|1 - w_j|_2 = 2^{-1/\varphi(2^j)}$, each $N_j(F(\pm 1, y)) \equiv F(1, 1)^{2^{j-1}} \mod 2$, and if $M_G(F) < 2^{2n+2}$ we can assume F(1, 1) and all the $N_j(F(\pm 1, y))$ are odd. Note that for all the $j \ge 2$ we have $N_j(F(\pm 1, y)) = |a + ib|^2 = a^2 + b^2 \equiv 1 \mod 4$.

If $|M_G(F)| < 9$ then $|M_{\mathbb{Z}_{2^n}}(F(1,y))|$ or $|M_{\mathbb{Z}_{2^n}}(F(-1,y))|$ must be 1. Replacing $x \mapsto -x$ as necessary we assume that

$$1 < |M_{\mathbb{Z}_{2n}}(F(1,y))| < 9, |M_{\mathbb{Z}_{2n}}(F(-1,y))| = 1.$$

Since

$$F(1,1) = A_0(1) + A_1(1) + A_2(1) + A_3(1)$$

is odd, we can assume that at least one of the $A_i(1)$ is odd. Replacing F by xF or yF or xyF and reducing by $x^2 - 1$ as necessary, we may assume that $A_0(1)$ is odd. Replacing y by -y and F by -F as necessary, we may further assume that $|F(1,1)| \ge |F(1,-1)|$ and F(1,1) > 0.

Since

j

$$F(1,-1) = A_0(1) + A_1(1) - A_2(1) - A_3(1),$$

$$F(-1,1) = A_0(1) - A_1(1) + A_2(1) - A_3(1),$$

$$F(-1,-1) = A_0(1) - A_1(1) - A_2(1) + A_3(1),$$

we have

$$A_{0}(1) = \frac{1}{4}(F(1,1) + F(1,-1) + F(-1,1) + F(-1,-1)),$$

$$A_{1}(1) = \frac{1}{4}(F(1,1) + F(1,-1) - F(-1,1) - F(-1,-1)),$$

$$A_{2}(1) = \frac{1}{4}(F(1,1) - F(1,-1) + F(-1,1) - F(-1,-1)),$$

$$A_{3}(1) = \frac{1}{4}(F(1,1) - F(1,-1) - F(-1,1) + F(-1,-1)).$$

Observe that

$$F(1, w_j^k)F(1, -w_j^k) = \left(A_0(w_j^{2k}) + A_1(w_j^{2k})\right)^2 - w_j^{2k} \left(A_2(w_j^{2k}) + A_3(w_j^{2k})\right)^2$$

and

$$F(-1, w_j^k)F(-1, -w_j^k) = \left(A_0(w_j^{2k}) - A_1(w_j^{2k})\right)^2 - w_j^{2k} \left(A_2(w_j^{2k}) - A_3(w_j^{2k})\right)^2$$

differ by

 $4\left(A_0(w_j^{2k})A_1(w_j^{2k}) - w_j^{2k}A_2(w_j^{2k})A_3(w_j^{2k})\right) \in 4\mathbb{Z}[w_{j-1}].$

Hence $R_j(F(1,y))$ and $R_j(F(-1,y))$ differ by an element of $4\mathbb{Z}[w_{j-1}]$ and, since both are in $\mathbb{Z}[i]$, we conclude that

$$R_j(F(1,y)) - R_j(F(-1,y)) \in 4\mathbb{Z}[i].$$

Since $N_j(F(-1, y)) = 1$, we have $R_j(F(-1, y)) = \pm 1$ or $\pm i$, and either $R_j(F(1, y)) = R_j(F(-1, y))$ and $N_j(F(1, y)) = 1$, or $N_j(F(1, y)) \ge (4 - 1)^2 = 9$.

Thus if $|M_G(F)| < 9$ then we must have $N_j(F(1,y)) = N_j(F(-1,y)) = 1$ for $j = 3, \ldots, n$ and $M_G(F) = M_{\mathbb{Z}_2 \times \mathbb{Z}_4}(F)$. By Theorem 1.1 and Lemma 1.1, we have $|M_{\mathbb{Z}_2 \times \mathbb{Z}_4}(F)| \ge 7$ and $M_{\mathbb{Z}_2 \times \mathbb{Z}_4}(F) \equiv 1 \mod 4$, and so

$$M_G(F) = M_{\mathbb{Z}_2 \times \mathbb{Z}_4}(F) = -7.$$

Since $N_j(f) \equiv 1 \mod 4$ for $j \geq 2$ we must have |F(1,1)F(1,-1)| = 7 and $N_2(F(1,y)) = 1$ and

$$F(1,1) = 7$$
, $F(1,-1)$, $F(-1,\pm 1) = \pm 1$, $F(\pm 1,\pm i) = \pm 1$ or $\pm i$,

with $R_j(F(1,y)) = R_j(F(-1,y)) = \pm 1$ or $\pm i$ for $j = 3, \dots, n$. We have

$$A_0(1) = \frac{1}{4}(F(1,1) + F(1,-1) + F(-1,1) + F(-1,-1)) = \frac{1}{4}(7 \pm 1 \pm 1 \pm 1)$$

and, since $A_0(1)$ is odd, we must have $F(1, -1) = F(-1, \pm 1) = -1$ and $A_0(1) = 1$ and $A_1(1) = A_2(1) = A_3(1) = 2$. Hence

$$F(x,y) = 1 + 2x + 2y + 2xy + (y^2 - 1)(B_0(y^2) + xB_1(y^2) + yB_2(y^2) + xyB_3(y^2)).$$

Thus

Thus

$$F(1,i) = 3 + 4i - 2(B_0(-1) + B_1(-1) + iB_2(-1) + iB_3(-1)),$$

$$F(-1,i) = -1 - 2(B_0(-1) - B_1(-1) + iB_2(-1) - iB_3(-1)),$$

and since $F(\pm 1, i)$ are units with odd real part and difference in $4\mathbb{Z}[i]$ they must be both be 1 or -1. By replacing F by y^2F as necessary, we may assume $F(\pm 1, i) =$ -1. Solving, we obtain $B_0(-1) = B_1(-1) = B_2(-1) = B_3(-1) = 1$ and

$$F(x,y) = -1 + (1+x)(1+y)(1+y^2) + (y^4 - 1) \left(C_0(y^2) + xC_1(y^2) + yC_2(y^2) + xyC_3(y^2) \right)$$

Therefore

$$F(1, w_3)F(1, -w_3) = (1 + 2i - 2C_0(i) - 2C_1(i))^2 - 4i(1 + i - C_2(i) - C_3(i))^2$$

and

$$F(-1, w_3)F(-1, -w_3) = (-1 - 2C_0(i) + 2C_1(i))^2 - 4i(C_2(i) - C_3(i))^2$$

Since both are units and are members of $1+4\mathbb{Z}[i]$, these must both equal 1. However, their difference

$$4\left((i-2C_0(i))(1+i-2C_1(i))-i(1+i-2C_3(i))(1+i-2C_2(i))\right) \in 4(1+i+2\mathbb{Z}[i])$$

is not zero.

References

- T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970) 457-462.
- [2] D. De Silva & C. Pinner, The Lind-Lehmer constant for Zⁿ_p, Proc. Amer. Math. Soc. 142(6) (2014) 1935-1941.
- [3] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142(1) (2010) 79-84.
- [4] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. 34(2) (1933) 461-479.
- [5] E. T. Lehmer, A numerical function applied to cyclotomy, Bull. Amer. Math. Soc. 36 (1930) 291-298.
- [6] D. Lind, Lehmer's problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005) 1411-1416.
- [7] V. Pigno & C.G. Pinner, The Lind-Lehmer constant for cyclic groups of order less than 892,371,480, Ramanujan J. 33 (2014) 295-300.
- [8] W. Vipismakul, The stabilizer of the group determinant and bounds for Lehmer's conjecture on finite abelian groups, Ph. D. Thesis, University of Texas at Austin, 2013.

Department of Mathematics & Computer Science, Davidson College, Davidson, NC 28035-6996, USA

 $E\text{-}mail\ address:\ \texttt{mimossinghoff} @\texttt{davidson.edu}$

Department of Mathematics & Statistics, California State University, Sacramento, CA 95819, USA

 $E\text{-}mail\ address:\ \texttt{vincent.pigno@csus.edu}$

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA $E\text{-}mail\ address:\ \texttt{pinner@math.ksu.edu}$