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THE LIND-LEHMER CONSTANT FOR Zj x Zj

MICHAEL J. MOSSINGHOFF, VINCENT PIGNO, AND CHRISTOPHER PINNER

ABSTRACT. We show that the minimal positive logarithmic Lind-Mahler mea-

sure for a group of the form G = Z§ x Z3 with |G| > 4 is ﬁ log(|G| —1). We
also show that for G = Za X Zon with n > 3 this value is ﬁ log 9. Previously

the minimal measure was only known for 2-groups of the form Zlg or Zyk .

1. INTRODUCTION

Recall that for a polynomial F(z1,...,2) in Z[x1,...,zx], one defines the tra-
ditional logarithmic Mahler measure by

1 1
m(F)z/O /0 log |F(e2™r ... e*™k)| dxy - - - day,.

In 2005, Lind [6] viewed [0,1]* as the group (R/Z)* and generalized the Mahler
measure to arbitrary compact abelian groups. In particular, for the finite abelian
group

G="Zn, X X1Ln,

and F € Z[z1,...,x1], we define the logarithmic Lind-Mahler measure by
1 ni Nk ) )
mg(F) = @ Z . Z log |F(e2mm1/m)“"e2r1mk/nk)|.
I1:1 :Ekzl

The close connection to the group determinant is explored by Vipismakul [8]. Writ-
ing
wy, = 2",
we plainly have
1

log [ Mg (F)|,

where

ni Nk
Mg (F) := H H F(wflll,...,wfl’;)
Jji=1 Je=1
will be in Z. Analogous to the classical Lehmer problem [4], we can ask for the
minimal mg(F) > 0, and to this end we define the Lind-Lehmer constant for G by

AMG) :==min{|Mg(F)| > 1| F € Z]z1,...,zi]}.
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We use |Mg(F)| rather than mq(F) or |[Mg(F)|'/1G! so that we are dealing with
integers; of course the minimal positive logarithmic measure will be ﬁ log A(G).

As Lind observed, for |G| > 3 we always have the trivial bound
(1) AG) <G -1,

achieved, for example, by

k
.Iini—l
F(Il,,Ik)——1+H<ﬁ>
i=1 ¢

Lind also showed that for prime powers p® with a > 1 we have

3, ifp=2,
2 )\Za:
@ (@pe) {2, ey

achieved with z2 +x +1if p = 2 and 2+ 1 if p > 3. Lind’s results for cyclic groups
were extended by Kaiblinger [3] and Pigno & Pinner [7] so that A(Z,,) is now known
if 892371480 1 m. The value for the p-group Z’; was recently established by De
Silva & Pinner [2], but little is known for direct products involving at least one
term Zpo with o > 2.

Here we are principally interested in the case of 2-groups

(3) G:ZQQIX"'XZQQJC.
It was shown in [2] that for all k¥ > 2
(4) Nzg) =2" -1,

a case of equality in (). We establish two main results regarding the Lind-Lehmer
constant for groups of the form (B]). First, we prove that equality occurs in ()
whenever G is a 2-group whose factors are all Zy or Zy.

Theorem 1.1. If G =Z} or Zj or Z X Z§, then
MG) = max{3, |G| — 1}.

Second, we show that this is not true for all 2-groups: if we allow «; > 3 in @3]
then () need not be sharp.

Theorem 1.2. Forn >3
)\(Zg X Zgn) = 9,
achieved with F(x,y) =y* +y+ 1.

Crucial to our proofs of these statements will be a congruence satisfied by Mq(F')
when G is a p-group. This is a generalization of [2, Lemma 2.1] (see also [8, Theorem
2.1.2)).

Lemma 1.1. If p is a prime and
(5) G =2Zper X -+ X Lo,

then
Mg(F) = F(1,..., D¢ mod p.
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Notice that for the p-group ([l we have

2%

Ma(F)y= T - I Moot (F),

t1=0 tr=0

where
p™1 p*k
Neywo )= [ - J] F@l.....wlk,) ez
J1=1 =1

Jk
(41,p*1)=p" (ji,p™k)=p'k

Since |1 — wia | <1 and the Ny, 4, (F) are integers, we have

.....

Ny (F) = F(1,. ., 1)‘/’(’)&1%1)"""(’)%7%) mod p.

In particular if p | F(1,...,1) we have p | Ny, 4, (F) for all t; and |G|p* | Mg (F).
So, in view of (), we can assume for the p-group (@) that p{ F(1,...,1) for any F
achieving \(G).

Thus, in the case of 2-groups we can assume an F with minimal measure has
F(1,...,1) odd, and by Lemma [[.Tl we see that

(6) Mg (F) =1 mod 2%,

Note this immediately produces ().
Similarly for 3-groups we can assume that an F' with minimal measure has 3 {
F(1,...,1) and Mg(F) = +1 mod 3*. This produces another case of equality in

@:

NZE) = 3% —1,
as observed in [2]. For G = Zs X Zsn, we have Mg(F) = £1 mod 9 and so we
immediately obtain the minimal measure for an additional family of 3-groups.

Theorem 1.3. Forn >1
)\(Zg X Zgn) = 8,
achieved with F(z,y) =y + 1.

Section 2l of this article is devoted to the proof of Lemmal[l.1] Section[3establishes
Theorem [[L1] and Section (] proves Theorem

2. PrROOF oF LEMMA [T

We proceed by induction on a1 + - - - + a. For G = Z,, we use that |w, — 1|, =
p~ /=1 < 1. Since Mg(F) € Z and Mg(F) = F(1)? mod (1 — w,) we see that
Mg(F) = F(1)? mod p.

Set

pL pk
glx1,...,25) = H H F(xl117-'-,x§€k)
l1:1 lk:l

and let I be the ideal in Z[z1, . . ., x,] generated by x’fal —1,..., xﬁak —1. Expanding,
we have

glx1,...,x) = Z Z a(ly, ... Lyt - 2t mod I.

0<l1<p®1  0<Lp<p“k
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We set
pl pk
5= g(w;)%’q ) ) wi))‘g‘k)
Ji=1 Je=1
= Z ally, ... 0 Z thel- w”&i’“
0<l1<p*1 0<l, <p“k Jji=1 Jr=1
= a/(O, ce ey O)pa1++ak-
If (j1,p*) = -+ = (Jr,p**) = 1, then for these ¢(p®*)- - p(p™*) values we have

g(wz}xlv---vwz)gk) = MG(F)

Suppose that (j1,p*t) = p', ..., (jk,p™*) = p'* with at least one ¢; # 0, and with
L > 0 of the t; = «;. Suppose without loss of generality that ¢; = «a; for any i =

Landt; <a;foranyi=L+1,... k. For these @(pt+i—tr+1)... p(p¥ktk)
values, applying the induction hypothesis to G' = ZpaHlftLH X oot X Loy —ty, We
have

g(w;)hla wak) Mg (F(la"-715IL+17"'7‘Ik))p

_ (F(lu o 1)p(aLﬂ*tL+1>+"'+(%*fk> + hpk—L>p

=F(1,...,1)G mod pF~Ltonttartieiattiy

t1+-tty

t1+-tty

Hence these (p — 1)k~ plerti=tryi=D++(ar=te=1) tarmg contribute
Q(pOEriTt) L p(pe T F(1, L 1)IG mod por e
to S. Thus
0=p(p™) (™) Ma(F) + (p*+F % —p(p™) - p(p™*)) F(1,..., 1)I]
= (p— 1) p ek (Ma(F) = F(1,..., )/T) mod porttes
and the statement follows. O
3. PROOF OF THEOREM [I]]

To prove Theorem [[.T] we require the following lemma.

Lemma 3.1. Suppose that F € Zlx1,...,xy], and let I denote the ideal of Z[z1, . . .,
generated by x1* —1,. —1. Then F(wflll, cwik) =0 for all 1 < j; <n; if

and only if F € I.

Proof. Plainly any F in I will have F (wflll, e ,wf{;) =0 for all 0 < j; < m;.
Conversely, suppose that F' (wf;l, e ,wﬁfk) =0 for all 0 < j; < n;. Clearly any F
can be reduced mod I to a polynomial of degree less than n; in each x;:

ny— 1 nE— 1

F(zy,...,zk Z Z alty,...,t 1- t’“mod]

t1=0 t=0

L t —T3)ji . .
Since Z"Z i — ) if t; Z T; mod n; (and n; otherwise) we have
ni—1 ne—1
E E J1 Jk —T1j1 —Tkjk
a(Tl,..., k |G| F wnl""’wnk)wnl wnk .

j1=0 Jk=0

xn]
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So a(Ty,...,Tx) =0for all 0 < T; < n; and F =0 mod 1. O
We now proceed to the proof of our first principal result.

Proof of Theorem [ 1. Suppose that G = Zga1 X -+ X Zgay, with 2% =4 for 1 <
1 <sand 2% =2for s+ 1<i<k. Wewriter =k —s. In view of (2) and @) we
may assume that k > 2 and s > 1. Suppose that F(z1,...,z)) has

1< |Mg(F)| <|G|—1=2F% 1.

Suppose that F(x1,...,xx) is a non-unit with at least one of the z; complex, say
71 = &4, and set G’ = Zgas X -+ X Zga,, . Plainly we may write

Mg (F) = AB7
with

A= MZ2><G'(F)5 B := MG/(F(iaan' "7$k)F(_i7$27" 'axk))'

From (@) we know that Mg (F) and A, and hence B, are all congruent to 1 mod
2% Also B will be of the form |a + ib|> and hence cannot be negative. Since it
contains a non-unit we have B > 1, hence B > 2F + 1. If A # 1 then |A| > 2% — 1
and |[Mg(F)| > (28 — 1)(2¥ + 1) =4* — 1 > |G| — 1, so we must have A = 1. Thus
if F(z1,22,...,2%) is a non-unit with x; = +4, then we may assume F(y1,. .., yx)
is a unit if y; = 1. We have two possibilities:

Case (a). There is at least one non-unit F'(z1,...,x;) with some z; = =+i.
Case (b). F(z1,...,zx) is a unit whenever any of the z; = +i.

With I denoting the ideal generated by the x?aj —1, and splitting the z; depen-
dence into even and odd exponents p(z1) = a(x?) + x18(2?), we can write

F(zy,...,2) = Z a(er, ea,. .. ex)(2}) 2i'as? -+ 27F mod I.
0<e2,...,es<3,
0<E1,E5415++5 e <1
Since F'(1,...,1) =Y a(e1,e2,...,ex)(1) is odd, we know that at least one of the
a(e1,ea,...,e,)(1) is odd. Replacing F' by x<151 o0 F with 0 < 61, 0541,...,08 < 1
and 0 < §,...,d0s < 3, and reducing mod I, we can reshuffle the a(eq, ..., ;) (2?)

and assume that a(0,...,0)(1) is odd. Replacing F' by —F we can assume that
F(1,...,1) =1 mod 4.

Case (a). Suppose we have non-units with complex z;. Reordering and taking
xz; = Exz; for 2 < j < s and x; = £x; for s < j < k as necessary, we
assume that the first of these is 1 = F(¢,1,...,1). If (after the transformations)
there are other non-units with complex entries in positions other than the first,
by reordering and substituting z; — x;z2 as necessary for j > 3, we may assume
that v = F(&i,4,+1,...,£1). We repeat this 1 < h < s times until we have h

non-units v; = F(aj1,...,a;;) with aj; =4, ajp = £ifor 1 < ¢ < j and aj = £1
for h < £ <k, and F(z1,...,2) is a unit whenever z; = +i with h < £ < s if
h <s.

Since the F'(+1, z2,...,x) are all units, with F(1,...,1) =1, and

a(0,...,0)(1) = % > F(xy,...,xx)

T2,..., rs==i,+1
T1,Ts41,--,Tp==%1
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is odd, plainly the F(£1, z2,...,2;) must all be 1. Applying Lemma Bl we may
therefore assume that

F(x1,...,2) =14 (23 — 1) Za(sl,ag, coER) T s agk
0<e2,...,es<3,
0<E1,E5415++» er <1
Notice that the F(%i,za,...,x) € Z[i] will all have odd real part and even imag-
inary part. Moreover, writing u = (1 — i) where u? | 2 and z; = 1 mod u for any
x; = £1 or +i, the F(%i,xa,...,x;) must all be congruent mod u* in Z[i]. Since
luls = 271/2 plainly two units +1, 44, in Z[i] cannot be congruent mod u® unless
they are equal. If h > 2 then we know that the F(+i,£1,x3,...,2%) will all be
units and so must be all 1 or all —1. Replacing F' by 22 F we can assume that they

are all 1. Applying Lemma 3.1 we get
F(x1,...,x5) =1+ (27 — 1)(z3 - 1) Z a(er, e, .. ep)x ad? - k.

0<es,...,.es <3,
0<e1,62,€541,--,6 <1
Likewise, if h > 3 we have that F(&i,+4,+1,24,...,25) are all units and 1
mod 4, so these must all equal 1. Applying the lemma and repeating up to
F(+i,..., i, £1, 2p41,...,2k), we deduce that

h
F(Il, - ,.Ik) =1+ H(I? — 1) Z CL(El,SQ, .. .,é‘k);pilx? .. xik
Jj=1 0<ent1,---,€s<3,
0<eq,..., ERsEst1yeers er <1
If s > h, we further have that the F(+s,...,+i,2p42,...,2)) are all units. If b > 2
they will all be 1 mod 4 and so must all equal 1. If A~ = 1 then they are all 1
or all —1 and, by replacing F by x?F if necessary, we may assume they are all 1.
Separating into real and imaginary parts, applying Lemma [B.I] then repeating for
each variable, we find

S

h
F(xlvaxk):1+H($3_1) H (I?—'—l) Z a’(517527"'75k)xilx§2"'Iik'
j=1

Jj=h+1 0<e1,...,erx <1
Suppose that there are ¢ > 1 conjugate pairs of non-units F(a1,...,a) = ;-
Then plainly
(7) v; = aj +ibj, a; =1mod 2°, b; =0 mod 2°.

Trivially we have |y;|> > 5, and if t > r + s then
|Mg(F)| >5">5"-5° > 2" .45 — 1,

so we can assume that

(8) t<r+s—1
If ¢ < r then, by using the transformation z, — x¢x; if £; = —1 to remove xp = —1
with ¢ > j, we can assume that the r-tuples (zs+1,...,%)) achieving the 7; take
the form
(..., 1), (£1,1,..., ), (1, £1,1,...,1), ..., (£1,...,£1,1,...,1).
—————
t—1

In particular, F'(z1,...,2,) willbe aunitif x; = —1 forany s+t <j < k. (If s > 2
the units will all be 1; if s = 1 we may need to take 22 F to make the value when
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Zs+¢+ = —1 and hence the rest equal 1.) Successively applying the lemma again, we
find
h s k
Fay,...,o) =1+ [} -1) [ @+1) [] @+DR
j=1 j=h+1 j=s+t
with
R= Y ale1,e2,... cape1)afias® - aliy .

0<et,mmeate—1<1
Hence we obtain that
v = a; +ibj, a; =1 mod 2°T" 171 b, =0 mod 251",
From (8) and (@) this is plainly also valid if ¢ > r. Thus, we have
|M(F)| = ||+ |ye] = (27F5+17t — 1)2t 5 92t(r+st5—1) 5 g2(r+5=.5) > or+2s
forr > 1. If r =0 and ¢ > 2 then we have s > 2, and from (7]) we obtain
|Ma(F)| > (25 — 1)2 > 92(s=05) > 9ds=2 > 45,

Finally if ¢ = 1 and r = 0 then, since F(i,1,...1) and its conjugate are the only
non-units, we know that F(+i,—1,23,...,x) are all units and so equal 1. Hence
we can add an extra factor (z2 + 1) to get

|Ma(F)| > (2511 —1)2 > 2%,

Case (b). Since a(0,...,0)(1) is odd, we know that a(0,...,0)(—1) is odd.
Since the F'(+i, o, ..., z)) are all units and

1
a(O,,O)(—l):m E F(I’l,...,.fk)

IQ,I,i.g:::tﬂZ:l,il

Ts41,--,Tp==%1

is odd, plainly the F(4i, 2o, ..., ;) must all be 1 or all be —1. Replacing F by z3F
we assume F'(+i,29,...,2) = 1. Applying Lemma Bl to the real and imaginary
parts we can assume that

F(x1,...,25) =14 (23 +1) Z a(er,ez,... en)x ad? - k.

0<es,...,es<3,
0<e1,6541,.-,6k <1

Notice that all the F'(1,z2,...,2;) = F(1,...,1) = 1 mod u®. Hence if s > 1 the
units F(£1, +4, z3,...,2x) are all 1. Applying the Lemma and repeating we obtain

s
F(Ila s axk) =1+ H(.I? + 1) Z a(617525 s ask)xilxgz o ‘Iik
J=1 0<e1,...,ex<1

Hence we have
M (F) = My (f)
where

flzr, ... ,xp) =1+2° Z Aer, ... ep)al - apk.

Suppose that there are ¢ elements f(+1,...,+1) that are not +1. ff ¢t > k+s—1
then plainly |[Mg(F)| > 3¢ > 3kTs=1 > 2k+s gince k + s > 3, so we assume that
t <k+s—2. Sending z; — —x; we assume that one of them is f(1,...,1) = .
If t > 1 then, reordering and mapping x; — xz,x; if we have £ > j with z, =
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x; = —1, we can assume that the remaining values are v, = f(—1,1,...,1),v3 =
flazi,as2,1,...,1), ..o,y = flag, .. age—1),1,...,1). If t <k then we will have
f(z1,...,25) = 1 whenever z; = —1 for some ¢ < j < k, and applying the lemma
we find
f(a:l,...,:ck)zl—l—ZsH zi+1) > Aler,.. ezt
j=t 0<e,...,er—1<1

Thus the
v; =1 mod gsth—t+l

(with this trivially holding if £ <t — 1), and
|MG(F)| > (2s+k+1—t _ 1)15'
For t =1 this gives
|Mg(F)| > 2% —1=|G| -1,

and for t > 2
|Mg(F)| > 2Hs+k+0.5-1) 5 g2s426=3 5 gtk -

4. PROOF OF THEOREM

Using ®,(x) to denote the jth cyclotomic polynomial and recalling (see [I] or
[5]) that for j > k the resultant [Res(®;, ®;)| = ¢#* if j = kq® for some prime ¢
and 1 otherwise, we see that

2

Mz, iz (14 y +37) = Mz, (®3(y)) H|Res<1>3,<1>21)| =9.
7=0

Let G = Zg x Zgn. Reducing mod 2% — 1, we can write our F(z,y) in Z[z,y] in the
form

F(z,y) = Ao(y®) + 2 A1 (y°) + yAa(y°) + 2y As(y®).
Plainly,
Mg (F(z,y)) = Mz, (F(1,y))Mz,. (F(=1,y)),
where each of these measures is a product of n + 1 integers,

Mz (f HN N;(f) = Res(f, ),

that is,
No(f) = f(1), Ni(f) = f(=1), Nao(f) = f(0)f(=i) = |f (@)%,

and, writing w; := 62”/2j, for any j = 3,...,n, we have
9i—1
H fw H Fh)f(=wh) = |R;(f),
K odd K odd
where
20—1

= [[ rwhHswhy ez, 3<j<n

k=1
k=1 mod 4



THE LIND-LEHMER CONSTANT FOR Zj X Zj 9

Note N;(f) and R;(f) represent the norms of f(wf) from Q(w;) to Q and Q(7)
respectively, and since they are algebraic integers they will be in Z and Z[i], respec-
tively. _ _

Since |1 — wjly = 2792 each N;(F(+1,y)) = F(1,1)%"" mod 2, and if
Mg(F) < 2?2 we can assume F(1,1) and all the Nj(F(+1,y)) are odd. Note
that for all the j > 2 we have N;(F(£1,y)) = |a +ib|? = a® + b* = 1 mod 4.

If |Mg(F)| <9 then |Mz,. (F(1,y))| or |Mz,, (F(—1,y))| must be 1. Replacing
T — —I as necessary we assume that

1 <Mz, (F(Ly)| <9, [Mg,, (F(=1,9))| = 1.
Since
F(1,1) = Ao(1) + A1 (1) + A2(1) + A3(1)
is odd, we can assume that at least one of the 4;(1) is odd. Replacing F' by «F
or yF or zyF and reducing by x? — 1 as necessary, we may assume that Ag(1) is

odd. Replacing y by —y and F by —F as necessary, we may further assume that
|F(1,1)] > |F(1,-1)] and F(1,1) > 0.

Since
F(1,—1) = Ag(1) + A1(1) — As(1) — Ag(1),
F(=1,1) = Ao(1) — A1 (1) + Aa(1) — As(1),
F(=1,-1) = Ag(1) — A1 (1) — A2(1) + A5(1),
we have
Ao(1) = i(F(l, 1)+ F(1, 1) + F(=1,1) + F(=1,1)),
A1) = i(F(l, 1)+ F(1,—1) = F(=1,1) = F(=1,—1)),
Ay(1) = i(F(l, 1) = F(1, 1) + F(=1,1) = F(=1,—1)),
A3(1) = J(F(1,1) = F(1,~1) = F(~1,1) + F(~1,~1)).

Observe that
F(1,wf)P(1, —wk) = (Ao(w?*) + A1 (w?))” — w2 (Aa(w?*) + Az(w?))
and
F(=1,wf)F(~1,~wh) = (Ag(w?*) — A1 (w?*))” — w?* (As(w?*) — As(w?™))
differ by

2

2

4 (Ao(’wjzk)Al (’w?k) — w]2kA2(w]2k)A3(w]2k)) S 4Z[wj_1].
Hence R;(F(1,y)) and R;(F(—1,y)) differ by an element of 4Z[w;_1] and, since
both are in Z[i], we conclude that
R;j(F(1,y)) — B;j(F(=1,y)) € 4Z[i].

Since N;(F(—1,y)) =1, we have R;(F(—1,y)) = £1 or %, and either R;(F(1,y)) =
R;(F(—1,y)) and N;(F(1,y)) =1, or N;(F(1,y)) > (4—1)*=09.

Thus if [Mg(F)| < 9 then we must have N;(F(1,y)) = N,;(F(-1,y)) = 1 for
j=3,...,nand Mg(F) = Mz,xz,(F). By Theorem [[LTl and Lemma [[.T| we have
|Mz,xz,(F)| > 7 and Mz,xz,(F) =1 mod 4, and so

Mg(F) = Mzyxz,(F) = —T.
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Since N;(f) = 1 mod 4 for j > 2 we must have |F(1,1)F(1,—1)] = 7 and
Ny(F(1,y)) =1 and

F(1,1) =7, F(1,—1),F(~1,4+1) = +1, F(£1,+i)=+1or +i,

with R;(F(1,y)) = R;(F(—1,y)) =+l or £ifor j=3,...,n.
We have

—_

Ao(1) = i(F(l, )4 F(1,—1) 4+ F(=1,1) + F(=1,—1)) = ~(T+ 1+ 1+1)

W~

and, since Ag(1) is odd, we must have F(1,—1) = F(—1,£1) = —1 and Ag(1) =1
and A;(1) = A2(1) = A3(1) = 2. Hence

F(z,y) =142z 42y + 2zy + (y° — 1)(Bo(y?) + 2B1(y°) + yB2(y*) + zyBs(y?)).
Thus

F(1,i) = 3+ 4i — 2(Bo(=1) + By (1) 4+ iBy(—1) 4 iBs(—1)),
F(=1,i) = =1 = 2(Bo(=1) = Bi(=1) + iBy(~1) — iB3(-1)),

and since F'(+1,4) are units with odd real part and difference in 4Z[i] they must be
both be 1 or —1. By replacing F' by y?F as necessary, we may assume F(£1,7) =
—1. Solving, we obtain By(—1) = B1(—1) = Ba(—1) = B3(—1) =1 and

F(z,y) = =1+(1+2) (14y) (1+y) +(y" =1) (Co(y?) + 2Ci(y°) + yCa(y?) + 2yCs(y?)) -
Therefore
F(1,w3)F(1, —ws3) = (14 2i — 20y (i) — 2C1(1))* — 4i(1 + i — Ca(i) — C3(i))?
and
F(=1,w3)F(—1, —ws) = (=1 — 2Co(i) + 2C1(i))* — 4i(Ca(i) — Cs(i))*.

Since both are units and are members of 14+47Z[i], these must both equal 1. However,
their difference

4(@ —2Co(i))(1 +7i — 201 (7)) — i(1 +i — 2C5 (i) (1 + i — 2@@))) € 4(1 41+ 2Z[i))

is not zero. O
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