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SOME RESULTS ABOUT ZERO-CYCLES ON ABELIAN AND

SEMI-ABELIAN VARIETIES

EVANGELIA GAZAKI*

Abstract. In this short note we extend some results obtained in [Gaz15]. First, we prove
that for an abelian variety A with good ordinary reduction over a finite extension of Qp

with p an odd prime, the Albanese kernel of A is the direct sum of its maximal divisible
subgroup and a torsion group. Second, for a semi-abelian variety G over a perfect field k,
we construct a decreasing integral filtration {F r}r≥0 of Suslin’s singular homology group,

H
sing
0 (G), such that the successive quotients are isomorphic to a certain Somekawa K-group.

1. Introduction

For a smooth projective and geometrically integral variety X over a field k, the group
CH0(X) of zero-cycles modulo rational equivalence has a filtration

CH0(X) ⊃ A0(X) ⊃ T (X) ⊃ 0,

where A0(X) = ker(CH0(X)
deg
−−→ Z) is the kernel of the degree map, while

T (X) = ker(A0(X)
albX−−→ AlbX(k))

is the kernel of the Albanese map, that is the higher dimensional analogue of the Abel-Jacobi
map of curves. The Albanese kernel, T (X), is the most mysterious part of CH0(X) and is
in general very hard to compute. Depending on the nature of the base field k there are
numerous conjectures concerning the structure of the Albanese kernel. For example, when k
is an algebraic number field, the famous Bloch-Beilinson conjectures ([Blo00], [Bl84]) predict
that T (X) is a finite group.

The Beilinson conjectures in particular lie on the deep philosophy that for a smooth
projective variety X , all Chow groups, CHi(X), should have an integral filtration arising
from a spectral sequence in the conjectural category of mixed motives.

In [Gaz15] we constructed a candidate for such an integral filtration {F r}r≥0 for the Chow
group CH0(A) of zero-cycles on an abelian variety A over a field k. This decreasing filtration
has the property that for every r ≥ 0, there is an isomorphism

F r/F r+1 ⊗ Z

[
1

r!

]
≃ Sr(k;A)⊗ Z

[
1

r!

]
,(1.1)

where Sr(k;A) is the symmetric quotient of the Somekawa K-group K(k;A, . . . , A) attached
to r copies of A. In many cases, for example when the base field is algebraically closed, the
⊗Z[1/r!] can be omitted in the above isomorphism. We note that after ⊗Q this filtration
coincides with the motivic filtration previously studied by Bloch ([Blo76]) and Beauville
([Bea86]) (see section 2.2 for more details).

(*) Department of Mathematics, University of Michigan, 3823 East Hall, 530 Church St., Ann Arbor, MI,
48109, USA. Email: gazaki@umich.edu
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In the present article we extend the above work ([Gaz15]) in two different directions.

1.1. Abelian varieties over p-adic fields. In the first part of the paper, we focus on the
case of an abelian variety A over a finite extension of the p-adic field Qp. In the case when
A has good ordinary reduction, we can say more about the quotients F r/F r+1 of the above
filtration and about the Albanese kernel T (A). In section 2 we prove the following theorem.

Theorem 1.2. Let k be a finite extension of the p-adic field Qp with p ≥ 3. Let A be an
abelian variety over k with good ordinary reduction. The Albanese kernel, T (A), of A is the
direct sum of its maximal divisible subgroup and a torsion group.

Theorem 1.2 can be thought of as a promising step towards the following conjecture of
Colliot-Thélène ([CT95]).

Conjecture 1.3. Let X be a smooth projective variety over a finite extension k of Qp. The
Albanese kernel T (X) is a direct sum of its maximal divisible subgroup with a finite group.

A weaker form of the above conjecture has been established by S. Saito and K. Sato
([SS10]), who proved that the degree zero subgroup A0(X) is the direct sum of a finite group
and a group that is divisible by any integer m coprime to p. Given that the maximal divisible
subgroups of A0(X) and T (X) coincide, the remaining questions include whether the quotient
T (X)/pn is finite for every n ≥ 1, and whether it stabilizes for large n > 0. There are only
very few results in this direction, including certain classes of rationally connected varieties
([CT05]) and certain products of curves, X = C1 × · · · × Cd ([RS00], [GL18]).

Unfortunately we are still not able to give more precise information about the structure of
the torsion summand of T (A) in Theorem 1.2, but we provide some indication that it could
be of bounded exponent (see Remark 2.6).

1.2. Semi-abelian varieties and Suslin’s singular homology. The second goal of the
paper is to extend the isomorphism (1.1) to semi-abelian varieties. A semi-abelian variety
G over a field k is an extension of an abelian variety by a torus; in particular, it is a quasi-
projective variety. For such open varieties the study of CH0 is often replaced by the study
of a larger class group of zero-cycles, namely of Suslin’s singular homology group, Hsing

0 .
In section 3, imitating the method of [Gaz15], we construct, for a semi-abelian variety

G over a perfect field k, a decreasing filtration, F 0 ⊃ F 1 ⊃ · · · ⊃ F r ⊃ · · · of Hsing
0 (G)

such that the successive quotients F r/F r+1 can be understood by the Somekawa K-group,
Sr(k;G). Namely, we prove the following theorem.

Theorem 1.4. Let G be a semi-abelian variety over a perfect field k. There is a decreasing
filtration {F r}r≥0 of Suslin’s singular homology group, Hsing

0 (G), such that for every r ≥ 0
we have an isomorphism,

F r/F r+1 ⊗ Z

[
1

r!

]
≃ Sr(k;G)⊗ Z

[
1

r!

]
.

We close this introduction with the following remark.

Remark 1.5. We note that for a semi-abelian variety G, the group Hsing
0 (G) ⊗ Q has been

previously studied by Sugiyama ([Sug14]), who obtained a similar isomorphism for the Pon-
tryagin filtration {Ir ⊗Q}r≥0 (see Definition 3.8).

Our focus both in [Gaz15] and in the current paper is an integral study of the subject, pro-
viding some evidence towards the Beilinson conjectures. In fact, it was recently established
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by Kahn and Yamazaki ([KY13]) that the Somekawa K-group K(k;F1, . . . ,Fr) attached
to more general coordinates than just semi-abelian varieties (namely homotopy invariant
Nisnevich sheaves with transfers) has the expected motivic realization. 1

1.3. Acknowledgements. The author is truly grateful to Professors Shuji Saito and Jean-
Louis Colliot-Thélène, as well as the referee for doing a careful reading of the paper and
providing very helpful feedback. The author would also like to heartily thank Professors
Kazuya Kato and Bhargav Bhatt and Dr. Isabel Leal for useful discussions and suggestions.

2. Zero-cycles on Abelian varieties

Throughout this section we will be working with an abelian variety A of dimension d over
a field k. Soon enough we will focus on the case of a p-adic base field.

We start by reviewing the construction of the filtration {F rCH0(A)}r≥0 of CH0(A) con-
structed in [Gaz15].

2.1. The Somekawa K-group. First, we consider the Somekawa K-groupK(k;A1, . . . , Ar)
attached to abelian varieties A1, . . . , Ar over k. This group was first defined by Somekawa
in [Som90]. Since then this group and many of its variants have been used by many authors,
obtaining numerous applications to zero-cycles and zero-cycles with modulus (see for exam-
ple, [RS00], [Yam05], [KY13], [IR17]). In this section we won’t need the precise definition of
K(k;A1, . . . , Ar). We only recall the fact that it is a quotient of a simpler group, namely of
the Mackey product, (A1 ⊗

M · · · ⊗M Ar)(k). The latter is defined as follows.

Definition 2.1. Let A1, . . . , Ar be abelian varieties over a field k. The Mackey product
A1 ⊗

M · · · ⊗M Ar is defined at a finite extension L over k as follows:

(A1 ⊗
M · · · ⊗M Ar)(L) :=




⊕

F/L finite

A1(F )⊗ · · · ⊗ Ar(F )


 /R1.

Here R1 is the subgroup generated by elements of the form,

a1 ⊗ · · · ⊗ TrF ′/F (ai)⊗ · · · ⊗ ar − resF ′/F (a1)⊗ · · · ⊗ ai ⊗ · · · ⊗ resF ′/F (ar) ∈ R1,

where F ′ ⊃ F ⊃ L is a tower of finite extensions of k, ai ∈ Ai(F
′) for some i ∈ {1, · · · , r},

aj ∈ Aj(F ) for every j 6= i, TrF ′/F : Ai(F
′) → Ai(F ) is the trace map on abelian varieties

(often referred to as the norm) and resF ′/F : Aj(F ) →֒ Aj(F
′) is the usual restriction.

The Somekawa K-group K(k;A1, . . . , Ar) is a quotient (A1 ⊗
M · · · ⊗M Ar)(k)/R2, where

R2 is a family of relations arising from function fields of curves (see Definition 3.6 for a more
general definition).

Notation 2.2. We will be using the standard notation for the generators ofK(k;A1, . . . , Ar),
namely we will write them as symbols {a1, . . . , ar}F/L for ai ∈ Ai(F ).

The symmetric K-group Sr(k;A) that appeared in the isomorphism (1.1) is defined as the
quotient of the Somekawa K-group K(k;A, · · · , A) attached to r copies of A by the action
of the symmetric group in r variables. For r = 0 we define S0(k;A) = Z. Observe that in
the group Sr(k;A) we have an equality,

{x1, . . . , xr}L/k = {xσ(1), . . . , xσ(r)}L/k,

1What they showed is an isomorphism K(K;G1, . . . , Gr)
≃
−→ HomDMeff (Z,F1[0]⊗ · · · ⊗ Fr[0]).
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for every permutation σ of {1, . . . , r} and for points xi ∈ A(L), i = 1, . . . , r.

2.2. A filtration of CH0. We are now ready to review the construction of F rCH0(A). In
[Gaz15, Proposition 3.1] we defined for every r ≥ 0 a canonical homomorphism

Φr : CH0(A) → Sr(k;A),

with Φ0 = deg. We then defined ([Gaz15, Definition 3.2]) the filtration F r as follows,

F 0 = CH0(A), and for r ≥ 1, F rCH0(A) :=
r−1⋂

j=0

ker(Φj).

It follows by the definition that for every r ≥ 0 we have an injection,

Φr : F
r/F r+1 →֒ Sr(k;A).

Moreover, we showed the following properties.

• Keeping the notation from the introduction, the group F 1 coincides with the degree
zero subgroup, A0(A), while the group F 2 coincides with the Albanese kernel, T (A).

• For every r ≥ 0 we defined ([Gaz15, Proposition 3.3]) a canonical homomorphism,

Ψr : Sr(k;A) → F r/F r+1,

with the property Φr ◦Ψr = ·r!. In particular, the map Φr becomes an isomorphism

after ⊗Z

[
1

r!

]
.

Torsion phenomena. An important property of the filtration {F r}r≥0 is that it contains
another well known filtration, {Ir}r≥0, previously studied independently by Bloch ([Blo76])
and Beauville ([Bea86]). We briefly recall how the filtration Ir is defined.

Because A is an abelian variety, the group Z0(A) of zero-cycles is a group ring under
the Pontryagin product. This ring structure descends to CH0(A) and for the classes of two
closed points, a, b ∈ A the Pontryagin product is defined as follows,

[a] ⋆ [b] = [a+ b].

The filtration {Ir}r≥0 is defined by considering the powers of the augmentation ideal,

I := 〈Trk′/k([a]− [0]k′) : a ∈ A(k′)〉,

of the group ring. Here we denoted by Trk′/k : CH0(A ⊗k k
′) → CH0(A) the pushforward

map induced by Spec(k′) → Spec(k), and by [0]′k the cycle class of 0 ∈ A ⊗k k
′. Bloch and

Beauville showed that this filtration has the property Ir ⊗Q = 0 for r > d.
In section 4 of [Gaz15] we showed that the filtration {F r} satisfies the following properties.

• F r ⊃ Ir, for every r ≥ 0. The inclusion becomes an equality when r = 0, 1.
• F r ⊗Q = Ir ⊗Q, for every r ≥ 0.

Corollary 2.3. The subgroup F d+1 of CH0(A) is torsion.

Proof. This follows directly from the above properties and the fact that Id+1 ⊗Q = 0.
�
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2.3. Proof of Theorem 1.2. For the remaining of this section we assume that the base
field k is a finite extension of Qp with ring of integers Ok and residue field κ, and that p is
an odd prime.

Lemma 2.4. Let A be an abelian variety over k. The filtration {F r}r≥0 of CH0(A) has the
following properties:

(1) When A has a mixture of good ordinary and split multiplicative reduction, the quotient
F r/F r+1 is divisible for every r ≥ 3.

(2) When A has good reduction, the quotient F 2/F 3 is the direct sum of a divisible group
and a finite group.

Proof. Raskind and Spiess showed [RS00, Theorem 4.5] that for abelian varieties A1, . . . , Ar

over k with a mixture of split multiplicative and good ordinary reduction, the Somekawa
K-group, K(k;A1, . . . , Ar) is divisible when r ≥ 3 and it is the direct sum of a finite group
and a divisible group when r = 2. This implies that for r ≥ 3, the injective homomorphism
Φr : F r/F r+1 →֒ Sr(k;A) is also surjective, because the image contains r!Sr(k;A). This
proves the first claim of the lemma.

Next assume that r = 2. When p > 2 and A has good reduction, the Somekawa K-group
K(k;A,A) (and hence also S2(k;A)) is 2-divisible. This follows by [RS00, Theorem 3.5].
With a similar argument as above, the injection

Φ2 : F
2/F 3 →֒ S2(k;A),

is an isomorphism.
�

We are now ready to prove our first theorem, which we restate here.

Theorem 2.5. Let k be a finite extension of the p-adic field Qp with p ≥ 3. Let A be an
abelian variety over k with good ordinary reduction. The Albanese kernel, T (A), of A is the
direct sum of its maximal divisible subgroup and a torsion group.

Proof. We consider the filtration {F r}r≥0 of CH0(A) as above. Recall that F
2 = T (A) and

the group F d+1 is torsion.
We first prove that the subgroup F 3 is the direct sum of a divisible group and a torsion

group. Consider the short exact sequence of abelian groups,

0 → F d+1 → F 3 → F 3/F d+1 → 0.

Since we assumed that the abelian variety A has good ordinary reduction, part (1) of
Lemma 2.4 yields that the group F 3/F d+1 has a filtration F 3/F d+1 ⊃ F 4/F d+1 ⊃ · · · ⊃
F d/F d+1 ⊃ 0 with each successive quotient divisible. Since divisible groups are injective
Z-modules, F 3/F d+1 splits into a direct sum,

F 3/F d+1 ≃
d⊕

i=3

F i/F i+1,

and it is therefore divisible. Let Tor(F 3) be the torsion subgroup of F 3. We have a
decomposition F 3 ≃ Tor(F 3) ⊕ F 3/Tor(F 3). By Corollary 2.3, we obtain an injection

5



α : F d+1 →֒ Tor(F 3). We consider the commutative diagram with exact rows,

0 F d+1 F 3 F 3/F d+1 0

0 Tor(F 3) F 3 F 3/Tor(F 3) 0.

α

ǫ

= β

δ

Note that the map β is obtained by diagram chasing. Because the map δ is surjective, it
follows that β is also surjective. Since F 3/F d+1 is divisible, it follows that F 3/Tor(F 3) is
divisible, which concludes the claim.

We now repeat the above argument for the group F 2. We have a short exact sequence,

0 → F 3/F d+1 → F 2/F d+1 → F 2/F 3 → 0.

Since F 3/F d+1 is divisible, it is a direct summand of F 2/F d+1. Part (2) of Lemma 2.4 then
yields that F 2/F d+1 is the direct sum of a finite group and a divisible group. We will denote
by (F 2/F d+1)div the maximal divisible subgroup. We consider the commutative diagram
with exact rows,

0 F d+1 F 2 F 2/F d+1 0

0 Tor(F 2) F 2 F 2/Tor(F 2) 0.

f

= h

g

By the same reasoning as above we obtain that the map h is surjective. Since the group
F 2/Tor(F 2) is torsion free, the finite summand of F 2/F d+1 must map to zero under h and
therefore h induces a surjection (F 2/F d+1)div ։ F 2/Tor(F 2). It yields that F 2/Tor(F 2) is
a uniquely divisible group, which concludes the proof of the theorem.

�

Remark 2.6. Ideally we would like to at least bound the torsion of the non-divisible summand
of T (A). In [Gaz15, Remark 4.6] we suggested a possible strategy in order to bound the
torsion in the group Id+1, but we would additionally need to control the quotient F d+1/Id+1.

3. Semi-abelian Varieties and Suslin’s singular homology

In this section our goal is to generalize the main result of [Gaz15] to semi-abelian varieties.
We start by reviewing the definition of Suslin’s singular homology and some of its variants.

3.1. Suslin’s singular homology. Let X be a smooth quasi-projective variety over a field
k. We denote by X(1) the set of all closed irreducible curves in X and by Z0(X) the free

abelian group of zero-cycles on X . Moreover, for C ∈ X(1), we denote C̃
π

−→ C its normal-

ization and ι : C̃ →֒ C its smooth completion.

Definition 3.1. For a smooth quasi-projective variety X over a field k we define Suslin’s
singular homology group, Hsing

0 (X), as the quotient of Z0(X) modulo the subgroup generated
by zero-cycles of the form ι⋆0(Z)− ι⋆1(Z), where ιλ : X → X ×A1 is the inclusion x→ (x, λ),
for λ = 0, 1, and Z runs through all closed integral subvarieties of X × A1 such that the
projection Z → A1 is finite and surjective.
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The above definition occurs for the first time in the foundational paper [SV96] of Suslin
and Voevodksy. This definition was later generalized by Schmidt ([Sch07a]) to schemes of
finite type over the spectrum of a Dedekind domain.

To construct our filtration we won’t be working with the above definition but with a
variant of this group, known as Wiesend’s ideal class group. Before we review its definition,
we remind the reader of the theory of generalized Jacobians for smooth complete curves,
which motivated Wiesend’s definition.

Generalized Jacobians. Let C be a smooth curve over a perfect field k. Let C be its

smooth compactification and let m =
∑

P∈C\C

P be the reduced Cartier divisor on C supported

on C\C. The divisor m is usually called a modulus condition on C. There exists a generalized
Jacobian variety Jm of C corresponding to the modulus m, which is a semi-abelian variety
satisfying the following universal property. There is a morphism ϕ : C → Jm such that if
ψ : C 99K G is a rational map to some semi-abelian variety G over k, which is regular on C,
then ψ factors uniquely through ϕ. When C = C, or alternatively m = 0, Jm coincides with
the usual Jacobian variety J of C and in the case C has a k-rational point, the Abel-Jacobi
map gives an isomorphism

Pic0(C) ≃
Z0(C)

deg=0

〈div(f) : f ∈ k(C)×〉

≃
−→ J(k).

When C ( C and C(k) 6= ∅, the analogous expression in terms of zero-cycles for the
generalized Jacobian Jm, where m =

∑
P∈C\C P , is the following.

Z0(C)
deg 0

〈div(f) : f ∈ k(C)×, f(P ) = 1, P ∈ C \ C〉

≃
−→ Jm(k).

This is part of the more general theory of generalized Jacobians of Rosenlicht-Serre
([Ser88]).

Wiesend’s class group of zero-cycles.

Definition 3.2. For a smooth quasi-projective variety X over a field k we define the Wiesend
tame ideal class group W (X) to be the quotient of Z0(X), by the subgroup generated by zero-
cycles of the form {div(f) : f ∈ k(C)×}C∈X(1)

with the function f having the property

f(P ) = 1, for every P ∈ C − C̃.

Remark 3.3. This definition is a direct generalization of the generalized Jacobian Jm of a
smooth complete curve corresponding to a reduced modulus m. We note that Wiesend’s
[Wie07] original definition was not exactly this, but a similar class group for arithmetic
schemes of finite type over SpecZ. Definition 3.2 is a variant due to Yamazaki [Yam13].

Properties.

(1) When the base field k is perfect, it is a theorem of Schmidt [Sch07a, Theorem 5.1]

that the groups W (X) and Hsing
0 (X) are isomorphic (see also [Sch07b, Theorem 1]).

From now on we assume that k is perfect. In most of the statements we will be using
W (X), but we will be interchanging between the two definitions without further
notice.

(2) When X is proper over k, the groups CH0(X) and W (X) coincide.
7



(3) It is clear that the degree map deg : Z0(X) → Z, x → [k(x) : k], factors through
W (X). We will denote by W 0(X) the subgroup of degree zero cycle classes.

(4) When C is a smooth, complete, geometrically irreducible curve over k and S a finite
set of points of C, then for the smooth curve C = C − S, the group W (C) coincides
with the group of classes of divisors on C prime to S modulo S-equivalence, as defined
in [Ser88, Chapter V]. Notice that when C has a k-rational point, the abelian group
W 0(C) is isomorphic to the generalized Jacobian of C corresponding to the modulus
m =

∑
P∈S P .

(5) The groups W (X) and Hsing
0 are covariant functorial for morphisms of varieties X →

Y ([Sch07a, Proposition 2.10], [Wie07, Lemma 2], [Yam13, lemma 2.3]).
(6) Generalized Albanese map: If X is a smooth variety over a perfect field k, there is

a generalized albanese map albX : W 0(X) → GX(k), where GX is the generalized
Albanese variety of X . For a proof of the fact that the generalized Albanese map is
well-defined we refer to [SS03]. In this article, T.Szamueli and M.Spiess prove the
analogue of Roitman’s theorem for Suslin’s singular homology.

3.2. The geometric K-group. Next we need to review the definition of the Somekawa
K-group, K(k;G1, . . . , Gr), attached to semi-abelian varieties G1, . . . , Gr over k. In order
to prove Theorem 1.4, we will use a more geometric variant, Kgeo(k;G1, . . . , Gr), which was
introduced by Kahn and Yamazaki in [KY13]. We start with the following preliminary
remark that will help us simplify the notation.

Remark 3.4. Let K be a function field in one variable over k and let C be the smooth
complete curve having function field K. Let gi ∈ Gi(K), for i = 1, . . . , r. Each gi extends
to a rational map gi : C 99K Gi, which is regular outside a finite set of places Si of C. From
now on we will refer to the set Si as the support of gi. Let P be a closed point of C. If KP

is the completion of K at P and OKP
its ring of integers, we will denote by OP the algebraic

local ring, K ∩OKP
, and by k(P ) the residue field at P . Then the set Si is precisely the set

Si = {P ∈ C : gi 6∈ Gi(OP )}.

Moreover, Somekawa defined a tame symbol, ∂P : Gi(KP ) ⊗ K×
P → G(k(P )). This symbol

is a direct generalization of the tame symbol of the multiplicative group, Gm. We will not
need the precise definition in what follows. For more details we refer to [Som90, 1.1]

Definition 3.5. The Somekawa K-group K(k;G1, . . . , Gr) attached to semi-abelian varieties
G1, . . . , Gr over a perfect field k is defined as follows.

K(k;G1, . . . , Gr) := (G1 ⊗
M · · · ⊗M Gr)(k)/R,

where the subgroup R is generated by the following family of elements.
Weil reciprocity I: Let K be a function field in one variable over k and let C be the
smooth complete curve having function field K. Let gi ∈ Gi(K) for i = 1, . . . , r be elements
with disjoint supports and let f ∈ K×. Then for every closed point P ∈ C there exists some
i(P ) ∈ {1, . . . , r} such that P 6∈ Sj, for every j 6= i. We require,

∑

P∈C

{g1(P ), . . . , ∂P (gi(P ) ⊗ f), . . . , gr(P )}k(P )/k ∈ R.

8



Definition 3.6. Let G1, . . . , Gr be semi-abelian varieties over a perfect field k. We define
the geometric K-group, Kgeo(k;G1, . . . , Gr), attached to G1, . . . , Gr as follows.

Kgeo(k;G1, . . . , Gr) = (G1 ⊗
M · · · ⊗M Gr)(k)/R0,

where R0 is the subgroup generated by the following family of elements:
Weil reciprocity II: Let K be a function field in one variable over k and let C be the
smooth complete curve having function field K. Let gi ∈ Gi(K), for i = 1, . . . , r. We

consider the set S =

r⋃

i=1

Si. Let f ∈ K× be a function such that f(P ) = 1, for every P ∈ S.

Then we require
∑

P 6∈S

ordP (f){g1(P ), . . . , gr(P )}k(P )/k ∈ R0.

Recall that ⊗M is the product of Mackey functors defined in Definition 2.1. Kahn and
Yamazaki proved that the group Kgeo(k;G1, . . . , Gr) is isomorphic to Somekawa K-group
K(k;G1, . . . , Gr) ([KY13, Theorem 11.12]), with this new variant being more suitable for
geometric applications.

3.3. Proof of Theorem 1.4. Let G be a semi-abelian variety over a perfect field k of
dimension d. We will write the group law in G in multiplicative notation with 1 the neutral
element.

The Pontryagin Filtration. Similarly to the case of abelian varieties, the group of zero-
cycles Z0(G) becomes a group ring with multiplication given by the Pontryagin product,

(

s∑

j=1

njxj) ⋆ (

t∑

i=1

miyi) =
∑

i,j

njmixjyi, for xj , yi closed points of G and nj , mi integers.

Lemma 3.7. The subgroup M = 〈div(f) : f ∈ k(C)×, C ∈ G(1), f(x) = 1, x ∈ C − C̃〉 is an
ideal of Z0(G) and therefore W (G) becomes a ring with the Pontryagin product.

Proof. It suffices to show that if x ∈ G is any closed point of G and div(f) is a generator of
M , then x ⋆ div(f) ∈ M . We consider the translation map

τx : G→ G

y → xy.

Then we observe that x ⋆ div(f) = τx⋆(div(f)) and since W (G) has covariant functoriality,
we conclude that x ⋆ div(f) ∈M .

�

Under this ring structure, the subgroup of degree zero elements, W 0(G), becomes an ideal
I of W (G). By taking its powers, we obtain the Pontryagin filtration {Ir}r≥0 of W (G). In
what follows we will need a precise description of the generators of Ir, which we include
below.

9



Definition 3.8. The filtration Ir of W (G) is defined as follows:

I0W (G) = W (G),

I1W (G) = 〈Trk′/k([x]− [1]k′) : x ∈ G(k′)〉 =W 0(G),

I2W (G) = 〈Trk′/k([xy]− [x]− [y] + [1]k′) : x, y ∈ G(k′)〉,

I3W (G) = 〈Trk′/k([xyz]− [xy]− [xz]− [yz] + [x] + [y] + [z]− [1]k′) : x, y, z ∈ G(k′)〉,

. . .

IrW (G) = 〈
r∑

j=0

(−1)r−j
∑

1≤ν1<···<νj≤r

Trk′/k([xν1xν2 . . . xνj ]), xi ∈ G(k′)〉,

where the summand corresponding to j = 0 is Trk′/k((−1)r[1]k′).

Notation 3.9. For points xi ∈ G(k′), i ∈ {1, . . . , r}, we will denote by ωx1,...,xr
the element∑r

j=0(−1)r−j
∑

1≤ν1<···<νj≤r Trk′/k([xν1xν2 . . . xνj ]) of I
r.

Remark 3.10. We will see that after ⊗Q the filtration {IrW (G)}r≥0 just defined has the
property that Ir/Ir+1⊗Q ≃ Sr(k;G)⊗Q. This is exactly what was proved also by Sugiyama
in [Sug14, Proposition 4.8].

3.4. Definition of the Filtration. We start this subsection with the observation that G
is its own generalized Albanese variety. Therefore the Albanese map takes on the form
albG : W 0(G) → G(k). This follows by the next proposition, which is a direct consequence
of a classical result of Rosenlicht-Serre ([Ser88]).

Proposition 3.11. For any semi-abelian variety G over k, the natural map j : G(k) →
Kgeo

1 (k;G) is an isomorphism.

Proof. First we prove surjectivity. Let k′/k be a finite extension and x ∈ G(k′). Notice that
in Kgeo

1 (k;G) we have the following equality, {x}k′/k = {Trk′/k(x)}k/k. We conclude that
j(Trk′/k(x)) = {x}k′/k and hence surjectivity follows.

To prove injectivity, it suffices to show that the Weil reciprocity relation of Kgeo
1 (k) holds

already in G(k). Let K be a function field in one variable over k and C be the smooth
complete curve with function field K. Let g ∈ G(K) and f ∈ K×. According to Remark 3.4,
we obtain a regular map C − S → G, where S = {P ∈ C : g 6∈ G(OP )}. [Ser88, Theorem 1]
tells us that the map g admits a modulus m. Moreover, [Ser88, Proposition 13] shows that
in the case G is an extension of an abelian variety A by Gm, m =

∑
P∈S P is a modulus

for g. By a simple argument using the projections of G⊕d
m to each factor, we can conclude

that m =
∑

P∈S P is a modulus for g when G is an arbitrary semi-abelian variety. This
means that for every function f ∈ K× such that f(P ) = 1 for every P ∈ S, it holds∑

P 6∈S

ordP (f) Trk(P )/k(g(P )) = 0. Notice that this implies that Weil reciprocity holds in G(k).

�

The next proposition is analogous to [Gaz15, Proposition 3.1].
10



Proposition 3.12. For every r ≥ 1, there exists a well-defined abelian group homomorphism

Φr : W (G) → Sgeo
r (k;G)

[x] → {x, x, . . . , x}k(x)/k.

Furthermore for r = 0, we define Sgeo
0 (k;G) = Z and Φ0 to be the degree map.

Proof. Let r > 0 be a positive integer. We define the map Φr : Z0(G) → Sgeo
r (k;G) first on

the level of zero-cycles. Let C ∈ G(1) be a closed irreducible curve in G, let C̃
π

−→ C be its

normalization and ι : C̃ →֒ C the smooth completion of C̃. Let f ∈ k(C)× be a function

such that f(P ) = 1, for every P ∈ C − C̃. We need to show Φr(π⋆(div(f))) = 0. More
precisely, we need to prove

Φr(
∑

x∈C̃

ordx(f)[k(x) : k(π(x))]) =
∑

x∈C̃

ordx(f)[k(x) : k(π(x))]{π(x), . . . , π(x)}k(π(x))/k = 0.

First we have the following equalities.
∑

x∈C̃

ordx(f)[k(x) : k(π(x))]{π(x), . . . , π(x)}k(π(x))/k =

∑

x∈C̃

ordx(f){[k(x) : k(π(x))]π(x), . . . , π(x)}k(π(x))/k =

∑

x∈C̃

ordx(f){Trk(x)/k(π(x))(resk(x)/k(π(x))(π(x))), . . . , π(x)}k(π(x))/k =

∑

x∈C̃

ordx(f){resk(x)/k(π(x))(π(x)), . . . , resk(x)/k(π(x))(π(x))}k(x)/k.

Let K = k(C) and consider the generic point inclusion η : SpecK →֒ C̃. We set g = πη ∈

G(K) and observe that S = {x ∈ C̃ : g 6∈ G(OP )} = C − C̃. Then we can easily see that
∑

x∈C̃

ordx(f){resk(x)/k(π(x)), . . . , resk(x)/k(π(x))}k(x)/k =
∑

x 6∈S

ordx(f){g(x), . . . , g(x)}k(x)/k.

The result therefore follows from the reciprocity relation of the group Sgeo
r (k;G).

�

We can now proceed to the definition of the filtration. First notice that the isomorphism
obtained in Proposition 3.11 yields an equality Φ1|ker(Φ0) = albG. This in turn implies that
ker(Φ0) ∩ ker(Φ1) = ker(albG).

Definition 3.13. We define a decreasing filtration {F r}r≥0 of W (G) with F 0 = W (G) and

for r ≥ 1, F r =

r−1⋂

j=0

ker Φj. In particular, F 1 = W 0(G) and F 2 = ker(albG).

Proposition 3.14. For every r ≥ 0 we have inclusions Ir ⊂ F r. Moreover,

Φr(ωx1,...,xr
) = r!{x1, . . . , xr}k(x)/k.

Proof. This is analogous to [Gaz15, Proposition 3.3, part of Proposition 3.4]. For the in-
clusion Ir ⊂ F r we use the commutativity Φr−1Trk′k = Trk′/k Φ

k′

r−1 (here Φk′

r−1 is the cor-
responding map defined over Spec(k′)), the multilinearity of the symbol in Sgeo

r (k;G) and
11



the fact that the map Φr+1 is a group homomorphism. The second statement follows by a
combinatorial counting.

�

Theorem 3.15. Let r ≥ 0 be an integer. There is a well-defined abelian group homomor-
phism

Ψr : S
geo
r (k;G) −→

F rW (G)

F r+1W (G)

{x1, . . . , xr}k′/k −→ ωx1,...,xr
.

Moreover, the homomorphism Ψr satisfies the property, Φr ◦ Ψr = ·r! on Sr(k;G). As a

conclusion, after ⊗Z

[
1

r!

]
the map Φr becomes an isomorphism with inverse

1

r!
Ψr.

Proof. The first step is to obtain a well-defined map, for every r ≥ 0,

Ψr :
(

r︷ ︸︸ ︷
G⊗M · · · ⊗M G)(k)

< (x1 ⊗ . . .⊗ xr)k′/k − (xσ(1) ⊗ . . .⊗ xσ(r))k′/k >
−→

F rW (G)

F r+1W (G)
.

The argument is exactly the same as the first two steps of [Gaz15, Proposition 3.4].
We will now show that this map factors through Sgeo

r (k;G). Let C be a smooth complete
curve over k having function field K. Let g ∈ G(K) and S = {P ∈ C : g 6∈ G(OP )} be the
support of g. Let f ∈ K× be a function such that f(P ) = 1, for every P ∈ S. We need to
show that

∑

P 6∈S

ordP (f) Trk(P )/k([g(P )]) = 0

in W (G). Set C0 = C − S. Then g induces a morphism g : C0 → G. Since Wiesend’s
ideal class group is covariant functorial, we obtain a push forward g⋆ : W (C0) →W (G). By
property (4) of Wiesend’s class group, we have that the group W (C0) is equal to the group
of divisors on C prime to S modulo S-equivalence, and therefore div(f) = 0 in W (C0). This
forces

g⋆(div(f)) =
∑

P 6∈S

ordP (f) Trk(P )/k([g(P )]) = 0 ∈ W (G).

�

The above proposition concludes the proof of Theorem 1.4.

Remark 3.16. When the base field k is algebraically closed Theorem 1.4 holds integrally,

F rW (G)/F r+1W (G) ≃ Sgeo
r (k;G).

For, the group Sgeo
r (k;G) is divisible in this case, and hence the map Φr is surjective.
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