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RESOLUTION OF THE SYMMETRIC ALGEBRA OF A FINITE

BASE LOCUS

RÉMI BIGNALET-CAZALET

Abstract. We provide a locally free resolution of the projectivized symmet-
ric algebra of the ideal sheaf of a zero-dimensional scheme defined by n + 1
equations in an n-dimensional variety. The resolution is given in terms of the
resolution of the ideal itself and of the Eagon-Northcott complex of the Koszul
hull.

1. Introduction

Consider a rational map Φ : Pn
99K P

n with a zero-dimensional base locus Z. In
order to compute some invariants of Φ, for instance its degree, one should resolve
the indeterminacies of Φ, which amounts to blow-up Z or equivalently to work
with the Rees algebra of the ideal IZ of Z in P

n. This is not quite easy in general,
however a first step is to take the symmetric algebra S(IZ ) of IZ , this is a larger
algebra as the Rees algebra is obtained from it by killing the torsion part. This
problem is closely related to the papers [BCJ09] and [BCS10] about the torsion of
the symmetric algebra. So a natural question is what is the shape of the resolution
of S(IZ), in particular, is it determined by some process involving the resolution of
IZ?

The goal of this paper is to give an affirmative answer to this question. Indeed, we
provide a resolution of S(IZ ) in terms of the pulled-back resolution of the dualizing
module of Z, up to some shift in degree, and of the Eagon-Northcott complex
associated with another still larger algebra, which we call the Koszul hull.

Let us state our results more precisely, in a geometric fashion. Fix an alge-
braically closed field k, and let X be an n-dimensional smooth quasi-projective
variety over k. Let L be a line bundle over X and let V be an (n+ 1)-dimensional
subspace of H0(X,L). The image of the evaluation map V⊗L∨ → OX is an ideal
sheaf IZ of a closed subscheme Z in X . Given a basis (φ0, . . . , φn) of V, this pro-
vides a rational map Φ : X 99K P(V) sending x ∈ X to

(

φ0(x) : . . . : φn(x)
)

and
defined away from Z.

Let X = PX(IZ) be the projectivization of the ideal sheaf IZ . The surjection
V⊗L∨ → IZ induces a closed embedding X →֒ P

n
X . The goal of this paper is to

establish a locally free resolution of X over P
n
X under the assumption that Z is

zero-dimensional.
Let p : P

n
X → X be the projective bundle map, ξ be the first Chern class

c1
(

OPn
X
(1)

)

of OPn
X
(1) and, depending on the context, η be either c1(L) or the pull
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2 RÉMI BIGNALET-CAZALET

back p∗c1(L) of c1(L) by p. Put

Qi,j = (
i+1
∧ V)⊗OPn

X
(−(j + 1)ξ − (i − j)η) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1

and Qi =
i
⊕
j=0

Qi,j . The sheaves Qi are the terms of the Eagon-Northcott complex

associated with a map

ψ : V⊗OPn
X
→ OPn

X
(η)⊕OPn

X
(ξ).

The complex takes the form:

(Q•) 0 Qn . . . Q1 OPn
X

see [BV88, 2.C] for details about this construction.
Assume dim(Z) = 0 and let:

(P•) 0 Pn . . . P1 P0 OZ 0

be a locally free resolution of OZ , so here P0 = OX and P1 = V⊗L∨.
Set

P ′
i = p∗P∨

n+1−i ⊗OPn
X
(−nη − ξ) for 1 ≤ i ≤ n+ 1

and let IX be the ideal of X into P
n
X . Our result is the following:

Theorem 1.1. Under the assumption that dim(Z) = 0, X is Cohen-Macaulay of
dimension n and there is a locally free resolution of IX of the following form:

(R1) 0 P ′
n+1

Qn

⊕
P ′
n

. . .
Q1

⊕
P ′
1

IX 0.

Denoting by yi the homogeneous relative coordinates of the projective bundle
P
n
X , we make the following definition.

Definition 1.2. A complex (R•) over Pn
X is subregular if for all i the differential

Ri → Ri−1 is linear or constant in the y variables.

Note that we put no conditions on the coordinates of the base variety X .
With this definition, Theorem 1.1 implies:

Corollary 1.3. The ideal IX admits a subregular locally free resolution over P
n
X .

Looking back to the map Φ : X 99K P(V), our motivation for Corollary 1.3 is to
study the length of a subscheme obtained as zero locus of a global section of the
sheaf p∗(OX(1)

n) and relate it to the topological degree of Φ, see [Dol11] for these
definitions. Corollary 1.3 ensures that all higher direct image sheaves of p∗ vanish.

In the last section, we focus on a graded version of this result. Take R =
k[x0, . . . , xn] and IZ = (φ0, . . . , φn) an ideal generated by n+1 homogeneous poly-
nomials of degree η. The ideal of the symmetric algebra of IZ , denoted by IX, is a
bigraded homogeneous ideal of S = R[y0, . . . , yn]. This time we consider the two
complexes (P ′

•) and (Q•) obtained by taking the graded modules of global sections
of (P ′

•) and (Q•). These are S-graded subregular complexes. Our result in this
setting is the following.
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Theorem 1.4. Assume IZ is a graded homogeneous Cohen-Macaulay ideal of di-
mension 1, then X is Cohen-Macaulay and a minimal bigraded S-free resolution of
IX reads:

(R2) 0 Q′′
n

Q′′
n−1

⊕
P ′′
n−1

Q′′
n−2

⊕
P ′′
n−2

. . .
Q′′

2

⊕
P ′′
2

P ′′
1 IX 0

where

Q′′
i =

n
⊕
j=1

Qi,j , Qi,j = S
(

− (i − j)η,−j − 1)(
n+1

i+1), P ′′
i = Pi+1 ⊗ S(η,−1).

Moreover Theorem 1.1 and Theorem 1.4 are sharp in the following sense. If
dim(Z) > 0, then the resolution of X might not be subregular as shown in the
following example. This example was explained to us by Aldo Conca.

Example 1.5. In P
3, consider the zero locus Z of the ideal IZ = (−x32x3+x

4
3,−x

4
2−

x43,−x1x
3
3 − x43, x

2
2x

2
3 + x43). The ideal IZ has dimension 2 over R = k[x0, . . . , x3],

so dim(Z) = 1, and a minimal graded free resolution of IX reads:

0 S(−5,−3)
S(−5,−2)

⊕
S(−4,−3)3

S(−4,−1)
⊕

S(−3,−2)3

⊕
S(−4,−2)

⊕
S(−3,−3)

S(−1,−1)
⊕

S(−2,−1)2

⊕
S(−3,−1)

IX 0

where we wrote the shift in the y variables in the right position. Hence the resolution
of IX is not subregular.

The explicit computations given in this paper were made using Macaulay2. The
corresponding codes are available on request.

2. Local resolution of the symmetric algebra

2.1. Preliminaries and notation. For the whole paper, X is a smooth quasi-
projective variety, where variety stands here for a reduced connected scheme of
finite type. Set n for the dimension of X . Let IZ = (φ0, . . . , φn) ⊂ OX be an ideal
sheaf generated by n + 1 linearly independent global sections of a line bundle L
over X and V = vect(φ0, . . . , φn).

Notation. We denote by P the projective bundle Proj
(

Sym(OX(−η)n+1)
)

with
its bundle map p : P → X and relative homogeneous coordinates y0, . . . , yn. Here
Sym(OX(−η)n+1) refers to the sheafified symmetric algebra of OX(−η)n+1 and P

is a shorter notation for the relative projective space P
n
X in the introduction.

We let ξ be the first Chern class of OP(1) and, depending on the context, η
stands either for c1(L) or p

∗c1(L).
For a subscheme L of P and any x ∈ X , we denote by Lx the scheme-theoretic

fibre of p restricted to L above x.
Moreover, if J is an ideal sheaf of a scheme Y , V(J ) stands for the subscheme

of Y defined by J .
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By definition, X = Proj
(

Sym(IZ)
)

. Let

(P1)

P2 P1 IZ 0

E

0 0

M Φ

be a locally free presentation of IZ where P1 = V⊗OX(−η) and Φ = (φ0 . . . φn).
The composition of the canonical map V⊗OP → OP(ξ) sending φi to yi with the
map p∗M : p∗P2 → p∗P1 provides a map p∗P2 → OP(ξ) as in the following diagram:

V⊗OP

p∗P2 p∗E OP(ξ)

p∗M

So, by [Bou70, A.III.69.4], X is the zero scheme of the corresponding section of
the composition map s ∈ H0

(

P, p∗P∨
2 ⊗ OP(ξ)

)

. Otherwise stated, the ideal sheaf
IX of X into P is generated by the entries of the row matrix yp∗M where M is the
presentation matrix appearing in (P1) and y stands for (y0 . . . yn). We denote by
Mx the matrix obtained from M by specializing at the point x ∈ X .

We emphasize the following remark. Since dim(X) = n and codim(Z,X) = n,
the local structure sheaf of a point z ∈ Z, denoted by OZ,z , is generated by at least
n independent sections of L lying in V. The crucial point is to take care of the case
where z ∈ Z is a point at which Z is not a complete intersection, i.e all the sections
φ0, . . . , φn are required to generate OZ,z .

Lemma 2.1. Let x ∈ X be a closed point. The scheme-theoretic fibre Xx is:

(i) a point if x /∈ Z,
(ii) isomorphic to P

n−1
x if x ∈ Z and Z is a local complete intersection at x,

(iii) isomorphic to P
n
x if x ∈ Z and Z is not a local complete intersection at x.

In general, Xx is isomorphic to P
n−r
x where r = rank(Mx).

Proof. Since the formation of the symmetric algebra commutes with base change,
the fibre Xx is obtained by localizing X at x and taking P(IZ ⊗ kx), where kx is
the residue field of OX at x.

(i) If x /∈ Z, locally at x the ideal IZ is just OX , so p is an isomorphism of Xx

to x.
(ii),(iii) If x ∈ Z, since Z has codimension n in X , a subspace of n independent local

sections of L from V is needed at least to generate IZ locally around x.
Actually such subspace exists if and only if Z is a local complete intersection
(LCI) at x. In other words, IZ ⊗ kx is a kx-vector space which can be
generated by an n-dimensional subspace of V if and only if Z is LCI at
x, so that IZ ⊗ kx is isomorphic to knx or to kn+1

x depending on whether
Z is LCI at x or not. Therefore P(IZ ⊗ kx) is isomorphic to P

n−1
x or P

n
x

depending on whether Z is LCI at x or not.

For the last statement, tensor (P1) by kx and observe that the kernel Kx of the
surjection Φx : V → IZ ⊗ kx is a quotient of E ⊗ kx, which in turn is a quotient of
P2 ⊗ kx. The composition of these surjections and of the inclusion Kx → V is just
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the matrixMx, so ker(Φx) = Im(Mx). Therefore dim(IZ ⊗kx) = n+1−rank(Mx),
which completes the proof. �

Remark 2.2. In our setting of a zero-dimensional scheme Z, by [Eis95, Proposition
20.6], the set of points z ∈ Z such that Xz ≃ P

n
z is equal set theoretically to

V
(

Fittn(IZ)
)

where Fittn(IZ) is the ideal generated by the entries of M .

Now, we take the Koszul complex with respect to the map V⊗OX(−η) = P1
Φ
−→

OX and we write ki(Φ) for the i-th differential of the Koszul complex. We have the
following sequence:

(K3)

∧2P1 P1 IZ 0

F1

0 0

k1(Φ) Φ

which is not exact since Z is not empty and where we put F1 = Im
(

k1(Φ)
)

. By
definition of the presentation and the Koszul complex, we have F1 ⊂ E and E/F1 =
H1(IZ) where E is as in (P1) and H1(IZ) stands for the first Koszul homology of
the set (φ0 . . . φn) of generators of IZ .

2.2. Gorenstein nature of the Koszul hull. We introduce now another sub-
scheme of P which we call the Koszul hull of X. This subscheme contains X and
actually differs from X by a copy of Pn

Z , as we will see.

Definition 2.3. Set notation as in (K3) and let IK be the ideal sheaf generated
by the entries in the row matrix yp∗k1(Φ). We call the Koszul hull, denoted by K,
the subscheme in P defined by K = V(IK).

Now, we explain the strategy of the proof of Theorem 1.1. Via the inclusion
F ⊂ E , we see that IK ⊂ IX, that is X ⊂ K. Hence we have the following short
exact sequence:

0 IK IX IX/IK 0.

So in order to get the subregularity of the resolution of IX, we first show the
subregularity of resolutions of IK and of IX/IK and from there, we show how we
get the resolution of IX by patching together these resolutions.

We start by analysing the Koszul hull more closely.

Proposition 2.4. We have the following properties.

(i) The scheme K is determinantal. More precisely, IK is the ideal of the 2× 2
minors of the map V⊗OP → OP(η)⊕OP(ξ) defined by the matrix:

ψ =

(

φ0 . . . φn
y0 . . . yn

)

.

Under the assumption that dimX(Z) = 0:

(ii) codim(K,P) = n.
(iii) A locally free resolution of IX is the sheafification of the Eagon-Northcott

complex. Namely, there is a long exact sequence:

(Q•) 0 Qn . . . Q2 Q1 IK 0
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where Qi =
i
⊕
j=0

Qi,j and

Qi,j = (
i+1
∧ V)⊗OP(−(j + 1)ξ − (i − j)η) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1.

(iv) The scheme K is Gorenstein, more precisely we have:

ωK ≃ p∗ωX ⊗OP(nη − nξ).

Proof. (i) The morphism k1(Φ) takes the form,

k1(Φ) =

















φ1 φ2 . . .
−φ0 0 . . .
0 −φ0 . . .
... 0 . . .
...

... . . .

















and IK is generated by the entries in the row matrix yp∗k1(Φ). Those
entries are the same as the 2× 2 minors of the matrix ψ.

(ii) We argue set-theoretically by looking at the fibres of the map K → X
obtained as restriction of p to K. First, note that if z 6∈ Z, then it is clear
by the definition of K that Kz is a single point. On the other hand, if z ∈ Z
then φi(z) = 0 for all i ∈ {0, . . . , n} so by definition of K we have Kz = P

n
z .

Therefore the reduced structure of K is the union of X and of ∪z∈ZP
n
z .

This proves that K has dimension n.
(iii) Since K is determinantal of the expected codimension, it is Cohen Macaulay

[BV88, Cor. 2.8]. Hence depth(IK) = codim(K,P) = n. Therefore
the Eagon-Northcott complex provides a global resolution of the ideal IK
[BV88, Th. 2.16]. The first map ∧2 V⊗OP → ∧2OP(η) ⊕ OP(ξ) of the
Eagon-Northcott complex is the matrix ∧2ψ. Hence the complex (Q•) pro-
vides a resolution of IK.

(iv) By the previous item (iii), a resolution of ωK is given by:

0 Q
∨

1 ⊗ ωP
. . . Q

∨

n−1 ⊗ ωP Q
∨

n ⊗ ωP
ωK 0.

M1

Locally, we can write explicitly the matrix M1 which is the transpose of
the last matrix in the Eagon-Northcott complex. So M1 has size n× (n−
1)(n+ 1) and locally takes the form:

φ0 φn 0 0

y0 yn φ0 φn 0 0

0 0 y0 yn φ0 φn 0 0

0 0 y0 yn

































M1 = .

Consider an open cover of X by a family of open subsets {Ut | t ∈ J}
such that Ut ∩ Z = {zt}. If z ∈ U ⊂ Ut\{zt} for all t, then the restriction
of IZ to U is equal to OU so that KU = XU = U is obviously Gorenstein,
because U is smooth.

Or else, if z = zt for some t, then φs(z) = 0 for all s ∈ {0, . . . , n}. In
this case, since every point in (y0 : . . . : yn) ∈ P

n
z has at least one non zero
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coordinate, the matrix (M1)z has corank 1. This shows that for any point
of X, the stalk of ωK has rank 1 at that point, so ωK is locally free of rank
one. Hence KUj

is Gorenstein. This proves that K is Gorenstein.
Now, we show the isomorphism

ωK ≃ p∗ωX ⊗OP(nη − nξ).

To do this, we first give an explicit formula for ωK by describing the
scheme K as a complete intersection into a larger projective bundle (see
[Ein93] for more details about this construction). Let B be the projective
bundle P

(

OP(η) ⊕ OP(ξ)
)

and put ζ for the relative hyperplane class of
the bundle map q : B → P. A divisor D in |OB(ζ)| corresponds to a map
ψD : OP → OP(η)⊕OP(ξ). Since the matrix ψ whose 2× 2 minors define K
has constant rank 1 over K, the map q restricts to an isomorphism from the
complete intersection ∩n

i=0Di to K, where Di corresponds to ψDi
= (φi, yi).

Therefore, by adjunction we have:

(2.2.1) q∗ωK ≃ ωB

(

(n+ 1)ζ
)

.

Next, we show that:

(2.2.2) OK(ζ) ≃ OK(η).

Indeed, given a divisor D ∈ |OB(ζ)|, the intersection D ∩K is defined in
P by the vanishing of the 2× 2 minors of the matrix:

(

φ0 . . . φn φD
y0 . . . yn yD

)

,

where ψD = (φD, yD) corresponds to D. Since yD lies in 〈y0, . . . , yn〉, this
matrix is equivalent up to row and column operations to:

(

φ0 . . . φn φ′D
y0 . . . yn 0

)

,

for some φ′D ∈ H0(X,L).
This means that the ideal ofD∩K in K is generated by (y0φ

′
D, . . . , ynφ

′
D).

Since all the yi do not vanish simultaneously, this implies that OK(ξ) is
generated by the restriction to K of φ′D. Hence OK(ζ) ≃ OK(η) and we
compute:

ωP ≃ p∗ωX ⊗OP

(

− (n+ 1)ξ
)

and therefore:

ωB ≃ q∗ωP ⊗OB(−2ζ + η + ξ).

Hence by (2.2.1) and (2.2.2), we get that ωK ≃ p∗ωX ⊗OP(nη − nξ).
�

2.3. Description of the quotient IX/IK. We show now the subregularity of a
locally free resolution of the quotient IX/IK.

Proposition 2.5. We have the following isomorphism:

IX/IK ≃ p∗(ωZ ⊗ ω∨
X)⊗OP(−nη − ξ).

The proof of this proposition is the object of Lemma 2.6. Its proof and the proof
of Proposition 2.5 rely mostly on [Eis95, Theorem 21.23]. We refer to [Eis95] for
the relevant definitions.
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Lemma 2.6. The quotient ideal sheaf (IK : IX) is isomorphic to p∗IZ .

Proof. As in the proof of Proposition 2.4, we denote by k1(y) the first differential
in the Koszul complex associated to the map (y0 . . . yn). We denote also by IX,K
the ideal of X in K and W stands for the scheme p∗Z. Of course we have W ≃ P

n
Z .

The inclusion IK ⊂ IW explains the right horizontal exact sequence in the following
commutative diagram:

0

∧2 V⊗OP(−ξ − η) IK 0

0 p∗E V⊗OP(−η) IW 0

0 C OP(ξ − η) IW/IK 0

0 0 0

k1(y)

y

p∗M

yp∗k1(Φ)

p∗Φ

β

The commutativity in the right above square comes from the following fact. Writing
down the matrix k1(y) as follows:

k1(y) =

















y1 y2 . . .
−y0 0 . . .
0 −y0 . . .
... 0 . . .
...

... . . .

















and similarly for k1(Φ), it is direct computation to show that yp∗k1(Φ) = p∗Φk1(y).
Hence, the image of the map β = yp∗M is exactly the ideal IX(ξ) and we have

that:

Ann(IW/IK) ≃ IX.

Now we use the assumption that Z is zero-dimensional. Since the statement is
local and the formation of the symmetric algebra commutes with base change, we
can assume that OP and OK are Gorenstein local rings. We apply [Eis95, Theorem
21.23.a.] to the Gorenstein scheme K and to the ideal sheaf IX,K.

We denote by IW,K the ideal of W in K. Since W has codimension 0 in K

and has no embedded components, the ideals IW,K and IX,K are linked in OK.
This shows that IW,K = Ann(IX,K). Now, since we have already IK ⊂ IW, the
equality occurs as ideal sheaves of OP itself. Moreover we have the isomorphism
Ann(IX,K) ≃ (IK : IX). Hence:

IW = p∗IZ ≃ (IK : IX).

�
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Proof of Proposition 2.5. As above, we can assume that OP and OK are Gorenstein
local rings and we apply [Eis95, Theorem 21.23] to OK. We denote again by IX,K
the ideal of X in K and by IW,K the ideal of W in K (recall that W = p∗Z).

Since IX,K has codimension 0 in OK, we have that (IK : IX) and IX,K are linked.
But following the notation in Lemma 2.6, (IK : IX) ≃ IW,K.

Moreover,W is Cohen-Macaulay as a pull back of Z so X is also Cohen-Macaulay
and we have:

IW,K ≃ ωX

where ωX is the canonical sheaf of X. Summing up, we have that:

ωW ⊗ ω∨
K ≃ IX,K ≃ IX/IK.

Now, since W ≃ P
n
Z , we have ωW ≃ p∗ωZ ⊗ OP(−(n + 1)ξ). Therefore, by

Proposition 2.4:

IX/IK ≃ ωW ⊗ ω∨
K ≃ p∗(ωZ ⊗ ω∨

X)⊗OP(−nη − ξ).

�

Denoting H1(IZ) the first Koszul homology associated to Φ : V⊗OX(−η) →
OX , as in (K3), we emphasize the following point in order to elucidate the nature
of the sheaf IX/IK.

Proposition 2.7. The sheaf IX/IK is isomorphic to the pull-back of the first ho-
mology H1(IZ) of Φ up to a shift. More precisely, we have

IX/IK ≃ p∗H1(IZ)⊗OP(η − ξ).

Proof. To shorten the notation, we set H1 for H1(IZ). We are going to show that

(2.3.1) H1 ≃ ωZ ⊗ ω∨
X

(

−(n+ 1)η
)

.

First, ωZ ≃ Extn(OZ , ωX). Hence, we will prove (2.3.1) by showing that

OZ ≃ Extn(H1, ωX)⊗ ω∨
X

(

−(n+ 1)η
)

.

To this end, let:

(K4) 0
n+1
∧ P1 . . .

2
∧P1 P1 IZ 0

F2 F1 ⊂ E

kn(Φ) k1(Φ) Φ

be the Koszul complex associated with Φ = (φ0 . . . φn), where
i
∧P1 = (∧i V) ⊗

OX(−iη). Since codim(Z,X) = depth(IZ) = n the Koszul homology is concen-
trated in degree 1 and by definition H1 = E/F1.

Applying the functor Hom(−, ωX) to (K4), we obtain:

0 Hom(F1, ωX) . . . V⊗ωX(nη) ωX

(

(n+ 1)η
)

Ext1(Fn−1, ωX) 0

and it is a computation to show that Ext1(Fn−1, ωX) ≃ Extn−1(F1, ωX).
The last point is that Extn−1(F1, ωX) ≃ Extn(H1, ωX). Indeed, by the long

exact sequence associated to the short exact sequence:

0 F1 E H1 0

we have the following exact sequence:

Extn−1(E , ωX) Extn−1(F1, ωX) Extn(H1, ωX) Extn(E , ωX)
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and Extn−1(E , ωX) = Extn(E , ωX) = 0 since Z is locally Cohen-Macaulay.
Moreover, the last map kn(Φ) of the Koszul complex is the transpose of the first

map Φ up to signs. Thus the maps in the sequence:

V⊗ωX(nη) −→ ωX

(

(n+ 1)η
)

→ Extn(H1, ωX) → 0

are the same as the maps in the exact sequence:

P1
Φ
−→ OX → OZ → 0.

Taking care of the twisting, this means that OZ ⊗ ωX

(

(n+ 1)η
)

≃ Extn(H1, ωX).

This implies H1 ≃ ωZ ⊗ ω∨
X

(

−(n+ 1)η
)

. �

Remark 2.8. To enlighten the construction of the sheaves P ′
i for i ∈ {1, . . . , n+1}

in the following proof of Theorem 1.1, recall that the complex:

(P•) 0 Pn . . . P1 P0 OZ 0

is a locally free resolution of OZ . Hence, a locally free resolution of ωZ reads :

0 P∨
0 ⊗ ωX . . . P∨

n ⊗ ωX ωZ 0

from which we can read a locally free resolution of ωZ ⊗ ω∨
X .

Proof of Theorem 1.1. As we saw in Lemma 2.1 and in the proof of Proposition 2.5,
X is Cohen-Macaulay of dimension n.

Moreover, by Proposition 2.4 and Proposition 2.5, we have the following com-
mutative diagram:

0

0 Qn
. . . Q2 Q1 IK 0

IX

0 P ′
n+1 P ′

n
. . . P ′

2 P ′
1 IX/IK 0.

0

where

Qi =
i−1
⊕
j=0

(

(
i+1
∧ V)⊗OP(−(j + 1)ξ − (i − j)η)

)

and

P ′
i = p∗P∨

n+1−i ⊗OP(−nη − ξ) for 1 ≤ i ≤ n+ 1.

To show that these resolutions patch together to give the desired resolution of
IX, it suffices to prove that Ext1

(

P ′
1, IK

)

= 0 that is H1
(

P, IK ⊗ P ′∨
1

)

= 0.

Hence it suffices that Hi (P,Qi ⊗ P ′∨
1 ) = 0 for all i ∈ {1, . . . , n}. Kunneth

formula implies these vanishings since the cohomology groups Hi
(

P
n,OPn(−j)

)

vanish for all j = 0, . . . , i− 1. In the case i = n, we use that

Hn
(

P
n,OPn(−j)

)

≃ H0
(

P
n,OPn(j − n− 1)

)

and the fact that j − n− 1 ≤ −2.
This shows eventually Theorem 1.1. �
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We summarize Theorem 1.1 into the following corollary.

Corollary 2.9. Under the assumption that dim(Z) = 0, the ideal IX has a resolu-
tion of the following form:

0 Gn+1 Gn . . . G2 G1 IX 0

where Gi =
i
⊕
j=1

p∗Tij ⊗OP(−jξ) when i ∈ {1, . . . , n} and Gn+1 = p∗Tn⊗OP(−ξ) for

some locally free sheaves Tij and Tn over X.

3. Graded free resolution of the symmetric algebra

Now, we turn to the analysis of a resolution of the symmetric algebra of a homoge-
neous ideal of the polynomial ring R = k[x0, . . . , xn]. So let IZ = (φ0, . . . , φn) ⊂ R
be an ideal generated by n+1 linearly independent homogeneous polynomials each
one of the same degree η ≥ 2. We will denote by RZ the quotient R/IZ and by Z
the subscheme V(IZ) of P

n.
We will assume that dim(Z) = 0 and that RZ is a graded Cohen-Macaulay ring.
As above let:

(P•) 0 Pn . . . P2 P1 IZ 0M

be a minimal graded free resolution of IZ , M being the presentation matrix of IZ
and P1 = R(−η)n+1.

As in the previous section, let k1(Φ) : ∧
2P1 → P1 be the second differential of the

Koszul complex associated with the map Φ : P1
(φ0 ... φn)
−−−−−−→ R. Put F = Im

(

k1(Φ)
)

in order to have the following exact sequence:

R(−2η)(
n+1

2 ) R(−η)n+1 IZ 0.

F

0 0

k1(Φ) Φ

Definition 3.1. Set S = R[y0, . . . , yn] and y = (y0 . . . yn). We let IX be the
ideal of S generated by the entries in the row matrix yM and IK be the ideal of S
generated by the entries in the row matrix yk1(φ).

Here, as above, F ⊂ E so IK ⊂ IX.

Notation. Since S is bigraded by the variables x and y, S(−a,−b) stands for a
shift in x for the left part and y for the right part.

As above, we denote by P the product P
n × P

n and by p : Pn × P
n → P

n the
first projection.

To show Theorem 1.4, the strategy is initially the same as in the previous section,
but since we are dealing with free resolutions, the resolutions of IK and IX/IK will
patch together providing a resolution of IX without further checking. We will
explain afterwards how we deduce from this resolution a minimal bigraded free
resolution of IX.
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3.1. The Koszul hull. All the arguments of the proof of Proposition 2.4 remain
valid in the graded homogeneous setting. So the ideal IK has the following proper-
ties:

(i) IK is a determinantal ideal.

Under the assumption that codim(Z,Pn) = n:

(ii) codim(K,P) = n.
(iii) a graded free resolution of IK is the Eagon-Northcott complex associated

to the matrix:

ψ =

(

φ0 . . . φn
y0 . . . yn

)

.

Hence, the following complex is a bigraded free resolution of IK:

(Q•) 0 Qn . . . Q2 Q1 IK 0

where Qi =
i
⊕
j=0

Qi,j and

Qi,j = S
(

− (i− j)η,−j − 1)(
n+1

i+1) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1.

(iv) The scheme K is Gorenstein, more precisely the canonical module ωSK
of

K verifies:

ωSK
≃ S

(

n(η − 1)− 1,−n
)

.

3.2. Identification of the quotient IX/IK. We denote by ωRZ
the canonical

module of Z. All the arguments of Proposition 2.4 and [Eis95, Theorem 21.23]
apply in the graded case since RZ is a graded Cohen-Macaulay ring of depth n.
Hence we have that:

IX/IK ≃ ωRZ
⊗ S(n(1− η) + 1,−1) as S-modules.

Recall that (P•) is a minimal graded free resolution of IZ . Put

P ′
i = P∨

n+1−i ⊗ S
(

− nη,−1) for i ∈ {1, . . . , n+ 1}.

Then the complex:

(R2’) 0 P ′
n+1

Qn

⊕
P ′
n

. . .
Q2

⊕
P ′
2

Q1

⊕
P ′
1

IX 0

is a bigraded free resolution of IX.

3.3. Homotopy of complexes. We turn now to the problem of extracting a min-
imal bigraded free resolution of IX from (R2’). In order to do so, we show first the
following result.

Proposition 3.2. There is a canonical isomorphism

p∗OX(ξ) ≃ IZ

where OX(ξ) and IZ are the sheafification of respectively S(0, 1) and IZ .

We emphasize that this is not completely straight forward since X is the Proj
of IZ which is not locally free (see Stack project, 26.21. Projective bundles,
example 26.21.2).

https://stacks.math.columbia.edu/tag/01OA
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Proof. Since OP(ξ) is the relative ample line bundle of the projective bundle P =
P
(

OX(−η)n+1
)

, we have:

Rkp∗OP(lη − jξ) =



















0 for l > 0 and j ≤ 0,

0 for j ∈ {1, . . . , k − 1} and any l,

OX(lη) for k = 0 and j = 0,

On+1
X

(

(l − 1)η
)

for k = 0 and j = −1.

Therefore, applying p∗ to the resolution (R1) and chasing cohomology we get
R1p∗IX(ξ) = 0.

Recall that we denote by E the kernel of Φ : OX(−η)n+1 → IZ and that IX(ξ)
is the image of the map p∗E → OP(ξ). Let H be the kernel of this surjection and
write the exact sequence:

0 H p∗E IX(ξ) 0.

Since p∗p
∗E ≃ E and R1p∗p

∗E = 0, applying p∗ to this exact sequence, we get:

(a) 0 p∗H E p∗IX(ξ) R1p∗H 0.

Also, since we proved that R1p∗IX(ξ) = 0, applying p∗ to the canonical exact
sequence

0 IX(ξ) OP(ξ) OX(ξ) 0

we get

(b) 0 p∗IX(ξ) OX(−η)n+1 p∗OX(ξ) 0.

The exact sequences (a) and (b) fit into the following commutative diagram:

0

p∗H 0

E E

0 p∗IX(ξ) OX(−η)n+1 p∗OX(ξ) 0

0 R1p∗H IZ p∗OX(ξ) 0

0 0

≃

=

where (a) is the left column, (b) is the central row and the map IZ → p∗OX(ξ) in
the bottom row is the canonical morphism associated to the projectivization of IZ .
This morphism is an isomorphism at X\Z and therefore IZ → p∗OX(ξ) is injective
because IZ is torsion free. Hence p∗H ≃ 0 ≃ R1p∗H and p∗OX(ξ) ≃ IZ .

�

Proof of Theorem 1.4. We work as in the previous proposition. Taking the push-
forward by p of the resolution of OX(ξ) given by (R1) and considering the associated
R-modules of global sections, we obtain the following graded free resolution of IZ :
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0 P∨
0

(

− (n+ 1)η
)

R
(

− (n+ 1)η
)

⊕
P∨
0

(

− (n+ 1)η
)

. . .

. . .
R(−2η)(

n+1

2 )

⊕
P∨
n (−(n+ 1)η)

R(−η)n+1 IZ 0.

This resolution is homotopic to the minimal free resolution (P•) of IZ . Therefore,
the truncated complex (P≥1) of (P•) is homotopic as S-complex to:

0 P ′
n−1

Qn,0

⊕
P ′
n

. . .
Q1,0

⊕
P ′
1

.

Hence, (R2’) is homotopic to:

(R2) 0 Q′′
n

Q′′
n−1

⊕
P ′′
n−1

Q′′
n−2

⊕
P ′′
n−2

. . .
Q′′

2

⊕
P ′′
2

P ′′
1 IX 0

where

Q′′
i =

n

⊕
j=1

Qi,j , Qi,j = S
(

− (i − j)η,−j − 1)(
n+1

i+1), P ′′
i = Pi+1 ⊗ S(η,−1).

The complex (R2) is thus a bigraded free resolution of IX.
To finish the proof of Theorem 1.4, it remains to show that (R2) is minimal.

This follows from the minimality of (P•) and the fact that, if i 6= i′, there is no
bigraded homogeneous piece of the same degree among Q′′

i and Q′′
i′ or P

′′
j for any

j ∈ {1, . . . , n− 1}. �
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