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CONNECTIONS AND RESTRICTIONS TO CURVES

INDRANIL BISWAS AND SUDARSHAN GURJAR

Abstract. We construct a vector bundle E on a smooth complex projective surface X

with the property that the restriction of E to any smooth closed curve in X admits an
algebraic connection while E does not admit any algebraic connection.

1. Introduction

Let X be an irreducible smooth complex projective variety with cotangent bundle Ω1
X and

E a vector bundle on X . The coherent sheaf of local sections of E will also be denoted by
E. A connection on E is a k-linear homomorphism of sheaves D : E −→ E⊗Ω1

X satisfying
the Leibniz identity which says that D(fs) = fD(s) + s⊗ df , where s is a local section of
E and f is a locally defined regular function.

Consider the sheaf of differential operators Diffi
X(E,E), of order i on E, and the associated

symbol homomorphism σ : Diff1
X(E,E) −→ End(E)⊗ TX . The inverse image

At(E) := σ−1(IdE ⊗ TX)

is the Atiyah bundle for E. The resulting short exact sequence

0 −→ Diff0
X(E,E) = End(E) −→ At(E)

σ
−→ TX −→ 0 (1.1)

is called the Atiyah exact sequence for E. A connection on E is a splitting of (1.1). We refer
the reader to [At] for the details, in particular, see [At, p. 187, Theorem 1] and [At, p. 194,
Proposition 9].

When X is a complex curve, Weil and Atiyah proved the following [We], [At]:

A vector bundle V on an irreducible smooth projective curve defined over C admits a
connection if and only if the degree of each indecomposable component of V is zero.

This was first proved in [We]; see also [Gr, p. 69, TH́EORÈME DEWEIL] for an exposition
of it. The above criterion also follows from [At, p. 188, Theorem 2], [At, p. 201, Theorem 8]
and [At, Theorem 10].

A semistable vector bundle V on a smooth complex projective variety X admits a con-
nection if all the rational Chern classes of E vanish [Si, p. 40, Corollary 3.10]. On the other
hand, a vector bundle W on X is semistable if and only if the restriction of W to a gen-
eral complete intersection curve, which is an intersection of hyperplanes of sufficiently large
degrees, is semistable [Fl, p. 637, Theorem 1.2], [MR, p. 221, Theorem 6.1]. On the other
hand, any vector bundle E whose restriction to every curve is semistable actually satisfies
very strong conditions [BB]; for example, if X is simply connected, then E must be of the
form L⊕r for some line bundle L.
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2 I. BISWAS AND S. GURJAR

The following is a natural question to ask:

Question 1.1. Let E be a vector bundle on X such that for every smooth closed curve

C ⊂ X, the restriction E|C admits a connection. Does E admit a connection?

Our aim is to show that in general the above vector bundle E does not admit a connection.

To produce an example of such a vector bundle, we construct a smooth complex projective
surface X with Pic(X) = Z such that X admits an ample line bundle L0 with H1(X, L0) 6=
0. Since Pic(X) = Z, the ample line bundles on X are naturally parametrized by positive
integers. Let L be the smallest ample line bundle (with respect to this parametrization)
with the property that H1(X, L) 6= 0. Let E be a nontrivial extension

0 −→ L −→ E −→ OX −→ 0 .

We prove that the vector bundle End(E) has the property that the restriction of it to every
smooth closed curve in X admits a connection, while End(E) does not admit a connection;
see Theorem 3.1.

A surface X of the above type is constructed by taking a hyper-Kähler 4–fold X ′ with
Pic(X ′) = Z. Let Y ⊂ X ′ be a smooth ample hypersurface such that Hj(X ′, OX′(Y )) = 0
for j = 1, 2, and let Z be a very general ample hypersurface ofX ′ such thatHj(X ′, OX′(Z)) =
0 for j = 1, 2 and H2(X ′, OX′(Z−Y )) = 0. Now take the surface X to be the intersection
Y ∩ Z.

2. Construction of a surface

We will construct a smooth complex projective surface S with Picard group Z that has
an ample line bundle L with H1(S, L) 6= 0.

Let X be a hyper-Kähler 4–fold with Picard group Z. For example a sufficiently general
deformation of Hilb2(M), where M is a polarized K3 surface, will have this property. Let
Y ⊂ X be a smooth ample hypersurface. Note that the vanishing theorem of Kodaira says
that

Hj(X, OX(Y )) = 0 (2.1)

for all j > 0, because KX is trivial [Ko]. Let Z be a very general ample hypersurface of X
such that both the line bundles OX(Z) and OX(Z − Y ) are ample. In view of the vanishing
theorem of Kodaira, the ampleness of OX(Z) implies that

Hj(X, OX(Z)) = 0 (2.2)

for all j > 0, while that of OX(Z − Y ) implies that

Hj(X, OX(Z − Y )) = 0 (2.3)

for all j > 0. Let
ι : S := Y ∩ Z →֒ X

be the intersection and
L := OX(Y )|S

the restriction of it. Note that L is ample.

Let I := OX(−S) ⊂ OX be the ideal sheaf for S. Tensoring the exact sequence

0 −→ I −→ OX −→ ι∗OS −→ 0
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by OX(Y ) we get an exact sequence

0 −→ I(Y ) −→ OX(Y ) −→ ι∗L −→ 0 . (2.4)

The natural inclusion of OX(−Z) in OX and OX(Y − Z) together produce an inclusion of
OX(−Z) in OX ⊕OX(Y − Z). Consequently, we have an exact sequence

0 −→ OX(−Z) −→ OX ⊕OX(Y − Z) −→ I(Y ) −→ 0 . (2.5)

In view of (2.1), the connecting homomorphism

H1(S, L)−→H2(X, I(Y )) (2.6)

in the long exact sequence of cohomologies associated to (2.4) is an isomorphism.

Since the canonical line bundle of X is trivial, Serre duality gives

H2+j(X, OX(−Z))∗ = H2−j(X, OX(Z)) .

So using (2.2) we conclude that the left-hand side vanishes for j = 0, 1. Again by Serre
duality

H2(X, OX(Y − Z))∗ = H2(X, OX(Z − Y )) = 0

(see (2.3)).

Thus in the long exact sequence of cohomologies associated to (2.5), we have

H2(X, OX(−Z)) = 0 = H2+j(X, OX(−Z)) , and H2(X, OX(Y − Z)) = 0 .

Hence this long exact sequence of cohomologies associated to (2.5) gives an isomorphism

H2(X, OX)
∼

−→ H2(X, I(Y )) ;

so combining this with the isomorphism in (2.6) it now follows that H1(S, L) is isomorphic
to H2(X, OX). We have dimH2(X, OX) = 1, so

dimH1(S, L) = 1 . (2.7)

By Grothendieck–Lefschetz hyperplane theorem for Picard group, the restriction map
Pic(X) −→ Pic(Y ) is an isomorphism [SGA2, Exposeé XII]; in fact, a weaker version given
in [Ha, Chapter IV, p. 179, Corollary 3.2] suffices for our purpose. By the generalized
Noether–Lefschetz theorem (see [Jo, p. 121, Theorem 5.1]), the restriction map Pic(Y ) −→
Pic(S) is also an isomorphism. Thus Pic(S) is isomorphic to Z. Combining this with (2.7)
it follows that the surface S has the desired properties.

3. Question 1.1 in special cases

In this section will will first use the construction in Section 2 to show that Question 1.1 in
the introduction has a negative answer in general. Then we will show that in some particular
cases the answer is affirmative.
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3.1. Example with a negative answer. We will construct a smooth projective surface X
and a vector bundle E on it that does not admit any connection while the restriction of E
to every smooth curve in X admits a connection.

Let X be a smooth complex projective surface with Pic(X) = Z that admits an ample
line bundle L with H1(X, L) 6= 0; we saw in Section 2 that such a surface exists. Let OX(1)
denote the ample generator of Pic(X). Then L = OX(r) = OX(1)

⊗r with r positive. We
choose L with smallest possible r. Since Pic(X) = Z, we have H1(X, OX) = 0 because
H1(X, OX) = 0 is the (abelian) Lie algebra of the Lie group Pic(X). On the other hand,
the Kodaira vanishing theorem says that H1(X, OX(−k)) = 0 for all k > 0. Therefore, it
follows that

H1(X, L⊗OX(−d)) = 0 , ∀ d > 0 . (3.1)

Let

0 −→ L −→ E −→ OX −→ 0 (3.2)

be the non-split extension corresponding to a non-zero element in H1(X, L).

Theorem 3.1. The vector bundle End(E) = E ⊗ E∗ in (3.2) has the property that the

restriction of it to every smooth closed curve in X admits a connection. The vector bundle

End(E) does not admit a connection.

Proof. Take any smooth closed curve C ⊂ X . So C ∈ |OX(d)| with d positive. Consider
the restriction homomorphism H1(X, L) −→ H1(C, L|C). Using the long exact sequence
of cohomologies associated to

0 −→ L⊗OX(−d) −→ L −→ L|C −→ 0

we conclude that its kernel is H1(X, L⊗OX(−d)), which is zero by (3.1). In particular, the
extension class for (3.2) has a nonzero image in H1(C, L|C). Therefore, the restriction of
the exact sequence (3.2) to C does not split.

We will show that E|C is indecomposable.

Assume that E|C = L1 ⊕ L2 with degree(L1) ≥ degree(L2). Since degree(E|C) =
degree(L|C) > 0 = degree(OC), the composition

L1 →֒ E|C −→ OC

is the zero homomorphism. Hence L1 coincides with the subbundle L|C ⊂ E|C . This
contradicts the earlier observation that the restriction of the exact sequence (3.2) to C does
not split. Hence we conclude that E|C is indecomposable.

Consider the projective bundle P(E|C) −→ C. Let EPGL(2) −→ C be the principal
PGL(2,C)–bundle corresponding to it. Since E is indecomposable, it follows that EPGL(2)

admits an algebraic connection [AB, p. 342, Theorem 4.1]. The vector bundle End(E|C) −→
C is associated to EPGL(2) for the adjoint action of PGL(2,C) on EndC(C

2) = M(2,C).
Therefore, a connection on EPGL(2) induces a connection on the vector bundle End(E|C).
Hence, we conclude that End(E|C) = End(E)|C admits an algebraic connection.

On the other hand, c2(End(E)) = −c1(L)
2 6= 0. This implies that the vector bundle E

on X does not admit a connection [At, Theorem 4]. �
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3.2. Special cases with positive answer. Let S be a smooth complex projective curve,
X a smooth complex projective variety and p : X −→ S a smooth surjective morphism
such that every fiber of p is rationally connected. Assume that there is a smooth closed

curve S̃ ⊂ X such that the restriction

p|
S̃
: S̃ −→ S

is an étale morphism.

Lemma 3.2. Let E be a vector bundle on X whose restriction to every smooth curve on X

admits a connection. Then E admits a connection.

Proof. Let Y be a smooth complex projective rationally connected variety and V a vector

bundle on Y , such that for every smooth rational curve CP1 ι
→֒ Y the restriction ι∗V

has a connection. Any connection on a curve is flat, and CP1 is simply connected, so the
above vector bundle ι∗V is trivial. This implies that the vector bundle V is trivial [BdS,
Proposition 1.2].

From the above observation it follows that E = p∗p∗E. Therefore, it suffices to show that
p∗E admits a connection. Now, by the given condition, the vector bundle (p|S̃)

∗p∗E = E|S̃
admits a connection. Fix a connection D on E|

S̃
. Averaging D over the fibers of p we get a

connection on p∗E. This completes the proof. �
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[We] A. Weil, Généralisation des fonctions abéliennes, Jour. Math. Pure Appl. 17 (1938), 47–87.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,

Mumbai 400005, India

E-mail address : indranil@math.tifr.res.in

Department of Mathematics, Indian Institute of Technology, Mumbai 400076, India

E-mail address : sgurjar@math.iitb.ac.in


	1. Introduction
	2. Construction of a surface
	3. Question ?? in special cases
	3.1. Example with a negative answer
	3.2. Special cases with positive answer

	Acknowledgements
	References

