
ar
X

iv
:1

80
5.

05
64

6v
3 

 [
he

p-
th

] 
 2

2 
A

ug
 2

01
8

Character Integral Representation

of Zeta function in AdSd+1:

I. Derivation of the general formula

Thomas BASILEa Euihun JOUNGa Shailesh LALb Wenliang LIa

aDepartment of Physics and Research Institute of Basic Science,

Kyung Hee University,

Seoul 02447, Korea
bCentro de Fisica do Porto e Departamento de Fisica e Astronomia

Faculdade de Ciencias da Universidade do Porto,

Rua do Campo Alegre 687, 4169-007 Porto, Portugal

E-mail: thomas.basile@khu.ac.kr, euihun.joung@khu.ac.kr,

slal@fc.up.pt, lii.wenliang@gmail.com

Abstract: The zeta function of an arbitrary field in (d + 1)-dimensional anti-de Sitter

(AdS) spacetime is expressed as an integral transform of the corresponding so(2, d) repre-

sentation character, thereby extending the results of [1603.05387] for AdS4 and AdS5 to

arbitrary dimensions. The integration in the variables associated with the so(d) part of the

character can be recast into a more explicit form using derivatives. The explicit derivative

expressions are presented for AdSd+1 with d = 2, 3, 4, 5, 6.

http://arxiv.org/abs/1805.05646v3
mailto:thomas.basile@khu.ac.kr
mailto:euihun.joung@khu.ac.kr
mailto:slal@fc.up.pt
mailto:lii.wenliang@gmail.com
https://arxiv.org/abs/1603.05387


Contents

1 Introduction 1

2 Zeta functions in AdS 3

2.1 One-loop free energy and zeta function 4

2.2 Spectral integral form of the zeta function 6

3 Contour integral expression of the CIRZ 10

3.1 General dimensions 10

3.2 AdS2r+1 13

3.3 AdS2r+2 14

3.4 Cross-check 16

4 Derivative expression of the CIRZ 19

4.1 General dimensions 19

4.2 Explicit expressions in low dimensions 22

4.2.1 AdS3 23

4.2.2 AdS4 23

4.2.3 AdS5 24

4.2.4 AdS6 24

4.2.5 AdS7 25

5 Summary and Conclusion 26

A Character identities 26

B Generalized L’Hôpital’s rule 28
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1 Introduction

The one-loop free energy is one of the simplest physical quantities capturing non-trivial

quantum effects. It is divergent due to the contribution from the modes having infinite

energy but can be neatly regularized by making use of the spectral zeta function, namely

in the scheme of the zeta function regularization. The zeta function for any field (massive

or massless, and of arbitrary spin) in four-dimensional Anti-de-Sitter (AdS) spacetime has

been first calculated by Camporesi and Higuchi in [1] and generalized to higher dimensions

by the same authors in [2, 3].

Zeta functions in AdS are useful in the test of certain AdS/CFT dualities: the one-loop

free energy or vacuum energy in AdS spacetime corresponds to the non-planar contribution

of the CFT free energy on the boundary. Since the typical AdS theories under consideration

contain infinitely many fields, computing their one-loop free energy is a non-trivial task.1

When the AdS theory is a higher-spin gravity, the one-loop free energy is calculable in an

analytic manner, even though the field content still contains infinitely many elements. An

interesting observation made in [9, 10] is that the summation of the zeta functions over the

field content is convergent while that of the regularized one-loop free energy is divergent.

This is interesting as it signifies that the zeta function regularization renders finite both

the high energy divergence and the spectrum sum divergence.

The viability of the one-loop free energy computation in higher-spin gravities heavily

relies on the simple structure of the spectrum: e.g. in the case of the non-minimal type-A

theory, first constructed in four dimensions [11, 12] and later extended to arbitrary dimen-

sions in [13], the spectrum consists of massless fields of all integer spins. The summation

over a field content becomes quite cumbersome if the content itself does not have a simple

expression. This kind of difficulty was encountered in the computation of the one-loop free

energy of the AdS fields dual to the operators tri- and quadri-linear in free conformal scalar

fields [14]. In the absence of the single-trace condition — that is, the cyclic projection on

the operators — the field content could be expressed in a few lines, which could be used

to calculate the one-loop free energy although it required quite burdensome works. What

is worse is that the field content with cyclic projection does not have any manageable

expression, hence it seems impossible to proceed in this way.

A key observation to bypass this problem is that the field content of an AdS theory

dual to a free CFT can be derived group theoretically. One of the most efficient and general

methods for such a derivation is the use of Lie algebra character. In fact, the spectrum of

the four-dimensional type-A higher-spin gravity was obtained using the so(2, 3) character

— namely, the Flato-Fronsdal theorem [15] (later generalized in arbitrary dimensions in [16,

17]). Since both the zeta function and the character are determined uniquely by the labels of

so(2, d) representations, we can devise a linear map which send the character of an so(2, d)

representation to the zeta function of the AdS field carrying the same representation. If

the linear map itself does not depend on the labels of the representation, we can use it for

1If instead one considers the change in free energy by taking an alternative boundary condition for one

of the AdS fields, this technical difficulty does not arise. This quantity is matched to the double-trace

deformation of the corresponding CFT [4–8].
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the character of a reducible representation without decomposing it into irreducible pieces.

Such a map was explicitly constructed for bosonic fields in AdS4 and any fields in AdS5
and was named as “character integral representation of zeta function (CIRZ)” in [14]. The

CIRZ turned out to be very efficient in evaluating the one-loop free energies. Notably,

the computation of the non-minimal type-A higher-spin gravity becomes almost trivial.

Moreover, the CIRZ allowed to tackle the one-loop free energy computation of the stringy

AdS theory dual to free matrix model CFTs in the N → ∞ limit [14, 18–20]. The CIRZ

also proved useful in other vector model dualities: the “colored” higher-spin gravity (where

the four-dimensional CIRZ was generalized to fermionic fields) [21] and the type-J higher-

spin theories (whose conjectured dual are free vector model based on a massless spin-j

field) [22]. Some key elements of the CIRZ were also used in [23].

In this paper, we aim to derive the CIRZ in dimensions different from AdS4 and AdS5.

More precisely, we seek for the formula extending the CIRZ in AdSd+1 with arbitrary integer

d ≥ 2. Although the dimensional dependence in higher-spin gravity is rather minimal, most

of the results in the literature [9, 10, 24–27] concern only specific dimensions for technical

reasons, except in [23] where the results of the type-A higher-spin gravity are extended

to arbitrary (non-integer) dimensions. From the viewpoint of physical applications, one

might not need to care about higher dimensions yet, but it is at the same time tempting to

obtain results with parametric dependence on d. As usual, generalities may provide new

and valuable lessons on what is considered to be well-understood. It is actually the case

here for the CIRZ: in the course of its derivation for general dimensions, we find many new

insights on the zeta function, so(2, d) character and the relations between them.

The general CIRZ formula we obtain is an integral transformation of so(2, d) character

and has a quite simple structure: it is in a sense even simpler than the original CIRZ

expressions obtained in AdS4 and AdS5 in [14]. In order to deliver a flavor of our results,

let us write down the expressions of the general CIRZ derived in Section 3. Firstly, for odd

AdS dimensions d + 1 = 2r + 1 (or equivalently, even boundary dimensions d = 2r), we

obtain

ζH(z) = lnR

∫ ∞

0

dβ

Γ(z)2

r
∑

k=0

∮

µ(α)
(

(β
2

)2
+
(αk

2

)2
)z−1

×

×
[

∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj

]

χ
so(2,2r)
H (β; ~αk) . (1.1)

where

µ(α) :=
r
∏

n=0

dαn

2π iαn
and ~αk := (α0, . . . , αk−1, αk+1, . . . , αr) . (1.2)

Secondly, for even AdS dimensions d+1 = 2r+2 (or equivalently, odd boundary dimensions

– 2 –



d = 2r + 1), we obtain

ζ1,H(z) =

∫ ∞

0

dβ β2z−1

Γ(2z)

r
∑

k=0

∮

µ(α)
sinh β

2 (cosh
β
2 )

1+ǫ
2 (cos αk

2 )
1−ǫ
2

2 (cosh β − cosαk)
×

×
[

∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj

]

χ
so(2,2r+1)
H (β; ~αk) , (1.3)

where ǫ = +1/ − 1 for bosonic/fermionic spectrum. The subscript 1 in the zeta function

means that it is the primary contribution to the actual zeta function. The remaining

contributions will be introduced later in this paper but they are irrelevant in all the cases

that we are interested in. Both of the formulae (1.1) and (1.3) involve complex contour

integrals in αn with n = 0, 1, . . . , r. The contour of each αn is a circle enclosing the origin

counter-clockwise with |α0| < · · · < |αr|. We would like to stress that the expressions

(1.1) and (1.3) allow for a large room for various complex integral tricks: in the companion

paper [28], we will compute the zeta function of partially-massless higher-spin gravities in

arbitrary dimensions using complex integrals.

The contour integrals in αi appearing in the above formulae (1.1) and (1.3) may be

evaluated by the residue theorem, and hence reduce to a linear combination of derivatives

in αi. The expression in terms of the αi contour integral is compact and useful in many

applications but it might be not explicit enough in other cases. For instance, if one wants

to implement the formula in a computer program, the other expression in terms of the

αi derivatives would be more convenient. We derive the latter expression by adapting

the standard tools used to derive the dimension formula from the Weyl character formula.

Applying the expressions to d = 2, 3, 4, 5, 6, we provide the explicit form of the CIRZ in

the dimensions which are the most relevant for physical applications.

The organization of the paper is as follows. In Section 2, we start by reviewing the

one-loop free energy and zeta function in AdSd+1, then rewrite the latter as an integral of

the dimension formula of an so(d + 2) representation. In Section 3, we derive the CIRZ

formula in arbitrary dimensions, i.e. we show that the zeta function of any field in AdSd+1

can be written as an integral transform of its so(2, d) character. In Section 4, we spell

out an alternative form of the CIRZ where the previously mentioned contour integrals are

replaced by a linear combination of derivatives of the character. Section 5 contains a brief

summary and concluding remarks of the paper. Finally, some definitions and technical

details are presented in Appendix A and B.

2 Zeta functions in AdS

In this section, we shall review the basics of the one-loop free energy and zeta function,

and the integral expression of the zeta function in AdSd+1 obtained in [3]. After re-

expressing the numerator of the integrand in terms of the dimension formula of an so(d+2)

representation, we shall discuss how the first derivative of the zeta function can be expressed

in a “spectral integral” form.
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2.1 One-loop free energy and zeta function

The one-loop free energy of a quantum field is given by the logarithm of the one-loop path

integral:

Γ(1)

[m2;V ]
=

ǫ

2
log det

V
(�+m2) , (2.1)

where V is the space of the off-shell fields which are traceless and transverse, and the sign

ǫ is +1 for a boson and −1 for a fermion. The operator � + m2 is what appears in the

quadratic Lagrangian, so one can regard the field practically as a free one. When the field

has a gauge symmetry, we have to subtract the corresponding ghost contribution. The

one-loop free energy (2.1) can be related to the zeta function

ζ[m2;V ](z) = Tr
V

[

1

(� +m2)z

]

, (2.2)

where the trace is convergent for a sufficiently large value of Re(z). Once we obtain

ζ[m2;V ](z), the log det formula can be related to the zeta function by analytically continuing

the value of z to zero as

log det
V
(�+m2) = Tr

V
log(� +m2) → − ǫ

2
ζ ′[m2;V ](0), (2.3)

where we have used the zeta function regularization and the last expression is the finite

part of the free energy. The UV divergence of the free energy corresponds to ζ[m2;V ](0).

The zeta function can be also related to the integrated propagator in the coincidence point

limit:

G[m2;V ] = Tr
V

[

1

�+m2

]

→ lim
z→1

ζ[m2;V ](z) . (2.4)

As we have just seen, both the free energy Γ(1)

[m2;V ]
and the propagator G[m2;V ] can be

obtained from the zeta function (2.2), hence this allows us to focus on the zeta function

for a given field space V with the mass squared m2.

In AdSd+1, free fields can be classified by the irreducible representations (irreps) they

carry for the isometry algebra so(2, d). The massive and massless [29–31] irreps2 are the

lowest-weight modules labeled by [∆;Y], where ∆ is the lowest eigenvalue of the energy

operator generating so(2), and Y := (s1, . . . , sr) is the highest weight of the rotational

symmetry so(d) classifying the traceless and transverse tensors and can be interpreted as

the spin of the field. The zeta function for the module [∆;Y] has been calculated in [2, 3]

(see also e.g. [25, 26] for a review) and its expression is

ζ[∆;Y](z) =
Vol(AdSd+1)

Vol(Sd)

dim
so(d)
Y

2d−1 Γ(d+1
2 )2

∫ ∞

0
du

µY(u)
[

u2 + (∆ − d
2 )

2
]z . (2.5)

The volume of the d-sphere and the (regularized) volume of the (d + 1)-dimensional AdS

spacetime are given respectively by

Vol(Sd) =
2π

d+1
2

Γ(d+1
2 )

, Vol(AdSd+1) =







2 (−1)r πd/2

Γ(d
2
+1)

lnR [d = 2r]

πd/2 Γ(−d
2) [d = 2r + 1]

, (2.6)

2Notice that there exists an “exotic” class of field in AdSd+1, namely continuous spin fields [32–34]. It

was shown that the partition function of such fields is equal to one.
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where R is the radius of the AdSd+1. The function µY(u) appearing in the numerator of

the integrand is given by

µY(u) =

r
∏

k=1

(u2 + ℓ2k)×
{

1 [d = 2r]

u tanhǫ(π u) [d = 2r + 1]
, (2.7)

where ℓk = sk +
d
2 − k, and the sign ǫ is positive for bosonic fields (sk ∈ N) and negative

for fermionic ones (sk ∈ 1
2N). The combination dim

so(d)
Y

µY(u) in (2.5) is related to the

dimension formula (which is also referred to as Weyl dimension formula) of an so(d + 2)

irrep:

• For even d = 2r, the dimension of the so(d+ 2) irrep (s0,Y) = (s0, s1, . . . , sr) is

dim
so(d+2)
(s0,Y)

=
∏

06i<j6r

(si − sj + j − i)(si + sj + d− i− j)

(j − i)(d − i− j)
. (2.8)

This can be expressed in terms of the dimension of the so(d) irrep Y as

dim
so(d+2)
(s0,Y)

=
2 dim

so(d)
Y

d!

r
∏

k=1

(s0 − sk + k)(s0 + sk + d− k) . (2.9)

For s0 = iu− d
2 , the relation reduces to

dim
so(d+2)

(iu− d
2
,Y)

=
2 (−1)r

d!
dim

so(d)
Y

µY(u) . (2.10)

• For odd d = 2r + 1, the dimension of the so(d+ 2) irrep (s0,Y) is

dim
so(d+2)
(s0,Y)

=

r
∏

k=0

2sk + d− 2k

d− 2k

∏

06i<j6r

(si − sj + j − i)(si + sj + d− i− j)

(j − i)(d− i− j)
,(2.11)

and can also be related to the dimension of the so(d) irrep Y through

dim
so(d+2)
(s0,Y)

=
dim

so(d)
Y

d!
(2s0 + d)

r
∏

k=1

(s0 − sk + k)(s0 + sk + d− k) . (2.12)

For s0 = iu− d
2 , the relation becomes

i

2
tanhǫ(πu) dim

so(d+2)

(iu− d
2
;Y)

=
(−1)r+1

d!
dim

so(d)
Y

µY(u) . (2.13)

Making use of the above information, the zeta function can be written as

ζ[∆;Y](z) =

∫ ∞

0

du ρǫ(u)
[

u2 + (∆− d
2 )

2
]z dim

so(d+2)

(iu− d
2
;Y)

, (2.14)

with the function ρǫ(u),

ρǫ(u) =











lnR

π
[even d]

i

2
tanhǫ(π u) [odd d]

. (2.15)
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The fact that the zeta function can be written in terms of the so(d + 2) irrep dimension

dim
so(d+2)

(iu− d
2
;Y)

helps us to make a link between the zeta function and the so(2, d) character.

Before establishing such a connection, let us first explore a few interesting properties of

the zeta functions.

2.2 Spectral integral form of the zeta function

The zeta function ζ[m2;V ](z), defined generally as (2.2), enjoys a simple identity,

∂

∂m2
ζ[m2;V ](z) =

1

2m

∂

∂m
ζ[m2;V ](z) = −z ζ[m2;V ](z + 1) , (2.16)

which is nothing but the spectral version of the Hurwitz zeta function identity,

∂

∂a
ζ(z, a) = −z ζ(z + 1, a) , (2.17)

with

ζ(z, a) =

∞
∑

n=0

1

(n+ a)z
. (2.18)

The identity (2.16) simply implies

∂

∂m2
ζ[m2;V ](0) = − lim

z→0
z ζ[m2;V ](z + 1) , (2.19)

and
∂

∂m2
ζ ′[m2;V ](0) = −F.p. lim

z→0
ζ[m2;V ](z + 1) , (2.20)

where F.p. refers to the finite part in the limit z → 0, i.e. the constant term in the Laurent

expansion in z. These two formulae provide the derivatives with respect to m2 of the UV

divergent and finite part of the free energy. The second equation (2.20) can be viewed as

the regularized version of the formal expression,

∂

∂m2
Tr
V
log(�+m2) = Tr

V

[

1

�+m2

]

. (2.21)

Now considering the AdS background, the identity (2.16) becomes

1

2(∆ − d
2)

∂

∂∆
ζ[∆;Y](z) = −z ζ[∆;Y](z + 1) , (2.22)

and we also have relations analogous to (2.20). These identities prove useful since it is

easier to study the zeta function ζ[∆;Y](z) near z = 1 than z = 0.

In the following, we shall make use of the identity (2.22) to show how a “spectral

integral” form of the ζ ′[∆;Y](0) can be obtained. In the context of AdS2r+1/CFT2r cor-

respondence, this spectral integral formula was used to show the direct relation between

ζ ′[∆;Y](0) and conformal anomaly coefficients. It first appeared in the case of totally symmet-

ric representations in [35] and subsequently mixed symmetry representations in AdS7 [36],

then generalized to arbitrary representations in [26]. Below, we provide a short derivation

of the spectral integral formula in AdSd+1 for both even d = 2r and odd d = 2r + 1.
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Even d

For even values of d, the zeta function has the form,

ζ[∆;Y](z) =

∫ ∞

0

duhY(u)
[

u2 + ∆̄2
]z , (2.23)

where ∆̄ = ∆ − d
2 . Since hY(u) =

lnR
π dim

so(d+2)

(iu− d
2
;Y)

is an even polynomial of order 2r, the

integral (2.23) is the same as one half of the integral from u = −∞ to u = ∞ with the

same integrand. The integral is convergent in the region z > r + 1
2 , so we can close the

contour by adding the infinite upper half-circle, then shrink it down to enclose the branch

cut singularity (i.e. the line defined by Arg(u− i|∆̄|) = π),

ζ[∆;Y](z) =
1

2

∮

i |∆̄|

duhY(u)
[

u2 + ∆̄2
]z . (2.24)

This contour integral is convergent for any value of z, hence we can directly replace z by

the value we want. If we put z = 0, the integrand becomes analytic and we get

ζ[∆;Y](0) = 0 . (2.25)

If we put z = 1, the integrand has a simple pole at u = +i |∆̄| and gives

ζ[∆;Y](1) =
1

2
2πi

hY(i |∆̄|)
2i |∆̄| = π

hY(i ∆̄)

2 |∆̄| . (2.26)

Using (2.22), this implies

∂

∂∆
ζ ′[∆;Y](0) = −2 ∆̄ ζ[∆;Y](1) = −π sgn(∆̄)hY(i ∆̄) . (2.27)

From the fact that ζ ′
[ d
2
;Y]

(0) = 0 we can derive the expression

ζ ′[∆;Y](0) = −π

∫ |∆̄|

0
dxhY(i x) = − lnR

∫ |∆̄|

0
dx dim

so(d+2)

(−x− d
2
;Y)

, (2.28)

where the absolute value |∆̄| appears as a result of sgn(∆̄). The result is even in ∆̄ like the

original form (2.23) hence insensitive to its sign. In physical term, the sign of ∆̄ determines

whether the underlying field takes Dirichlet or Neumann boundary condition. Since the two

boundary conditions should give different results, we need to modify the above definition

of the zeta function.

By noticing that the expression (2.28) is not analytic on the imaginary axis of ∆̄, we

can consider another expression where we analytically continue the value of ∆̄ from positive

Re(∆̄) to negative one. This simply amounts to replacing |∆̄| by ∆̄ in (2.28). At the level

of the contour integral representation (2.24), this “new” definition of the zeta function

corresponds to the modification,

ζ[∆;Y](z) =
1

2

∮

i ∆̄

duhY(u)
[

u2 + ∆̄2
]z , (2.29)

where the contour encircles counter-clockwise the branch cut starting at i ∆̄ rather than

i |∆̄| . The zeta function (2.29) is what has been used in the literature.
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Odd d

For odd values of d, the zeta function has the form,

ζ[∆;Y](z) =

∫ ∞

0

du tanhǫ(πu)hY(u)
[

u2 + ∆̄2
]z , (2.30)

where hY(u) =
i
2 dim

so(d+2)

(i u− d
2
;Y)

is now an odd function. Similarly to the even d case, we can

rewrite the above expression as a contour integral by adding to the real line the infinite

radius upper-half circle. The function hY(u) is analytic again but tanhǫ(π u) has infinitely

many simple poles on the imaginary axis. We can separate those contributions as

ζ[∆;Y](z) =
1

2

(

∮

i ∆̄
+

∞
∑

n=1

∮

i(n− 1+ǫ
4 )

)

du tanhǫ(πu)hY(u)
[

u2 + ∆̄2
]z . (2.31)

Here, we take the prescription that the zeta function is analytic in ∆̄. Due to the presence

of infinitely many simple poles of tanhǫ(πu), it is not easy to simplify further the above

expression as opposed to the even d case. However, if we take the difference between

ζ[∆;Y](z) and ζ[d−∆;Y](z), we can cancel the cumbersome contribution and end up with

ζ[∆;Y](z) − ζ[d−∆;Y](z) =

∮

i ∆̄

du tanhǫ(πu)hY(u)
[

u2 + ∆̄2
]z . (2.32)

Note that we do not have a perfect cancellation due to the prescription of analytic contin-

uation in ∆. If ∆ is not an integer/half-integer for boson/fermion, taking z = 0 and z = 1

limit, we find

ζ[∆;Y](0) − ζ[d−∆;Y](0) = 0 , (2.33)

and

ζ[∆;Y](1)− ζ[d−∆;Y](1) = π
tanhǫ(π i ∆̄)hY(i ∆̄)

∆̄
. (2.34)

The first equation (2.33) means that the UV divergence does not depend on the sign of ∆̄,

or in physical terms, the choice of the boundary conditions. Applying the second equation

(2.34) to the zeta function identity (2.22), we reach the result,

ζ ′[∆;Y](0) − ζ ′[d−∆;Y](0) = −2π

∫ ∆̄

0
dx tanhǫ(π i x)hY(i x)

= ǫ π

∫ ∆̄

0
dx tanǫ(π x) dim

so(d+2)

(−x− d
2
;Y)

. (2.35)

Hence, the free energy difference between ∆ and d − ∆ is given by a “spectral integral”

where the integrand involves the dimension of an so(d+ 2) irrep.

If ∆ is an integer/half-integer (or equivalently ∆̄ is an half-integer/integer) for bo-

son/fermion, the difference of the zeta zero (2.33) does not vanish anymore but gives

ζ[∆;Y](0)− ζ[d−∆;Y](0) = 2 i hY(i ∆̄) = − dim
so(d+2)
(−∆;Y) . (2.36)
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Moreover, the equations (2.34) should be also modified because the integral (2.32) with

z = 1 now involves a double pole, and consequently (2.35) should be modified as well.

After all, the necessary modification in (2.34) and (2.35) for (half-)integer ∆ amounts to

removing the singularity arising in the limit where ∆ approaches to an integer or half-

integer. The exceptionality of the (half-)integer ∆ was first observed in [35], where the

focus was on the massless case with ∆ = s+ d− 2.

Let us delve a little further in the consequences of (2.36). Let wI and hI denote

the number of columns and rows contained in the I-th block 3 of Y, and define pI =

h1 + h2 + · · · + hI with p0 = 0. Then, wI = spI−1+1 = . . . = spI and Y can be denoted by

Y = (wh1
1 , wh2

2 , . . .). Now, if we assume that ∆ is an (half-)integer satisfying

wI+1 − pI ≤ ∆− d ≤ wI − pI − 1 , (2.37)

then we can use the identity

dim
so(d+2)

(−∆,w
h1
1 ,w

h2
2 ,...)

= (−1)pI+1 dim
so(d+2)

((w1−1)h1 ,...,(wI−1)hI ,∆−d+pI ,w
hI+1
I+1 ,...)

. (2.38)

Note that the coefficient dim
so(d+2)
(−∆;Y) appearing in (2.36) does not vanish for a generic (half-)

integer except for the points ∆ = sk + d− k with k = 1, . . . , r. In particular, the massive

fields with ∆ ≥ s1 + d give the result dim
so(d+2)
(∆−d;Y). This AdS result could be reproduced

in the CFT side from the zero modes of the effective kinetic operator of the Hubbard-

Stratonovich field. In [35], the eigenvalues of such an operator in 3d has been calculated

for s = 0, 1, 2 and conjectured for arbitrary integer spins as (the equation (3.24) of [35])

kn,0 = cs(∆)
Γ(n− 1 + ∆)

Γ(n+ 2−∆)
, kn,i =

Γ(2−∆)

Γ(∆− 1)

Γ(−1 + i+∆)

Γ(2 + i−∆)
kn,0 , (2.39)

where n and i range from s + 1 to infinity and −s to s, respectively. The eigenvalue kn,i
vanishes if n ≤ ∆ − 2 and the degeneracy for a fixed n and i is n2 − i2 . Hence the total

number of zero modes is

∆−2
∑

n=s+1

s
∑

i=−s

(n2 − i2) =
(2s + 1) (2∆ − 3) (∆ − s− 2) (∆ + s− 1)

3!
= dim

so(5)
(∆−3,s)

. (2.40)

Indeed, one can see that the number of the zero modes coincides with the AdS result (2.36).

Considering now the (mixed-)symmetric (partially-)massless fields with ∆PM = wI +

d− pI − t with 1 6 t 6 wI − wI+1, i.e. ∆PM satisfies (2.37), we obtain

ζ[∆PM;Y](0) − ζ[d−∆PM;Y](0) = (−1)pI dim
so(d+2)
YKT

, (2.41)

where YKT is the so(d+ 2) irrep carried by the associated Killing tensors:

YKT = ((w1 − 1)h1 , . . . , (wI − 1)hI , wI − t, w
hI+1

I+1 , . . .) . (2.42)

3In other words, the I-th block of Y is a succession of rows with the same length, and a diagram can be

described as an aggregate of blocks ordered by decreasing length when examined from top to bottom (i.e.

the first block is the one at the top of the diagram). In the notation introduced above, the I-th block is of

length wI and height hI , meaning it is composed of hI rows which are all of length wI .
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Considering the gauge parameter of the same field having ∆GP = wI + d − pI and YGP =

(wh1
1 , . . . , w

hI−1

I−1 , wI
hI−1, wI − t, w

hI+1

I+1 , . . .), we find again the dimension of the Killing ten-

sors:

ζ[∆GP;YGP](0) − ζ[d−∆GP;YGP](0) = (−1)pI+1 dim
so(d+2)
YKT

, (2.43)

but with opposite sign. Since the full zeta function is the difference between the physical

mode and the gauge mode contributions, the net result becomes two times of (2.41). Like

in the massive integral ∆ case, the above AdS result for (partially-)massless field could be

reproduced from the zero modes of the effective CFT kinetic operators. On top of these,

the contributions of the ghost zero modes, giving rise again to the dimension of Killing

tensors, should be appended to both sides of AdS and CFT, and it was shown in [35] that

they match each other as a consequence of ‘AdS Killing tensor = Conformal Killing tensor’.

3 Contour integral expression of the CIRZ

Now we turn to the main objective of the current paper — the derivation of the character

integral representation of the zeta function in any dimensional AdS spacetime. Our goal is

to express the zeta function (4.10) in terms of the so(2, d) character so that the dependence

on ∆ and Y in ζ[∆;Y] enters only through the corresponding character χ
so(2,d)
(∆,Y) (see e.g. [37–

40] for more details on so(2, d) characters). It turns out that it is sufficient to consider

the character solely over (possibly reducible) generalized Verma modules of the conformal

algebra. These representations, when irreducible, correspond to massive fields in AdS

for which the one-loop partition function takes the form (2.1). The formalism we develop

extends trivially to massless fields [18, 41], which are described by irreducible representation

defined as quotients of generalized Verma modules.

3.1 General dimensions

The character of the so(2, d) generalized Verma module V(∆;Y) takes the form,

χ
so(2,d)
(∆;Y) (β; ~α) = e−β∆ χ

so(d)
Y

(~α)Pd(iβ; ~α) , (3.1)

where Pd is defined as

Pd(α0; ~α) =
e−i d

2
α0

2d−r

r
∏

k=1

1

cosα0 − cosαk
×











1 [even d]

i

sin α0
2

[odd d]
, (3.2)

with r = [d/2] and ~α = (α1, . . . , αr). We first note that the dimension of the so(d + 2)

irrep is given by the corresponding character evaluated at α = 0:

dim
so(d+2)

(iu− d
2
;Y)

=

[

χ
so(d+2)

(iu− d
2
;Y)

(α)

]

α=0

, (3.3)

where α = (α0, . . . , αr) and r = [d/2]. Then, the so(d + 2) character can be related to

that of so(d) using the following identity (see Appendix A for additional details on the
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identity):

χ
so(d+2)
(s0,Y)

(α) =
r
∑

k=0

(

e−iαk s0 χ
so(d)
Y
−

(~αk) + (−1)d eiαk (s0+d) χ
so(d)
Y+

(~αk)
)

Pd(αk; ~αk) , (3.4)

where ~αk = (α0, . . . , αk−1, αk+1, . . . , αr) and Y± = (s1, . . . , sr−1, (±)d+1sr) . Another key

trick is based on the identity,

1
[

u2 + ∆̄2
]z =

√
π

Γ(z)

∫ ∞

0
dβ

(

β

2u

)z− 1
2

Jz− 1
2
(β u) e−β ∆̄ , (3.5)

holding for Re(∆̄) > 0 and Re(z) > 0. Note here that for the convergence of the β integral,

we ought to use e−β |∆̄| in the β integral, but in such a case the zeta function will be

insensitive to the sign of ∆̄ and becomes incapable of distinguishing different boundary

conditions. Hence, like the discussion below (2.28), we first derive the formula assuming

Re(∆̄) > 0 then analytically continue ∆̄ to the negative Re(∆̄) region. Combining all these

elements, we get

ζ[∆;Y](z) =

√
π

Γ(z)

∫ ∞

0
du

∫ ∞

0
dβ ρǫ(u)

(

β

2u

)z− 1
2

Jz− 1
2
(β u) (3.6)

×
[ r
∑

k=0

e
d
2
(β+iαk)

Pd(αk; ~αk)

Pd(iβ; ~αk)

(

euαk χ
so(2,d)
(∆;Y+)(β; ~αk) + (−1)d e−uαk χ

so(2,d)
(∆;Y

−
)(β; ~αk)

)

]

α=0

,

where we used the factor e−β(∆− d
2
) to reconstruct the so(2, d) characters of the irreps

[∆;Y±] according to (3.1). We can simplify the above formula using the identity of the

so(d) characters,

χ
so(d)
Y
−

(α1, . . . , αk−1,−αk, αk+1, . . . , αr−1, αr) = χ
so(d)
Y+

(α1, . . . , αk−1, αk, αk+1, . . . , αr) ,

(3.7)

for k = 1, . . . , r. We obtain

ζ[∆;Y](z) =

√
π

Γ(z)

∫ ∞

0
du

∫ ∞

0
dβ

(

β

2u

)z− 1
2

Jz− 1
2
(β u)

×
[ r
∑

k=0

ν̃ǫ(u, β, αk)

(

sinh β
2

sin αk
2

)d−2r
∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk)

]

α=0

, (3.8)

where the function ν̃ǫ(u, β, α) is defined to be

ν̃ǫ(u, β, α) =







2 lnR

π
cosh(αu) [even d]

− tanhǫ(π u) sinh(αu) [odd d]
. (3.9)

Note here that each summand in the second line of (3.8) diverges in the limit α → 0.

Only the sum of the r + 1 terms is regular in the limit α → 0. For this reason, we cannot

exchange the order of the summation and the evaluation α = 0.
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To further simplify the formula, it is convenient to replace the evaluation of the char-

acter at α = 0 by the contour integrals,

dim
so(d+2)
(s0,Y)

=

r
∏

k=0

∮

Ck

dαk

2π iαk
χ
so(d+2)
(s0,Y)

(α) , (3.10)

where Ck are contours encircling the origin counter-clockwise such that the contour Ck lies

inside of Ck+1: e.g. the circular contours with |αk| < |αk+1| (see Figure 3.2).

C0
C1

C2

Figure 1. Example of “ordered” contours with r = 2.

The advantage of the contour integral representation is that now we can perform the

contour integration before the summation — but keeping the order of contours fixed. In

this way we get

ζ[∆;Y](z) =

√
π

Γ(z)

∫ ∞

0
dβ

∫ ∞

0
du

(

β

2u

)z− 1
2

Jz− 1
2
(β u)

×
r
∑

k=0

∮

C
µ(α) ν̃ǫ(u, β, αk)

(

sinh β
2

sin αk
2

)d−2r
∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) , (3.11)

where we have interchanged the order of u and β integrations and µ(α) denotes the measure

for (r + 1)-variable complex integral,

∮

C
µ(α) =

r
∏

k=0

∮

|αk|<|αk+1|

dαk

2π iαk
. (3.12)

Finally, exchanging the order of the u and α integrations, we obtain

ζ[∆;Y](z) =

√
π

Γ(z)

∫ ∞

0
dβ

r
∑

k=0

∮

C
µ(α) νǫ(z, β, αk)×

×
(

sinh β
2

sin αk
2

)d−2r
∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) , (3.13)

– 12 –



where the function νǫ(z, β, α) is defined to be

νǫ(z, β, α) =

∫ ∞

0
du ν̃ǫ(u, β, α)

(

β

2u

)z− 1
2

Jz− 1
2
(β u)

=

∫ ∞

0
du

(

β

2u

)z− 1
2

Jz− 1
2
(β u) ×







2 lnR

π
cosh(αu) [even d]

− tanhǫ(π u) sinh(αu) [odd d]
. (3.14)

Evaluation of the above function requires separate considerations for even and odd d.

3.2 AdS2r+1

In even d = 2r, the function νǫ(z, β, α) can be evaluated as

νǫ(z, β, α) =
2 lnR

π

∫ ∞

0
du cosh(αu)

(

β

2u

)z− 1
2

Jz− 1
2
(β u) =

lnR√
π

(

(β
2

)2
+
(

α
2

)2
)z−1

Γ(z)
.

(3.15)

This integral was evaluated in the region Re(α) = Im(β) = 0, β > 0 and Re(z) > 0, then

analytically continued to other region. Since an additional factor of 1/Γ(z) is generated,

we can express the result as

Γ(z) ζ[∆;Y](z) = lnR

∫ ∞

0

dβ

Γ(z)

(

β

2

)2(z−1)

f[∆;Y](z, β), (3.16)

where the function f[∆;Y](z, β) is defined as

f[∆;Y](z, β) =
r
∑

k=0

∮

C
µ(α)

(

1 +
(αk

β

)2
)z−1 ∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) . (3.17)

Note that the contour of αk does not contain ±i β. The function β2(z−1) has a branch cut

on the negative real axis of β with the phase factor e4πzi. Using this information, we can

rewrite (3.16) as

Γ(z) ζ[∆;Y](z) = lnR

∮

dβ

Γ(z) 2 i sin(2πz)

(

−β

2

)2(z−1)

f[∆;Y](z, β) , (3.18)

where the contour integral is defined by the Hankel contour (see Figure 2).

Therefore, the first derivative of the zeta function reduces to

ζ ′[∆;Y](0) =
lnR

2

∮

dβ

2π i

(

β

2

)−2

f[∆;Y](0, β) , (3.19)

whereas ζ[∆;Y](0) = 0. Notice that, because the integrand of the above integral is devoid of

branch cut, the Hankel contour can be deformed to a closed contour encircling the origin of

the complex plane. In the end, we arrived at the relation between the zeta function ζ[∆;Y](z)

and the character χ
so(2,d)
(∆;Y) (β; ~α) for an arbitrary lowest weight representation [∆;Y] . Since

the relation (3.19) is a linear map independent of the representation, we can apply the same

formula to a generic reducible representation of the so(2, d) algebra, e.g. the representation

corresponding to the field content of any theory.
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Re(β)

Im(β)

Figure 2. Hankel contour.

3.3 AdS2r+2

In odd d = 2r + 1, the function νǫ(z, β, α) becomes

νǫ(z, β, α) = −
(β
2

)2z−1

Γ(z + 1
2 )

λǫ(z, β, α), (3.20)

with

λǫ(z, β, α) =

∫ ∞

0
du tanhǫ(π u) sinh(αu) 0F1

(

z + 1
2 ,−

u2 β2

4

)

. (3.21)

Here, we have used the identity,

(

β

2u

)z− 1
2

Jz− 1
2
(uβ) =

(β
2

)2z−1

Γ(z + 1
2)

0F1

(

z + 1
2 ,−

u2 β2

4

)

. (3.22)

In terms of the function λǫ(z, β, α), the zeta function is given by

ζ[∆;Y](z) = −
∫ ∞

0
dβ

β2z−1

Γ(2z)

r
∑

k=0

∮

C
µ(α)λǫ(z, β, αk)

sinh β
2

sin αk
2

×

×
∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) . (3.23)

If we expand λǫ(z, β, α) in z as

λǫ(z, β, α) = λǫ(0, β, α) + z λ′
ǫ(0, β, α) +O(z2) , (3.24)

where λ′
ǫ(z, β, α) = ∂

∂zλǫ(z, β, α) , the higher order terms O(z2) contribute neither to

ζ[∆;Y](0) nor to ζ ′[∆;Y](0) — the parts of the zeta function that are relevant to physics.

The second term z λ′
ǫ(0, β, α) does not contribute to ζ[∆;Y](0), but it does to ζ ′[∆;Y](0).

However, as we shall explain below, its contribution vanishes if the character is even in

β. Moreover, even when they contribute, their contribution is a rational number. For this

reason, their role is rather marginal compared to the term λǫ(0, β, α) . The zeta function

obtained only with λǫ(0, β, α) neglecting the O(z) term will be referred to as the primary
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contribution ζ1,[∆;Y](z),
4 while the contribution related to z λ′

ǫ(0, β, α) as the secondary one

ζ2,[∆;Y](z). To summarize, the physically relevant parts of the zeta function are given by

ζ[∆;Y](0) = ζ1,[∆;Y](0) , ζ ′[∆;Y](0) = ζ ′1,[∆;Y](0) + ζ ′2,[∆;Y](0) , (3.25)

where ζ1,[∆;Y](z) and ζ2,[∆;Y](z) are calculated hereafter.

Primary contribution

Let us consider first the primary contribution to the zeta function. It is given through

λǫ(0, β, α) in the form of an integral,

λǫ(0, β, α) =

∫ ∞

0
du tanhǫ(π u) sinh(αu) cos(β u) , (3.26)

where we have used the fact that 0F1(
1
2 ,−x2

4 ) = cos x. The above integral is not convergent

but can be considered as a distribution (see e.g. Chapter 6 of [42]). By multiplying the

integrand with e−σ u, we can evaluate the integral in the region Re(σ) > |Re(α)|+ |Im(β)|.
By taking the limit σ → 0+, we obtain a finite result (hence the original integral is Abel

summable [42]),

λǫ(0, β, α) = −sin α
2 (cosh β

2 )
1+ǫ
2 (cos α

2 )
1−ǫ
2

cosh β − cosα
. (3.27)

We can analytically continue the above to other region of α, β. Plugging this into (3.23),

we obtain the primary contribution of the zeta function as

ζ1,[∆;Y](z) =

∫ ∞

0

dβ β2z−1

Γ(2z)
f1,[∆;Y](β), (3.28)

where the function f1,[∆;Y](β) is given by

f1,[∆;Y](β) =

r
∑

k=0

∮

C
µ(α)

sinh β
2 (cosh

β
2 )

1+ǫ
2 (cos αk

2 )
1−ǫ
2

(cosh β − cosαk)

∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) .

(3.29)

We finally reached a formula where the relation itself does not involve any dependency on

∆ and Y.

Secondary contribution

The second term z λ′
ǫ(0, β, α) in (3.24) is linear in z, hence contributes to the derivative of

zeta function as a residue:

ζ ′2,[∆;Y](0) =

∮

dβ

2πi β
f2,[∆;Y](β) , (3.30)

4The primary contribution ζ1,[∆;Y](z) was referred to as the modified zeta function ζ̃[∆;Y](z) in [14].
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with

f2,[∆;Y](β) = −
r
∑

k=0

∮

C
µ(α)λ′

ǫ(0, β, αk)×

× sinh β
2

sin αk
2

∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y)

(β; ~αk) . (3.31)

Remark that, since the second line of (3.31) is regular in β, only terms with negative powers

in the Laurent series of λ′
ǫ(0, β, α) can contribute to the residue in (3.30). To isolate these

negative power terms, let us split tanhǫ(πu) in the integrand of λǫ(z, β, α) given in (3.21)

into two terms as

tanhǫ(πu) = 1− 2

1 + ǫ e2πu
. (3.32)

Focusing on the second term of (3.32), the u integral (3.21) gives a regular function of β,

so all the negative power terms come from the first term “1”. Now moving to the first term

of (3.32), the corresponding integral can be evaluated for Re(z) > 0 as

∫ ∞

0
du sinh(αu) 0F1

(

z + 1
2 ,−

u2 β2

4

)

= (2z − 1)
α

β2 2F1

(

1, 32 − z; 32 ;−α2

β2

)

, (3.33)

from which we obtain

λ′
ǫ(0, β, α) =

2β arctan
(

α
β

)

β2 + α2
+O(1) . (3.34)

Here, O(1) means a regular function of β and it is related to the second term of (3.32).

Again, both of the u integrals arising from the first and second terms in (3.32) are evaluated

in the region where Re(α) = Im(β) = 0, then analytically continued to other values. In

the end, we obtain a compact expression of the secondary contribution:

ζ ′2,[∆;Y](0) = −
∮

dβ

2πi

r
∑

k=0

∮

C
µ(α)

2 arctan
(αk

β

)

β2 + α2
k

sinh β
2

sin αk
2

∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
(∆;Y) (β; ~αk) ,

(3.35)

where the β contour now encloses anti-clockwise the branch cut from −i αk to i αk . Remark

that if the character is even in β, then the whole integrand is even in β and the residue

vanishes trivially. Therefore, in such a case, the secondary contribution of the zeta function

vanishes. Furthermore, the secondary contribution is independent of ǫ, i.e. whether the

spectrum is bosonic or fermionic.

3.4 Cross-check

In the above, we have derived the CIRZ in any dimensions. The derivation required many

technical steps, hence it would be good if we can cross-check the formula in the end. In

principle, if the zeta function of a field with an arbitrary mass and spin is reproduced from

CIRZ by inserting the character of the corresponding field, it will be a sufficient test for our
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formula. In this section, we show how the spectral integral expressions for ζ ′[∆,Y](0) given

in (2.28) and (2.35) for odd and even dimensional AdS can be reproduced starting from

the CIRZ formula obtained in the previous section. This, besides being a check, displays

interesting analogies between the spectral and Hurwitz zeta functions.

AdS2r+1

Let us consider first the CIRZ formula (3.19) in odd dimensional AdS. By inserting the

so(2, d) character, we obtain

ζ ′[∆;Y](0) =
lnR

2r−1

∮

dβ

2π i

r
∑

k=0

∮

C
µ(α)

e−∆̄ β χ
so(d)
Y

(~αk)

(β2 + α2
k)

∏

06j6r
j 6=k

1

(cosαk − cosαj)

= − lnR

2r−1

r
∑

k=0

∮

C
µ(α)

sin(αk ∆̄)

αk
χ
so(d)
Y

(~αk)
∏

06j6r
j 6=k

1

(cosαk − cosαj)
, (3.36)

where ∆̄ = ∆− d
2 and we have performed the β integration. From the sine function in the

integrand, it is manifest that

ζ ′
[ d
2
;Y]

(0) = 0 . (3.37)

By taking a derivative with respect to ∆, the formula becomes

∂

∂∆
ζ ′[∆;Y](0) = − lnR

2r−1

r
∑

k=0

∮

C
µ(α) cos(∆̄αk)χ

so(d)
Y

(~αk)
∏

06j6r
j 6=k

1

(cosαk − cosαj)
, (3.38)

Using (3.2),(3.4) and (3.10), one can show that

∂

∂∆
ζ ′[∆;Y](0) = − lnR dim

so(d+2)
(−∆;Y) . (3.39)

Therefore, the odd dimensional CIRZ formula (3.19) correctly reproduces the known result

(2.27).

AdS2r+2

In even dimensional AdS, we show how the difference of the zeta function can be obtained

from the CIRZ (3.28). In fact, the derivation shows an interesting analogy with one well-

known property of Hurwitz zeta function:

i−z ζ(z, a) + iz ζ(z, 1− a) =
(2π)z

Γ(z)
Li1−z(e

−2πi a) . (3.40)

It can be derived from the integral representation,

ζ(z, a) =

∫ ∞

0

dβ βz−1

Γ(z)

e−a β

1− e−β
= −Γ(1− z)

∮

dβ

2πi

(−β)z−1 e−(a− 1
2
)β

2 sinh β
2

, (3.41)

where the integral is along the Hankel contour. For Re(z) < 0 and a ∈ (0, 1), we can add

to the contour an infinite clockwise circle. Then, the contour can be deformed to encircle
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the infinitely many simple poles arising from 1/ sinh β
2 : they are at β = 2π i n for all integer

n 6= 0. Hence, we obtain

ζ(z, a) = Γ(1− z)

∞
∑

n=1

[

(−1)n (2π i n)z−1 e(a−
1
2
) 2π i n + (−1)n (−2π i n)z−1 e−(a− 1

2
) 2π in

]

= Γ(1− z) (2π)z−1
[

iz−1 Li1−z(e
2π i a) + i1−z Li1−z(e

−2π i a)
]

, (3.42)

from which we can easily derive (3.40). In particular, it allows to cancel the divergence of

the zeta function at z = 1 and evaluate the finite part:

lim
z→1

[

i−z ζ(z, a) + iz ζ(z, 1− a)
]

= 2π Li0(e
−2π i a) = −π i

e−π i a

sin(π a)
. (3.43)

Now let us move to the difference of the spectral zeta function. Since the difference of the

character χ
so(2,d)
(∆;Y) (β, ~α)−χ

so(2,d)
(d−∆;Y)(β, ~α) is even in β, the corresponding secondary contribu-

tion simply vanishes: ζ ′2,[∆;Y](0)− ζ ′2,[d−∆;Y](0) = 0. Focussing on the primary contribution

(3.28), we first find that the integrand function f1,[∆;Y] reduces to

f1,[∆;Y](β) =

r
∑

k=0

∮

C
µ(α)

χ
so(d)
Y

(~αk)

2r+1 Π06j6r
j 6=k

(cosαk − cosαj)

(cosh β
2 )

1+ǫ
2 (cos αk

2 )
1−ǫ
2 e−∆̄ β

cosh β − cosαk
,

(3.44)

by inserting the expression of χ
so(2,d)
(∆;Y) . By changing the order of the β and α integrals:

ζ1,[∆,Y](z) =

r
∑

k=0

∮

C
µ(α)

χ
so(d)
Y

(~αk) ξ(2z, ∆̄, αk)

2r+1 Π06j6r
j 6=k

(cosαk − cosαj)
, (3.45)

with

ξ(z, ∆̄, α) =

∫ ∞

0

dβ βz−1

Γ(z)

(cosh β
2 )

1+ǫ
2 (cos α

2 )
1−ǫ
2 e−∆̄β

cosh β − cosα
, (3.46)

we can focus first on the function ξ(z, ∆̄) which plays an analogous role as the Hurwitz

zeta function in the relation (3.40). In particular, ∂
∂∆ξ(z, ∆̄, α) = −z ξ(z + 1, ∆̄, α). We

recast the integral (3.46) as the integral over the Hankel contour,

ξ(z, ∆̄, α) = −Γ(1− z)

∮

dβ (−β)z−1

2πi

(cosh β
2 )

1+ǫ
2 (cos α

2 )
1−ǫ
2 e−∆̄ β

2 sinh β+i α
2 sinh β−i α

2

. (3.47)

Like in the case of Hurwitz zeta function, we add to the contour an infinite clockwise circle

and shrink it to enclose the infinite many simple poles arising, at this time, from sinh β±i α
2 :

they are at β = (2π n∓ α) i . By collecting the residues, we get

ξ(z, ∆̄, α) =
Γ(1− z) e∆̄α i

2 i sin α
2

∞
∑

n=−∞

[−(2π n− α) i]z−1 (−ǫ)n e−2π n ∆̄ i + (α ↔ −α) , (3.48)
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which is divergent in the z → 1 limit. The divergence can be canceled by taking the

difference,

lim
z→1

[

ξ(z, ∆̄, α) − ξ(z,−∆̄, α)
]

=
π

2

e∆̄α i

sin α
2

tanhǫ(π i ∆̄) + (α ↔ −α)

= π i
sin(∆̄α)

sin α
2

tanhǫ(π i ∆̄) . (3.49)

Using the above result in (3.45) together with (3.2), (3.4) and (3.10), we can reproduce

(2.35).

4 Derivative expression of the CIRZ

In this section, we present a different expression of CIRZ in terms of derivatives in αi. As

explained in Section 2, the combination dim
so(d)
Y

µY(u) in the zeta function (2.5) is related

to the Weyl dimension formula which can be obtained as a limit of the so(d+2) characters.

In Section 3, this limit was taken as a contour integral. The expression with contour

integrals in αi variables is useful — see the companion paper [28] — but sometimes not

explicit enough. For instance, if one wants to implement the CIRZ formula in a computer

program, it will be more convenient to have an expression, where all the αi contour integrals

are already evaluated using the residue theorem, involving αi derivatives of the so(d + 2)

characters. In fact, for an expression in terms of αi derivatives, it is simpler to re-derive

the CIRZ by taking the limit of so(d + 2) characters using a generalized L’Hôpital’s rule.

Below, we demonstrate how to obtain such an expression. The CIRZ for AdS4 and AdS5
originally presented in [14] are recovered as special cases.

4.1 General dimensions

In order to recover the Weyl character formula (3.3), we need to evaluate the so(d + 2)

characters in the limit α → 0. It is actually subtle to perform the evaluation since the

so(d+ 2) characters take the form,

χ
so(d+2)
(s0,Y)

(α) =
N
(d+2)
(s0,Y)

(α)

D(d+2)(α)
, (4.1)

and both the numerator and denominator vanish as α → 0 :

lim
α→0

N
(d+2)
(s0,Y)

(α) = lim
α→0

D
(d+2)(α) = 0 . (4.2)

The explicit expressions for the numerator N
(d+2)
(s0,Y)

and the denominator D(d+2) are given in

(A.3) and (A.2). Despite the apparent singularity, the limit of the so(d+2) character does

exist, and can be obtained by using a generalisation of L’Hôpital’s rule (see Appendix B

for more details):

dim
so(d+2)
(s0,Y)

= lim
α→0

χ
so(d+2)
(s0,Y)

(α) =
DΦd+2 N

(d+2)
(s0,Y)

(α)
∣

∣

α=0

DΦd+2 D(d+2)(α)
∣

∣

α=0

, (4.3)
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where the differential operator DΦd+2 is given, in the notation ∂i = ∂αi , by

DΦd+2 =
∏

06i<j6r

(∂2
i − ∂2

j ) ×















1 [d = 2r]
r
∏

k=0

∂k [d = 2r + 1]
. (4.4)

Firstly, the denominator of (4.3) depends only on d :

DΦd+2 D
(d+2)(α)

∣

∣

∣

α=0

= cd (4.5)

and can be explicitly evaluated as explained in Appendix B.1. The result reads

cd = (−1)
r(r+1)

2 2r(r+1)!
∏

06i<j6r

(d− i− j)(j − i)×















1 [d = 2r]

2 ir+1
r
∏

k=0

(d/2 − k) [d = 2r + 1]
.

(4.6)

Secondly, the numerator of (4.3) can be recast, as explained in Appendix B.2, into

DΦd+2 N
(d+2)
(s0,Y)

(α)
∣

∣

α=0
= 2(r + 1) (−1)d ud−2r

r
∑

n=0

u2nD(n)N
(d)
Y

(~α)
∣

∣

∣

α=0

, (4.7)

where the differential operator D(n) is defined as

D(n) := ∂̄(n)DΦd , (4.8)

with

∂̄(n) = (−1)r−n
∑

1≤i1<i2<···<ir−n≤r

∂2
i1 . . . ∂

2
ir−n

. (4.9)

Using (4.5) and (4.7), we can write the zeta function as

ζ[∆;Y](z) =
2(r + 1)

cd
(−1)d

r
∑

n=0

∫ ∞

0

du ρǫ(u)
[

u2 + (∆ − d
2)

2
]z u

2n+d−2r
D(n) N

(d)
Y

(~α)
∣

∣

∣

~α=~0
, (4.10)

where ρǫ(u) is given in (2.15). At this point, introducing the β-integral (3.5) will give rise

to a factor e−β∆. By reconstructing the so(d+2) character from e−β∆ and N
(d)
Y

and using

the identity (A.8), we obtain

ζ[∆;Y](z) =
2(r + 1)

Γ(z) cd

∫ ∞

0
dβ

r
∑

n=0

ϕǫ,n(z, β)D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, ~α)

]
∣

∣

∣

~α=~0
, (4.11)

with

ϕǫ,n(z, β) =
√
π

∫ ∞

0
du

(

β

2u

)z− 1
2

Jz− 1
2
(β u) ×











lnR

π
u2n [d = 2r]

i

2
tanhǫ(π u)u2n+1 [d = 2r + 1]

.

(4.12)
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Remark that the function ϕǫ,n(z, β) is related to νǫ(z, β, α) defined in (3.14) as

ϕǫ,n(z, β) =

√
π

2
×
{

∂2n
α νǫ(z, β, α)

∣

∣

α=0
[d = 2r]

−i ∂2n+1
α νǫ(z, β, α)

∣

∣

α=0
[d = 2r + 1]

. (4.13)

Hence, the expression (4.11) can be considered as the result of the αi contour integrals of

(3.13).

Odd dimensional AdS

For d = 2r, the function νǫ(z, β, α) has been computed exactly as (3.15). The corresponding

ϕǫ,n(β; z) is

ϕǫ,n(z, β) =
lnR

2
√
π

Γ(n+ 1
2)

Γ(z − n)

(β

2

)2(z−n−1)
, (4.14)

hence, the zeta function can be expressed as

ζ[∆;Y](z) =
lnR

Γ(z)

d+ 2

2 cd

∫ ∞

0
dβ

r
∑

n=0

(2n)!

4nn!

(β
2

)2(z−n−1)

Γ(z − n)
×

×D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, ~α)

]∣

∣

∣

~α=~0
. (4.15)

The β integral is convergent for Re(z) > d, but one can analytically continue z to other

values. Since the only singularity of the integrand is at β = 0, we can deform the β integral

to a complex integral with the contour encircling the origin counter-clockwise:

∫ ∞

0
dβ

(β
2

)2(z−1−n)

Γ(z − n)
f(β) = (−1)n 22n+1 n!

∮

dβ

2π i

f(β)

β2(n+1)
+O(z) . (4.16)

In the end, the first derivative of the zeta function in AdS2r+1 reads

ζ ′[∆,Y](0)

ln R
=

d+ 2

cd

∮

dβ

2π i

r
∑

n=0

(−1)n (2n)!

β2(n+1)
D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, ~α)

]∣

∣

∣

~α=~0
, (4.17)

which contains the αi-derivatives instead of the contour integrals in (3.17).

Even dimensional AdS

For d = 2r + 1, the functions ϕǫ,n(z, β) is given by

ϕǫ,n(z, β) =
i
√
π
(β
2

)2z−1

2Γ(z + 1
2)

µǫ,n(z, β) , (4.18)

with

µǫ,n(z, β) = ∂2n+1
α λǫ(z, β, α)

∣

∣

α=0
. (4.19)

Following Section 3.3, we focus on the first two Taylor coefficients of λǫ(z, β, α) in z, which

have been computed in (3.27) and (3.34). They immediately give µǫ,n(0, β) and µ′
ǫ,n(0, β) =
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∂
∂z µǫ,n(z, β) |z=0 corresponding to the primary and secondary contributions to the zeta

function. The primary contribution reads

ζ[∆,Y],1(z) =
i (d+ 1)

2 cd

∫ ∞

0
dβ

β2z−1

Γ(2z)

r
∑

n=0

µǫ,n(0, β)D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, ~α)

]
∣

∣

∣

~α=~0
.

(4.20)

and the secondary contribution is

ζ ′[∆,Y],2(0) =
i (d+ 1)

2 cd

∮

dβ

2π i β

r
∑

n=0

µ′
ǫ,n(0, β)D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, ~α)

]∣

∣

∣

~α=~0
.

(4.21)

4.2 Explicit expressions in low dimensions

In this section we spell out the explicit formulae for the zeta function in AdS3, AdS5 and

AdS7, and its primary and secondary contributions in AdS4 and AdS6. In order to display

the various formulae in a compact way, let us introduce

f
d,(n)
(∆,Y)(β) := D(n)

[

D
(d+2)(iβ, ~α)χ

so(2,d)
(∆,Y) (β, α)

]
∣

∣

∣

α=0
×















(d+ 2) (2n)!

22n+1 n! cd
[d = 2r]

i (d + 1)

2 cd
[d = 2r + 1]

.

(4.22)

Then, the zeta function in AdS2r+1 reads

ζ[∆;Y](z) =
lnR

Γ(z)

∫ ∞

0
dβ

r
∑

n=0

(β
2

)2(z−n−1)

Γ(z − n)
f
2r,(n)
(∆,Y) (β) , (4.23)

whose first derivative is given by

ζ ′[∆,Y](0) = ln R

∮

dβ

2π i

r
∑

n=0

(−1)n
22n+1 n!

β2(n+1)
f
2r,(n)
(∆,Y)(β) . (4.24)

On the other hand, the primary contribution to the zeta function in AdS2r+2 reads

ζ[∆;Y],1(z) =

∫ ∞

0
dβ

β2z−1

Γ(2z)

r
∑

n=0

µǫ,n(0, β) f
2r+1,(n)
(∆,Y) (β) , (4.25)

whereas the secondary contribution is given by

ζ ′[∆;Y],2(0) =

∮

dβ

2π i β

r
∑

n=0

µ′
ǫ,n(0, β) f

2r+1,(n)
(∆,Y) (β) . (4.26)

To derive the explicit expressions below, we will use (4.6), (4.8) and (A.2).
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4.2.1 AdS3

In order to write down explicitly the functions f
2,(0)
H (β) and f

2,(1)
H (β) relevant to the com-

putation of the zeta function in AdS3, we need to know the expression of the differential

operator

D(0) = ∂̄(0) DΦ2 , D(1) = ∂̄(1) DΦ2 . (4.27)

Since DΦ2 is the identity 5, we have

D(0) = −∂2
α , D(1) = 1 . (4.28)

Together with

c2 = −4 , D
(4)(iβ, α) = 2 (cosh β − cosα) , (4.29)

we find

f
2,(0)
H (β) =

(

1 + 2 sinh2 β
2 ∂

2
α

)

χ
so(2,2)
H (β, α)

∣

∣

α=0
, (4.30)

and

f
2,(1)
H (β) = − sinh2 β

2 χ
so(2,2)
H (β, 0) . (4.31)

Inserting these ingredients into (4.23), we obtain

ζH(z) =
lnR

Γ(z)2

∫ ∞

0
dβ
(β

2

)2(z−1) [

1 + 4(1−z)
β2 sinh2 β

2 + 2 sinh2 β
2 ∂

2
α

]

χ
so(2,2)
H (β, α)

∣

∣

α=0
,

(4.32)

and

ζ ′H(0) = ln R

∮

dβ

2π i

2

β2

(

1 + 4
β2 sinh2 β

2 + 2 sinh2 β
2 ∂

2
α

)

χ
so(2,2)
H (β, α)

∣

∣

α=0
. (4.33)

4.2.2 AdS4

The relevant differential operators read

DΦ3 = ∂α , ∂̄(0) = −∂2
α , ∂̄(1) = 1 , (4.34)

Using

c3 = 12 , D
(5)(iβ, α) = −8 i sinh β

2 sin α
2

(

cosh β − cosα
)

. (4.35)

we obtain

f
3,(0)
H (β) = 1

3 sinh β
2

(

sinh2 β
2 − 6− 12 sinh2 β

2 ∂
2
α

)

χ
so(2,3)
H (β, α)

∣

∣

α=0
, (4.36)

and

f
3,(1)
H (β) =

4

3
sinh3 β

2 χ
so(2,3)
H (β, 0) . (4.37)

The functions µǫ,0 and µǫ,1 read

µǫ,0(0, β) = −(cosh β
2 )

1+ǫ
2

4 sinh2 β
2

, µǫ,1(0, β) =
(cosh β

2 )
1+ǫ
2
(

(5− 3 ǫ) sinh2 β
2 + 12

)

32 sinh4 β
2

. (4.38)

5Indeed, so(2) being unidimensional, it does not have a root space decomposition like the higher dimen-

sional orthogonal algebras.
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According to (4.25), the primary contribution is

ζH,1(z) =

∫ ∞

0
dβ

β2z−1

Γ(2z)

(cosh β
2 )

1+ǫ
2

sinh β
2

(

1 + 1−ǫ
8 sinh2 β

2 + sinh2 β
2∂

2
α

)

χ
so(2,3)
H (β, α)

∣

∣

α=0
,

(4.39)

By setting ǫ = +1 or −1, we obtain the formulae derived in [14] and [21] for bosonic and

fermionic spectrum, respectively. To compute the secondary contribution, we need the first

derivative of µǫ,n(z, β):

µ′
ǫ,0(0, β) =

2

β2
+O(1) , µ′

ǫ,1(0, β) = −16

β4
+O(1) . (4.40)

Inserting the above ingredients into (4.26), we arrive at

ζ ′H,2(0) =

∮

dβ

2π i

2 sinh3 β
2

β3

(

− 32

3β2
− 2

sinh2 β
2

+
1

3
− 4 ∂2

α

)

χ
so(2,3)
H (β, α)

∣

∣

∣

α=0
. (4.41)

Notice that, as we already pointed out, since the function of β multiplying the character in

the integrand is even, this secondary contribution vanishes if χ
so(2,3)
H (β, α) is also an even

function of β.

4.2.3 AdS5

The differential operators D(n) are composed of

DΦ4 = ∂2
1 − ∂2

2 , ∂̄(0) = ∂2
1 ∂

2
2 , ∂̄(1) = −

(

∂2
1 + ∂2

2

)

, ∂̄(2) = 1 . (4.42)

After some computations, one obtains

f
4,(0)
H (β) =

[

1− sinh2 β
2 (

1
3 sinh

2 β
2 − 1) (∂2

1 + ∂2
2) (4.43)

−1
3 sinh4 β

2

(

∂4
1 + ∂4

2 − 12 ∂2
1 ∂

2
2

)

]

χ
so(2,4)
H (β, ~α)

∣

∣

~α=~0
,

f
4,(1)
H (β) = sinh2 β

2

[

1
3 sinh

2 β
2 − 1− sinh2 β

2 (∂
2
1 + ∂2

2)
]

χ
so(2,4)
H (β, ~α)

∣

∣

~α=~0
, (4.44)

and

f
4,(2)
H (β) = 1

2 sinh4 β
2 χ

so(2,4)
H (β,~0) . (4.45)

Plugging these expressions into (4.23), we reproduce the CIRZ formula for AdS5 derived

in [14].

4.2.4 AdS6

To define the differential operators D(n), we need the following building blocks:

DΦ5 =
(

∂2
1 − ∂2

2

)

∂1∂2 , ∂̄(0) = ∂2
1 ∂

2
2 , ∂̄(1) = −

(

∂2
1 + ∂2

2

)

, ∂̄(2) = 1 . (4.46)

Then we find

f
5,(0)
H (β) = sinh β

2

[

− 2 + 1
3 sinh

2 β
2 − 3

20 sinh
4 β

2 + 1
2 sinh

2 β
2 (cosh β − 5) (∂2

1 + ∂2
2)

+2
3 sinh

4 β
2 (∂

4
1 + ∂4

2 − 12 ∂2
1 ∂

2
2)
]

χ
so(2,5)
H (β, ~α)

∣

∣

~α=~0
, (4.47)
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f
5,(1)
H (β) = 1

3 sinh
3 β

2

(

5− cosh β + 4 sinh2 β
2 (∂

2
1 + ∂2

2)
)

χ
so(2,5)
H (β, ~α)

∣

∣

~α=~0
, (4.48)

f
5,(2)
H (β) = − 4

15 sinh5 β
2 χ

so(2,5)
H (β,~0) . (4.49)

The functions µǫ,0(0, β) and µǫ,1(0, β) were already computed in (4.38), whereas

µǫ,2(0, β) =
(cosh β

2 )
1+ǫ
2

256 sinh6 β
2

[

480 + 120(3 − ǫ) sinh2 β
2 + (19− 30 ǫ+ 15 ǫ2) sinh4 β

2

]

. (4.50)

The primary contribution is

ζH,1(z) =

∫ ∞

0
dβ

β2z−1

Γ(2z)

(cosh β
2 )

1+ǫ
2

64 sinh β
2

[

96 + (1− ǫ)
(

16− (3 + ǫ) sinh2 β
2

)

sinh2 β
2

+8
3

(

24− (1 + 3 ǫ) sinh2 β
2

)

sinh2 β
2 (∂

2
1 + ∂2

2)

−32
3 sinh4 β

2 (∂
4
1 + ∂4

2 − 12 ∂2
1 ∂

2
2)
]

χ
so(2,5)
H (β, ~α)

∣

∣

~α=~0
. (4.51)

Using (4.40) and

µ′
ǫ,2(0, β) =

368

β6
+O(1) , (4.52)

we obtain the secondary contribution as

ζ ′H,2(0) =

∮

dβ

2π i

sinh
β
2

β3

(

− 4 + 2
3 sinh

2 β
2 − 3

10 sinh
4 β

2 + sinh2 β
2 (cosh β − 5)(∂2

α1
+ ∂2

α2
)

+4
3 sinh

4 β
2 (∂

4
α1

+ ∂4
α2

− 12 ∂2
α1
∂2
α2
)

+
16 sinh2

β
2

3β2

(

cosh β − 5− 4 sinh2 β
2 (∂

2
α1

+ ∂2
α2
)
)

−1472 sinh4
β
2

15 β4

)

χ
so(2,5)
H (β, ~α)

∣

∣

~α=~0
. (4.53)

4.2.5 AdS7

Finally, the relevant differential operators for AdS7 zeta functions is obtained by combining

the differential operator associated to the (positive) root system of so(6),

DΦ6 =
(

∂2
1 − ∂2

2

) (

∂2
1 − ∂2

3

) (

∂2
2 − ∂2

3

)

, (4.54)

with

∂̄(0) = −∂2
1 ∂

2
2 ∂

2
3 , ∂̄(1) = ∂2

α1
∂2
2 + ∂2

1∂
2
3 + ∂2

2∂
2
3 , ∂̄(2) = −

(

∂2
1 + ∂2

2 + ∂2
3

)

, ∂̄(3) = 1 .

(4.55)

Using the above expressions, one can compute the building blocks f
6,(k)
H as

f
6,(0)
H (β) =

[

1 + 1
135 sinh2 β

2 (111 − 23 cosh β + 2cosh 2β) (∂2
1 + ∂2

3 + ∂2
3)

+ 2
27 sinh4 β

2 (cosh β − 4) (∂4
1 + ∂4

2 + ∂4
3 − 6 ∂2

1 ∂
2
2 − 6 ∂2

1 ∂
2
3 − 6 ∂2

2 ∂
2
3)

+ 4
135 sinh6 β

2 (∂
6
1 + ∂6

2 + ∂6
3 − 15 ∂2

1 ∂
4
2 − 15 ∂2

1 ∂
4
3 − 15 ∂2

2 ∂
4
1 − 15 ∂2

2 ∂
4
3

−15 ∂2
3 ∂

4
1 − 15 ∂2

3 ∂
4
2 + 270 ∂2

1 ∂
2
2 ∂

2
3)
]

χ
so(2,6)
H (β, ~α)

∣

∣

~α=~0
, (4.56)

– 25 –



f
6,(1)
H (β) = − 1

90 sinh2 β
2

[

111 − 23 cosh β + 2cosh 2β − 20 sinh2 β
2 (cosh β − 4) (∂2

1 + ∂2
2 + ∂2

3)

−20 sinh4 β
2 (∂

4
1 + ∂4

2 + ∂4
3 − 6 ∂2

1 ∂
2
2 − 6 ∂2

1 ∂
2
3 − 6 ∂2

2 ∂
2
3)
]

χ
so(2,6)
H (β, ~α)

∣

∣

~α=~0
, (4.57)

f
6,(2)
H (β) = −1

6 sinh4 β
2

[

cosh β − 4 − 2 sinh2 β
2 (∂

2
1 + ∂2

2 + ∂2
3)
]

χ
so(2,6)
H (β, ~α)

∣

∣

~α=~0
, (4.58)

f
6,(3)
H (β) = −1

6 sinh6 β
2 χ

so(2,6)
H (β,~0) . (4.59)

The zeta function can be readily derived using (4.23).

5 Summary and Conclusion

In this work, we derived the character integral representation of zeta function (CIRZ)

in arbitrary dimensions. We started with a brief review of the AdS zeta functions in

Section 2, which include its definition and some interesting identities. In Section 3, we

expressed the CIRZ formula in terms of contour integrals in arbitrary dimensions. In

Section 4, we derived a different CIRZ formula in terms of derivatives, generalizing the

previous derivative expressions for AdS4 and AdS5 [14] to AdS3, AdS6 and AdS7. This

procedure also clearly generalizes to arbitrary dimensions.

As outlined in the Introduction, the CIRZ is particularly useful to deal with theories

with an infinite spectrum. When the spectrum can be captured by some CFT data, as is the

case for partially massless higher-spin theories [43], one can compute the free energy of the

theory without necessarily knowing the detailed decomposition of the spectrum. This will

be done in the companion paper [28], where we will establish the matching of the one-loop

corrections of partially massless higher-spin gravities with the 1/N corrections of the dual

CFTs in any dimensions. The CIRZ method could also prove efficient in computing one-

loop effects of a Kaluza-Klein tower. Indeed, the corresponding spectrum is obtained from

the branching rule of the higher-dimensional field, and hence should be fully encompassed

by the character of the latter.
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A Character identities

In this Appendix we shall derive the identity (3.4) used in the main text. The character

formula for the so(d+2) irrep labelled by the highest weight (s0,Y), with Y = (s1, . . . , sr),

reads

χ
so(d+2)
(s0,Y)

(α) =
N
(d+2)
(s0,Y)

(α)

D(d+2)(α)
, (A.1)
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with the denominator

D
(d+2)(α) =

∏

06i<j6r

2 (cosαi − cosαj)×















1 [d = 2r]
r
∏

k=0

2 i sin
αk

2
[d = 2r + 1]

, (A.2)

and the numerator

N
(d+2)
(s0,Y)

(α) =







1

2

(

det
[

2i sin(αi ℓj)
]

+ det
[

2 cos(αi ℓj)
]

)

[d = 2r]

det
[

2i sin(αi ℓj)
]

[d = 2r + 1]
. (A.3)

Here, ℓj := sj +
d
2 − j and det[aij ] denotes the determinant of a matrix whose matrix

element is aij . The indices i, j range from 0 to r. The determinants appearing in (A.3)

may be expanded as an alternating sum of minors:

N
(d+2)
(s0,Y)

(α) =
r
∑

k=0

(−1)k ×



















(

i sin(αk ℓ0) detk
[

2i sin(αi ℓj)
]

+ cos(αk ℓ0) detk
[

2 cos(αi ℓj)
]

) [d = 2r]

2 i sin(αk ℓ0) detk
[

2i sin(αi ℓj)
]

[d = 2r + 1]

.

(A.4)

The above expression can be recast into recursive formulae in d as

N
(d+2)
(s0,Y)

(α) =

r
∑

k=0

(−1)k ×







(

eiαk ℓ0 N
(d)
Y+

(~αk) + e−iαk ℓ0 N
(d)
Y
−

(~αk)
)

[d = 2r]

2i sin(αk ℓ0)N
(d)
Y

(~αk) [d = 2r + 1]
. (A.5)

For d = 2r + 1, (A.5) is straightforward to prove. For d = 2r, the formula (A.4) can be

first expanded as

N
(d+2)
(s0,Y)

(α) =
1

2

r
∑

k=0

(−1)k
(

eiαk ℓ0
(

detk[2i sin(αi ℓj)] + detk[2 cos(αi ℓj)]
)

+ e−iαk ℓ0
(

detk[2 cos(αi ℓj)]− detk[2i sin(αi ℓj)]
)

)

, (A.6)

then the relative minus sign in the second line can be absorbed into the determinant by

changing the last column from sin(αi ℓr) to sin(−αi ℓr).

Similarly, one can decompose the denominator of an so(d+ 2) character as a multiple

of the denominator of an so(d) character expressed in terms of ~αk:

D
(d+2)(α) = (−1)k D(d)(~αk)

∏

06i6r
i 6=k

2 (cosαk − cosαi)×
{

1 [d = 2r]

2i sin αk
2 [d = 2r + 1]

, (A.7)

where the overall factor (−1)k comes from re-ordering part of the product containing the

αk variables in D
(d+2)(α). Note that (A.7) can be expressed as

D
(d+2)(α) = (−1)k D(d)(~αk)

(−1)d e−iαk d/2

Pd(αk; ~αk)
. (A.8)
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by using the definition of the function Pd defined in (3.2). Combining (A.5) and (A.8), we

can finally express the so(d+ 2) characters in terms of so(d) characters as

χ
so(d+2)
(s0,Y)

(α) =
r
∑

k=0

Pd(αk; ~αk)







(

e−iαk s0 χ
so(d)
Y
−

(~αk) + eiαk(s0+d) χ
so(d)
Y+

(~αk)
)

[d = 2r]

(

e−iαk s0 − eiαk(s0+d)
)

χ
so(d)
Y

(~αk) [d = 2r + 1]
.

(A.9)

B Generalized L’Hôpital’s rule

In this Appendix, we will discuss some technical details of the generalized L’Hôpital’s

rule (4.3) (see e.g. [44] for a pedagogical introduction) which are crucial in obtaining the

derivative expression of CIRZ in Section 4. The differential operator DΦd+2 is defined as

DΦd+2 =
∏

θ∈Φd+2

∂θ . (B.1)

In the orthonormal basis, the set of positive roots of so(d+ 2) reads

Φd+2 =

{

{ei ± ej , 0 6 i < j 6 r} [d = 2r]

{ei ± ej , 0 6 i < j 6 r} ∪ {ek , 0 6 k 6 r} [d = 2r + 1]
, (B.2)

where {ek}k=0, ..., r is a basis of unit orthonormal vector of Rr+1. As a consequence, when

acting on an so(d+ 2) character, we have

∂θ =
1
2(∂αi ± ∂αj ) for θ = ei ± ej , and ∂θ = ∂αk

for θ = ek . (B.3)

From now on, we will use the notation ∂i = ∂αi . Since the differential operator (B.1) acts

on both the numerator and denominator, we can rescale this operator to eliminate the

factor 1
2 from ∂θ with θ = ei ± ej . The differential operator DΦd+2 then takes the form

(4.4).

B.1 Computing the denominator

According to (A.2), the denominator of the so(d+ 2) character depends on the dimension

d+2, but not the highest weight (s0,Y) of the representation. As a result, the denominator

of the generalized L’Hôpital’s rule is simply a d-dependent constant, which is denoted cd
in (4.5). We will review a part of the derivation of the Weyl dimension formula, which can

be found in e.g. [44] and enables us to obtain an explicit formula for cd. First, recall that

the denominator of an so(d+ 2) character can be expressed as the product,

D
(d+2) =

∏

θ∈Φd+2

(eθ/2 − e−θ/2) . (B.4)

One can then show that the action of the differential operator (B.1) on D
(d+2) reads

DΦd+2

∏

θ∈Φd+2

(eθ/2 − e−θ/2) = |Wd+2|
∏

θ∈Φd+2

〈θ, ρ〉 , (B.5)
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where ρ is the so(d+ 2) Weyl vector:

ρ := 1
2

∑

θ∈Φd+2

θ, (B.6)

and |Wd+2| is the cardinal of the Weyl group of so(d+ 2)

|Wd+2| =
{

2r (r + 1)! [d = 2r]

2r+1 (r + 1)! [d = 2r + 1]
, (B.7)

and 〈 , 〉 denotes the inner product on the root space. Since in this paper we have used eiθ,

instead of eθ, for the variables of the so(d+ 2) character, the constant cd is given by

cd = i|Φ
d+2||Wd+2|

∏

θ∈Φd+2

〈θ, ρ〉, (B.8)

with |Φd+2| being the number of positive roots of so(d+ 2),

|Φd+2| =
{

r(r + 1) [d = 2r]

(r + 1)2 [d = 2r + 1]
. (B.9)

Since the Weyl vector of so(d+ 2) in the orthonormal basis is

ρ =
r
∑

k=0

(d2 − k) ek, (B.10)

we finally obtain cd as given in (4.6).

B.2 Simplifying the numerator

Using (A.5), we can express N(d+2) in terms of N(d), then the numerator of the generalized

L’Hôpital’s rule becomes

DΦd+2 N
(d+2)
(s0,Y)

(α)
∣

∣

α=0
= 2

r
∑

k=0

(−1)k+d
DΦd+2

[

σd(αku)N
(d)
Y

(~αk)
]
∣

∣

∣

α=0

(B.11)

with

σd(αk u) =

{

cosh(αk u) [d = 2r]

sinh(αk u) [d = 2r + 1]
. (B.12)

Here, we took advantage of the facts that

N
(d)
Y
−

(α1, . . . , αk−1,−αk, αk+1, . . . , αr) = N
(d)
Y+

(α1, . . . , αk−1, αk, αk+1, . . . , αr) , (B.13)

and that for d = 2r the differential operator DΦd+2 is invariant under the αk → −αk

transformation for any k = 0, . . . , r. The differential operator DΦd+2 can then be rewritten

as:

DΦd+2 = (−1)k DΦd|k

∏

06i6r
i 6=k

(∂2
k − ∂2

i ) ×
{

1 [d = 2r]

∂k [d = 2r + 1]
, (B.14)
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where DΦd|k is expressed in terms of the unit vectors {e0, . . . , ek−1, ek+1, . . . , er} of R
r.

Expanding the last product, we can then isolate the derivative with respect to αk:

∏

06i6r
i 6=k

(∂2
k − ∂2

i ) =

r
∑

n=0

∂2n
k ∂̄(n|k) , (B.15)

with

∂̄(n|k) = (−1)r−n
∑

0≤i1<i2<···<ir−n≤r
ij 6=k

∂2
i1 . . . ∂

2
ir−n

. (B.16)

In particular, we have

∂̄(r|k) = 1 , ∂̄(r−1|k) = −
∑

06i6r
i 6=k

∂2
i , and ∂̄(0|k) = (−1)r

∏

06i6r
i 6=k

∂2
i . (B.17)

With this decomposition at hand, we can write

DΦd+2

[

σd(αku)N
(d)
Y

(~αk)
]∣

∣

∣

α=0

= (−1)k ud−2r
r
∑

n=0

u2n ∂̄(n|k) DΦd|k N
(d)
Y

(~αk)
∣

∣

∣

α=0

,

where we have used the fact that the dependency on the angle αk is confined to the function

σd(αku). On top of that, this enable us to extract the u dependent part according to ∂k.

Notice finally that the remaining summands involve all variables {αi}i=0,...,r except for αk.

As a consequence, the terms

∂̄(n|k)DΦd|kN
(d)
Y

(~αk)
∣

∣

∣

α=0

(B.18)

all produce the same contribution for different k = 0, . . . , r. We can therefore drop the

subscript k in the above expressions. In the end, we obtain (4.7) with (4.8), where the

factor ud−2r is from the additional ∂k in (B.14) for d = 2r + 1.
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