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Thick brane in mimetic f(T ) gravity
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We apply the mimetic f(T ) theory into the thick brane model. We take the Lagrange multiplier
formulation of the action and get the corresponding field equations of motion. We find solutions
for different kinds of f(T ). Besides, we investigate the stability of the mimetic f(T ) brane by
considering the tensor perturbations of the vielbein. Localization problem is also studied and it is
shown that the four-dimensional gravity can be recovered for all the solutions. The effects of the
torsion show that for the polynomial form of f(T ), the zero mode has a split compared with that
of f(T ) = T , but the situations for the exponential form of f(T ) are similar to that of f(T ) = T .

PACS numbers:

I. INTRODUCTION

The dark matter problem has been one of the most
important issues in recent cosmology [1, 2]. However,
the nature of dark matter is still a mystery, because it
has never been observed directly. Theoretical physicists
have been working hard to reveal the mask of dark mat-
ter. Modifying Einstein’s general relativity (GR) is an
important approach. Among the various modified gravi-
ties, mimetic gravity [3], a Weyl-symmetric extension of
GR, has attracted more and more attention recently. In
mimetic gravity, the conformal degree of freedom is iso-
lated by parameterizing the physical metric in terms of an
auxiliary metric and a scalar field (the so-called mimetic
scalar field). In this way, this scalar field becomes dy-
namical and can mimic the cold dark matter [3, 4]. Be-
sides, the late-time acceleration and inflation can also
be explained in the extended mimetic f(R) gravity [5–
7]. It was pointed out in Ref. [8] that this theory is
free of ghost instability for a positive energy density of
the mimetic fluid in cosmology. But the ghost degrees
of freedom do not vanish in mimetic theory with higher
derivatives [9]. The Lagrange multiplier method was ap-
plied to this theory in Refs. [4, 8, 10, 11], which can give
an equivalent formulation to mimetic gravity. Connec-
tions between mimetic gravity and Einstein-aether theo-
ries were discussed in Refs. [12, 13]. For more details of
mimetic gravity, see Ref. [14] and references therein.

Teleparallel equivalence of general relativity (TEGR)
was first proposed to unify the gravity and electromag-
netism by Einstein in 1928 [15]. It is equivalent to GR
due to the fact that the difference between the torsion
scalar and the Ricci scalar is only a boundary term. It
provides a possible way to interpret gravity as a gauge
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theory [16]. The background manifold of TEGR is not
the torsion-free Riemannian spacetime but the curvature-
free Weitzenböck geometry. And the dynamical fields are
vielbein which are defined on the tangent space of any
point in the spacetime. Inspired by the f(R) gravity,
Bengochea and Ferraro generalized TEGR to f(T ) grav-
ity and explained the acceleration of the universe [17].
After that, f(T ) gravity was investigated widely [18–21],
and the degrees of freedom as well as local Lorentz in-
variance were studied in Refs. [22] and [23], respectively.
More details of f(T ) gravity can be seen in Ref. [24] and
the references therein. Recently, Mirza and Oboudiat ap-
plied the mimetic method to f(T ) gravity [25]. They kept
the vielbein being unchanged but performed the con-
formal transformation on the Minkowski metric of the
tangent space. The Lagrange multiplier formulation of
mimetic f(T ) theory was also given [25]. Besides, five
fixed points which representing inflation, radiation, mat-
ter, mimetic dark matter, and dark energy dominated
eras respectively were also found in this theory if some
conditions are satisfied.

On the other hand, the extra-dimensional theory has
been proposed since the 1920s [26, 27]. And it at-
tracted wide attention because of the well-known large
extra dimension models [28–30] and warped extra di-
mension models (also called Randall-Sundrum (RS) mod-
els) [31, 32], which aimed at solving the hierarchy prob-
lem in the standard model of particle physics. After that,
the thick brane model was proposed by combining the
RS-2 brane model [32] and domain wall model [33, 34].
More details on the thick brane and the localization
of bulk fields on the brane were presented in the re-
cent reviews [35] and references therein. The thick
braneworld model in f(T ) theory was firstly constructed
in Ref. [36]. The authors gave the brane world solution
for f(T ) = T + αT 2 and investigated the localization of
bulk fermions. Besides, the split of brane caused by the
torsion effect was also studied. After that, more thick
brane solutions were given in Ref. [37] by the first-order
formalism, and the domain wall brane in a reduced Born-
Infeld-f(T ) theory was studied in Ref. [38]. The stability
of this system under the tensor perturbations was studied
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in Ref. [39]. In all these models, the thick branes are gen-
erated by a background scalar field. In mimetic theories,
the thick brane can be generated by the mimetic scalar
field. In this paper we are interested in the thick brane
generated by the mimetic field in f(T ) theory. Com-
pared with the matter field, the mimetic field comes from
the geometry part and can generate more interesting in-
ner structures, which will result in the following interest-
ing characters: (1) The graviton zero mode has a deep
split with a cat-like shape for some parameters, which is
plotted in Fig. 1 in order to compare with the result of
the f(T )-brane generated by a matter field [36, 39]. (2)
There are many gravitational resonant KK modes. Be-
sides f(T ) = T + αT b, we also find some solutions for
other two forms of f(T ).

FIG. 1: Plots of the zero modes for different models. The blue
dashed line is the zero mode for f(T )-brane generated by a
matter field [36] and the red dashed line with a cat-like shape
is the zero mode for f(T )-brane generated by a mimetic field
considered in this paper.

The thick brane world scenario in mimetic theory has
been studied in Ref. [39, 40] recently. Some thick brane
solutions in mimetic theory were found and the tensor
and scalar perturbations were analysed. Before that, the
late time cosmic expansion and inflation on a thin brane
in mimetic gravity were investigated in Ref. [41]. Inspired
by these works, we will investigate the brane world model
in mimetic f(T ) theory in this paper. The stability of the
brane system will be investigated by analysing the tensor
perturbations of the vielbein. Besides, the effects of the
torsion will also be studied by comparing different kinds
of f(T ).

This paper is organized as follows. In Sec. II, we will
review the mimetic method and f(T ) gravity briefly. The
Lagrange multiplier formulation of mimetic f(T ) theory
will also be given. In Sec. III, we will solve the field
equations and obtain solutions of the brane system for
different kinds of f(T ). The stability of this system will
be analysed by studying the tensor perturbations of the
vielbein in Sec. IV. In this section, we will also study the
localization of the zero mode of graviton on the brane,
and the effects of the torsion will be given. The gravita-
tional resonances will be analyzed in Sec. V. In the end,
conclusions and discussions will be given in Sec. VI.

II. SET UP

In this section, we will give a brief introduction to the
mimetic f(T ) theory. In mimetic theories, the physical
metric gMN is written in terms of an auxiliary metric
g̃MN and a scalar field φ [3]. So, the conformal degree
of freedom can be isolated in a covariant way. We will
use the capital Latin letters M,N,P,Q, ... label the five-
dimensional coordinates, and A,B,C,D, ... label the tan-
gent space coordinates. The explicit relation between the
physical metric gMN and the auxiliary metric g̃MN is

gMN = −g̃MN g̃
PQ∂Pφ∂Qφ. (1)

As a consequence, the scalar field satisfies the following
constraint

gMN∂Mφ∂Nφ = −1. (2)

It is obvious that the physical metric is invariant un-
der the conformal transformation of the auxiliary metric
as g̃MN → Ω2(xP )g̃MN , where Ω(xP ) is a function of
the spacetime coordinate. The action of five-dimensional
mimetic gravity is of the form

S =M3
∗

∫

d5x
√

−g(g̃MN , φ)
[

R(gMN (g̃MN , φ)) + Lm
]

,(3)

where M∗ is the five-dimensional mass scale and Lm is
the Lagrangian of the matter fields.
The gravitational field equations can be obtained by

varying the action with respect to the physical metric
gMN . However, we must pay attention to this process.
Because the physical metric gMN can be rewritten in
terms of the auxiliary metric g̃MN and scalar field φ as
Eq. (1), so the variation of the physical metric is not in-
dependent. On the other hand, the action can also be
written in the Lagrange multiplier formulation equiva-
lently

S =M3
∗

∫

d5x
√−g

[

R+ λ(gMN∂Mφ∂Nφ+ 1) + Lm
]

.(4)

The constraint (2) can be gotten by varying this action
with respect to the Lagrange multiplier λ.
Recently, the authors of Ref. [25] applied the mimetic

method into f(T ) gravity, which is a modification of
TEGR. In f(T ) gravity, the background spacetime is
not a Riemann manifold anymore but the so-called
Weitzenböck manifold. The dynamical field is the
vielbein eA(x

M ) defined in the tangent space at any
point xM of the manifold, rather than the metric gMN .
The relation between the metric and the vielbein is
gMN = ηABe

A
Me

B
N , where ηAB is the Minkowski

metric of the tangent space with the form of ηAB =
diag(−1, 1, 1, 1, 1), and eAM is the component of the viel-
bein eA in the spacetime coordinate xM . From this
relation, we can get eA

MeAN = δMN , and eA
MeBM =

δBA . The curvatureless Weitzenböck connection Γ̃PMN is

defined as Γ̃PMN ≡ eA
P ∂Ne

A
M , which can be used
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to construct the asymmetric torsion tensor TP MN =
Γ̃PNM − Γ̃PMN . The Ricci scalar R̃ constructed by the
Weitzenböck connection is zero, so this manifold is cur-
vatureless. The contorsion tensor KP

MN is defined
as the difference between the Weitzenböck connection
Γ̃PMN and the Levi-Civita connection ΓPMN which can
be described as KP

MN = 1
2

(

T P
M N + T P

N M − TPMN

)

.

Besides, by defining the superpotential as S MN
P ≡

1
2

(

KMN
P − δNP T

QM
Q + δMP T

QN
Q

)

, we can construct

the torsion scalar T = S MN
P TPMN . After some cumber-

some but simple algebra, we can get that T = −R̄ −
2∇̄MTPMP , where R̄ and ∇̄ are the Ricci scalar and co-
variant derivative constructed from the Levi-Civita con-
nection, respectively. As the difference between R̄ and T
is only a boundary term, the teleparallel gravity is equiv-
alent to GR.

In order to apply the mimetic method into f(T )
gravity, the equivalent form of Eq. (1) must be given.
The authors of Ref. [25] kept the vielbein unchanged
but changed the Minkowski metric ηAB as ηAB =
−η̃AB η̃CD∂Cφ∂Dφ. The auxiliary metric is defined as
g̃MN = η̃ABe

A
Me

B
N . So Eq. (1) can be derived di-

rectly [51]. The explicit relation between the variation of
the metric gMN and that of the vielbein was derived in
Ref. [25]. Of course, there is also an equivalent Lagrange
multiplier formulation of the mimetic f(T ) gravity. In
this paper, we take the action as the form of

S =M3
∗

∫

d5x e

[

−1

4
f(T ) + Lφ

]

, (5)

where Lφ = λ
(

gMN∂Mφ∂Nφ− U(φ)
)

− V (φ), and λ
is the Lagrange multiplier. The original −1 in Eq. (2)
of mimetic gravity was generalized to U(φ) < 0 in
Ref. [42]. It was also adopted into the brane world model
in Ref. [40] with the condition U(φ) > 0 since the mimetic
scalar field φ generating the brane only depends on the
extra dimension y, i.e., gMN∂Mφ∂Nφ = (∂yφ(y))

2 >

0 [40]. Note that, there are D(D−3)
2 +D degrees of free-

dom in mimetic f(T ) theory where D is the dimension
of spacetime. And one of these degrees of freedom comes
from the mimetic approach, and it is free of ghost on con-
dition that the energy density is positive [8]. However,
the D − 1 extra degrees of freedom from f(T ) theory
could superluminal propagate, and there could be closed
causal curves [45, 46].

In thick brane world model, the static flat brane metric
which keeps the four-dimensional Poincáre invariance is
given by

ds2 = e2A(y)ηµνdx
µdxν + dy2, (6)

where Greek letters µ, ν, ... denote the coordinates on the
brane. Here e2A(y) is the so-called warp factor. Straight-
forwardly, we can choose the vielbein as the form of
eAM = diag(eA, eA, eA, eA, 1), which has been proved to
be a good choice [43, 44]. With this metric ansatz, we

can express the explicit equations of motion:

1

4

[

6fTA
′′ + 24A′2 (fT − 6fTTA

′′) + f(T )
]

+V (φ) + λ
(

U(φ)− φ′2
)

= 0, (7)

6fTA
′2 +

1

4
f(T ) + V (φ) + λ

(

U(φ) + φ′2
)

= 0, (8)

λ
(

8A′φ′ +
dU(φ)

dφ
+ 2φ′′

)

+
dV (φ)

dφ
+ 2λ′φ′ = 0, (9)

φ′2 − U(φ) = 0.(10)

Here, we denote the primes as the derivatives with re-
spect to the extra dimension y. Note that there are three
independent equations only. The Lagrange multiplier λ
can be solved by substituting Eq. (10) into Eq. (8). Next,
we will choose different kinds of f(T ) to analyse the effect
of torsion on the brane world.

III. SOLUTIONS

We need to solve five functions: A(y), φ(y), λ(y), U(φ),
and V (φ), but there are only three independent equa-
tions. So we start by giving the warp factor A(y) and
the mimetic scalar field φ(y). We will consider two kinds
of warp factors in this section and give solutions of the
mimetic f(T ) brane world model.
We consider the mimetic scalar field as

φ(y) = v tanhn(ky), (11)

where the parameter k has mass dimension one, v is a
positive parameter which representing the limit of the
scalar field. If n is odd, the scalar field is a single-kink
(the black line in Fig. 2(c)) or a double-kink (the red line
in Fig. 2(c)). If n is even, the scalar field is not a kink
configuration (the blue line in Fig. 2(c)). Usually, the
formation of a thick brane requires a kink configuration
scalar field, but in mimetic theory, the non-kink scalar
field can also generate a thick brane, because of the La-
grange multiplier. We take two kinds of warp factors,

A(y) = −n ln(cosh(ky)), (12)

A(y) = ln[tanh(k(y + c))− tanh(k(y − c))]. (13)

The shapes of these two kinds of warp factors and the
mimetic scalar field are shown in Fig. 2. From Fig. 2(b)
we can see that the warp factor (13) has a platform
near the origin of the extra dimension. We can adjust
the width of the platform by changing the parameter c.
When y → ±∞, A(y) → −nk|y|, so the spacetime is
asymptotically AdS5.
Then we will give solutions for different kinds of f(T )

for the warp factor (12). We do not show solutions for
the warp factor (13), because they are complicated and
tedious. From Eq. (10) we know that U(φ) depends on
φ only, so it can be solved as

U(φ) = k2n2v2Φ
2(n−1)

n

(

Φ
2
n − 1

)2

, (14)
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(a) The warp factor (12) (b) The warp factor (13)

(c) The scalar field (11)

FIG. 2: Plots of the warp factors (12) and (13) and the scalar
field (11).

where Φ = φ/v and the parameter v is the same one
that appears in Eq. (11). For f(T ) = T , f(T ) theory
degenerates to TEGR. The solution of this model was
given in Ref. [40]:

λ(y) = − 3

2nv2
sinh2(ky) tanh−2n(ky), (15)

V (φ) = 3k2
[

n− n(1 + 2n)Φ
2
n

]

. (16)

The second kind of f(T ) is taken as f(T ) = T + αT b,
where the mass dimension of the parameter α is 2 − 2b
to ensure that αT b is mass dimension 2. The solution is

λ(y) = α12bb
12k2n2 cosh2(ky) tanh2(ky)

16k2n3v2 tanh2n(ky)

× (2b− 1) cosh2(ky)
(

k2n2 tanh2(ky)
)b
, (17)

V (φ) =
3

2
k2n

(

1− (2n+ 1)Φ
2
n

)

+
3

2
kα(2b− 1)

× 12b−1(kn)2b−1
(

(b+ 2n)Φ
2
n − b

)

Φ
2b−2

n . (18)

As for f(T ) = T0 tanh
(

T
T0

)

and f(T ) = T0 e
T

T0 , the

solutions are tedious, so we do not show them.
Next, we will analyse the stability of this system by

investigating tensor perturbations of the vielbein. Be-
sides, the effects of different kinds of f(T ) will also be
investigated.

IV. TENSOR PERTURBATIONS AND

LOCALIZATION

In this section, we will consider the tensor perturba-
tions of this mimetic f(T ) brane world model. The per-
turbed four-dimensional vielbein is eaµ = eA(y)(δaµ +

haµ) [39] where the Latin letters a, b, ... denote the tan-
gent space coordinates on the brane. Note that, Eq. (33)
in Ref. [25] give the explicit formulation of the variation
of the physical metric gMN . For tensor perturbations
considered here, we do not need to consider the per-
turbation of the scalar field φ since they are decoupled.
So we can get the perturbed four-dimensional physical
metric gµν = e2A(y)(ηµν + γµν), where γµν = (δaµh

b
ν +

δbνh
a
µ)ηab. We impose the transverse and traceless con-

dition that ∂µγ
µν = 0 = ηµνγµν , whose equivalent viel-

bein form is ∂µ(δa
µhb

ν + δb
νha

µ)ηab = δa
µhaµ = 0. Sub-

stituting the perturbed vielbein into the equation of mo-
tion, after some cumbersome but simple caculations, we
can get the perturbed field equation:

(

e−2A
�

(4)γµν + γ′′µν + 4A′γ′µν

)

fT

−24A′A′′γ′µνfTT = 0, (19)

where �
(4) = ηµν∂µ∂ν is the four-dimensional

d’Alembert operator. Making the coordinate transfor-
mation dz = e−Ady, Eq. (19) becomes to

(

∂2z + 2H∂z +�
(4)

)

γµν = 0, (20)

where H = 3
2∂zA + 12e−2A

(

(∂zA)
3 − ∂2zA∂zA

)

fTT

fT
.

Then we introduce the KK decomposition γµν(x
ρ, z) =

ǫµν(x
ρ)e

∫
−H(z)dzψ(z). After that, we can get a four-

dimensional Klein-Gordon-like equation for the four di-
mensional graviton ǫµν :

(

�
(4) +m2

)

ǫµν(x
ρ) = 0 and a

Schrödinger-like equation for the extra-dimensional pro-
file ψ(z):

(

−∂2z +W (z)
)

ψ = m2ψ, (21)

where W (z) = H2 + ∂zH is the effective potential. This
Schrödinger-like equation can be factorized into a super-
symmetric quantum mechanics form:

(

∂z +H
)(

− ∂z +

H
)

ψ = m2ψ, which guarantees that all the eigenvalues

m2 are non-negative, that is to say, there is no tachyonic
graviton. So this model is stable under tensor perturba-
tions with the transverse-traceless condition. Of course,
there is a zero mode m = 0 for this system, and the solu-
tion is ψ0 = N0e

∫
−H(z)dz , where N0 is the normalization

coefficient.
In order to recover the four-dimensional gravity, the

zero mode of graviton should be localized near the origin
of the extra dimension. This requires that

∫

dz ψ2
0(z) <

∞. We will investigate this issue in this section.
As for the analytical formulations of the effective po-

tential and the zero mode for some solutions are compli-
cated, we just give that of f(T ) = T , and for the other
cases we only show their plots.

W (y) =
3k2n[5n cosh(2ky)− 5n− 4]

8 cosh2(n+1)(ky)
, (22)

ψ0(y) = N0 cosh
− 3n

2 (ky). (23)
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The normalization coefficient N0 can be fixed by
∫ +∞
−∞ ψ2

0(z)dz =
∫ +∞
−∞ e−A(y)ψ2

0(y)dy = 1. In this case

it can be calculated as N0 =
√
πΓ(n)

kΓ(n+ 1
2 )

with Γ(n) the

Gamma function. As shown in Fig. 3 (the black lines),
we can see that the effective potential is volcano-like and
the corresponding zero mode has only one peak and it
tends to zero at infinity. Besides, the four-dimensional
gravity can be recovered. This is expected because when
f(T ) = T , f(T ) gravity is equivalent to GR and this
result has been obtained in [40].
The effective potentials and the zero modes are shown

in Fig. 3. From this figure we can see that for f(T ) =
T + αT b (the blue lines in Fig. 3) there is a double well
in the effective potential and a split in the zero mode,

though the warp factor does not split. For f(T ) = T0e
T

T0

(the red lines in Fig. 3), the shapes of the effective poten-
tial and the zero mode are similar to that of f(T ) = T ,
but the well of effective potential is deeper, and the corre-
sponding zero mode is sharper. The purple lines in Fig. 3

are corresponding to f(T ) = T0 tanh
(

T
T0

)

. We can see

that though the effective potential has two sub-wells, the
zero mode does not split, because the sub-wells are too
narrow.

(a) The effective potential (b) The zero mode

FIG. 3: Plots of the effective potential and the zero mode
for A(y) = −n ln(cosh(ky)). The parameter is set to n = 1.
The symbols fi in the figures denote f1 = T , f2 = T + αT b,

f3 = T0e
T

T0 , and f4 = T0 tanh
(

T
T0

)

with T0 = 1.

For the solutions of the warp factor (13), the effective
potentials and the zero modes are shown as in Fig. 4.
From this figure we can see that for f(T ) = T (the black

line) and f(T ) = T0e
T

T0 (the red line) there is a platform
in the zero mode which is corresponding to the warp fac-
tor (see Fig. 2(b)). Comparing the polynomial kind of
f(T ) with f(T ) = T , we can see that there is also a split
in the zero mode based on the platform, we call it the
cat-like mode. So we can conclude that if f(T ) takes
the polynomial form the zero mode of graviton may have

a split. For f(T ) = T0 tanh
(

T
T0

)

(the purple lines in

Fig. 4), the effective potential and the zero mode are the
same as the case of for f(T ) = T . Besides, we have cal-

culated that
∫ +∞
−∞ ψ2

0(z)dz is converged, so they can be
localized near the brane for all the three models.
We take f(T ) = T as an example to analyse the effects

(a) The effective potential (b) The zero mode

FIG. 4: Plots of the effective potential and the zero mode for
A(y) = ln[tanh(k(y+ c))− tanh(k(y − c))]. The parameter is
set to c = 1. The symbols fi are the same as Fig. 3.

of the parameter n in the warp factor (12) on the effec-
tive potential and the zero mode. We can conclude from
Fig. 5 that the depth of the effective potential increases
with the parameter n. As a result, the corresponding zero
mode becomes sharper. As for the parameter b character-
izing the polynomial kind of f(T ), the effects can be seen
from Fig. 6. Note that, the two curves with black lines
in Figs. 3(a) and 3(b) are the same as those with blue
lines in Figs. 6(a) and 6(b), respectively. It can be seen
that there are two barriers in the effective potential when
b > 2 and the zero modes are all split for b > 1. Besides,
the heights of the barrier of the effective potential and
the normalized zero mode increase and decrease with the
parameter b, respectively. We note that the zero mode
does not localize near the origin of the extra dimension,
but localize near the “ears” of the cat-like energy density.

(a) The effective potential (b) The zero mode

FIG. 5: Plots of the effective potential and the zero mode of
f(T ) = T for the warp factor (12).

V. GRAVITATIONAL RESONANT

In order to study the graviton resonances, Almeida et
al. proposed the large peaks of the wavefunction as the
resonances [47]. The transfer matrix method was also use
to find the resonances [48, 49]. We use the relative possi-

bility P proposed in Ref. [50]: P (m2) =

∫ z
b

−z
b
|ψ(z)|2dz

∫
zmax

−zmax
|ψ(z)|2dz ,

where 2zb can be regarded as the width of the brane ap-
proximately, zmax = 10zb, and ψ(z) is the solution of
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(a) The effective potential (b) The zero mode

FIG. 6: Plots of the effective potentials and the zero modes
of f(T ) = T + αT 2 for the warp factor (12). The parameters
are set to n = 1, α = −1.

the Schrödinger-like equation (21). Besides, note that
the effective potentials are even functions, so the wave
functions will be either even or odd. So we can con-
sider ψeven(0) = 1, ∂zψeven(0) = 0 for even parity and
ψodd(0) = 0, ∂zψodd(0) = 1 for odd parity to solve the
Schrödinger-like equation (21) numerically [50].
We do not find resonance for solutions with the warp

factor (12), so we will just consider the solutions with
the warp factor (13). From Fig. 4(a) we can see that
all these four kinds of forms of f(T ) can support grav-
itational resonant modes. The number of gravitational
resonance modes increases the width and the height of
the barrier of the effective potential. So different param-
eters have different effects on the effective potential and
the gravitational resonance modes. As the width of the
potential barriers increases with the parameter c, so the
number of the graviton resonance increases with the value
of parameter c. For the second form of f(T ), the effects
of torsion are caused by the second term. The height of
the barrier of the effective potential increases with pa-
rameter b, and decreases with the absolute value of α.
So the number of the graviton resonance increases with
parameter b, and decreases with the absolute value of α.

For f(T ) = T0e
T

T0 and f(T ) = T0 tanh
(

T
T0

)

, the param-

eter T0 only affects the height of the effective potential
barrier. And the height decreases with the parameter
T0, so the number of the gravitational resonance modes
decreases with the parameter T0. A specific example of
f(T ) = T − 2T 4 with c = 6 is shown in Fig. 7.

(a) The relative probability

odd

even

-15 -10 -5 5 10 15
z

-1.0
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0.5

1.0

ψ

(b) The resonances

FIG. 7: Plots of the relative probability and the first two
resonances for f(T ) = T − 2T 4. The parameter c is chosen to
be 6.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we applied the mimetic f(T ) theory into
the brane world model. The brane is supported by the
isolated conformal degree of freedom, i.e., the mimetic
scalar field. We used the Lagrange multiplier formulation
and derived the equations of motion. By taking the flat
static brane metric which reserves the four-dimensional
Poincare invariance, we obtained the explicit equations
of motion. We found that the non-kink configuration
of the scalar field can also generate a thick brane. The
warp factor has two forms: A(y) = −n ln(cosh(ky)) and
A(y) = ln[tanh(k(y + c)) − tanh(k(y − c))]. For both
cases, we found solutions for four kinds of f(T ). For
f(T ) = T + αT b, we found the cat-like thick brane for
some specific parameters.

By investigating the tensor perturbations of the viel-
bein, we analysed the stability of this system. It
was found that the perturbed field equation can be
transformed to a Klein-Gordon-like equation and a
Schrödinger-like equation after the KK decomposition.
The Schrödinger-like equation can further be factorized
into a supersymmetric quantum mechanics form, which
guarantees that there are no tachyonic gravitons. There-
fore, the brane in mimetic f(T ) theory is stable under
the tensor perturbations. We also studied the localiza-
tion of gravity and found that for all the solutions the
four-dimensional gravity can be recovered.

As we can see from Fig. 4(a), the potential wells are
deep enough, so there are many gravitational resonant
KKmodes for the solutions with the warp factor (13). We
analysed the effects of different parameters and showed
the plot of the gravitational resonant KK modes for
f(T ) = T + αT 2. All these gravitational resonant KK
modes contribute to the four-dimensional Newtonian po-
tential, so they can cause different results compared with
that of f(T )-brane generated by a matter field [36]. As
pointed out in Ref. [40], scalar perturbations do not prop-
agate on the brane in mimetic gravity, which is different
from the case of brane world based on GR. Therefore, it
is worth to investigate scalar perturbations of the brane
system in mimetic f(T ) gravity. Moreover, thick branes
with inner structure generated by more than one mimetic
scalar fields are also interesting.
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