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Abstract

We present several results on memory effects, asymptotic symmetry and soft theorems
in massive QED. We first clarify in what sense the memory effects are interpreted as
the charge conservation of the large gauge transformations, and derive the leading and
subleading memory effects in classical electromagnetism. We also show that the sub-
subleading charges are not conserved without including contributions from the spacelike
infinity. Next, we study QED in the BRST formalism and show that parts of large
gauge transformations are physical symmetries by justifying that they are not gauge
redundancies. Finally, we obtain the expression of charges associated with the subleading
soft photon theorem in massive scalar QED.
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1 Introduction and Summary

Asymptotic symmetries in gauge theories and also gravity have been investigated with their
relations to soft theorems and memory effects (see e.g., [1] for a review).1

In quantum electrodynamics (QED), the soft photon theorem [5, 6] is a universal relation
between a scattering amplitude with a soft photon and one without the photon. In [7, 8, 9], it
was shown that the soft photon theorem is equivalent to the Ward-Takahashi identities for the
asymptotic symmetry, which is an infinite dimensional subgroup of U(1) gauge transformations
taking nonzero finite values at far distant regions. In addition, it has been known that the
subleading term in the soft expansion of the scattering amplitude is also universal [10, 11, 12, 13].
In [14, 15, 16], it was argued that, as well as the leading soft theorem, the subleading photon
theorem can be interpreted as the Ward-Takahashi identity of an infinite number of symmetries
for QED with massless charges.

On the other hand, the memory effect is a phenomena for the classical radiation of massless
fields. It was first pointed out in gravitational theory [17] (see also [18, 19, 20]). If there is
an event producing gravitational radiation with finite duration, it causes a shift of the metric
perturbation from far past to far future at the far distant region of the event. It is not surprise
that we also have the similar phenomena in classical electromagnetism [21, 22, 23] because
the memory effects essentially follow from the properties of the retarded Green’s function of
massless particles. It has been known [5] that the soft factor in the leading soft photon theorem
appears in the solution of the classical radiation induced by the scattering of point charges. In
fact, the leading and subleading soft factors are related with leading and subleading memories
[24, 25, 26, 27].

However, to our knowledge, there has been no derivation of the memory effects as a direct
consequence of the asymptotic symmetries, although it was pointed out that the shifts of radia-
tion fields can be realized as transformations of the asymptotic symmetries [24]. In literatures,
memory effects are derived by solving the equations of motion [17, 21, 22, 24, 25, 23, 28, 26, 27]
or from the soft theorems [24, 25].

In section 2 of this paper, we will explicitly illustrate in classical electromagnetism that
the electromagnetic memory effect is derived from the conservation law of the large gauge
symmetry. We will work in the Lorenz gauge ∂µA

µ = 0. Then the large gauge symmetry is the
residual gauge transformations Aµ → Aµ+∂µε with parameters ε(x) which satisfy 2ε(x) = 0 to
keep the gauge fixing condition and approach angle-dependent nontrivial functions ε(0)(Ω) at
infinity r →∞. Since ε(0)(Ω) is an arbitrary function on two-sphere, the symmetry is infinite-
dimensional. The memory effect will be derived from the current conservation associated with
the symmetry. When we investigate the asymptotic behaviors of fields, we should be careful
about the treatment of asymptotic infinities. In particular, the timelike infinity i± näıvely
looks collapsed to a point (i.e., two-sphere) in the Penrose diagram, although it is actually
an infinite-time limit of a three-dimensional constant time-slice. Thus, we first consider the
gauge-charge conservation in a specific finite region (see Fig. 1) and then take a limit such
that the boundaries of the region approach asymptotic infinities of Minkowski space. Due to
the specific choice of region, we can treat the contributions from timelike infinities i± and null
infinities I ± separately. The region also has a boundary approaching to the spacelike infinity
i0. Nevertheless, it will be shown that the contributions from i0 vanish, and this fact leads to
the asymptotic charge conservation laws which turn out to be the memory effect [see (2.18)
and (2.20)]. The resulting formula (2.18) shows how the radiation field shifts when there is a

1Similar relations were also investigated for massless scalar theories [2, 3, 4]. In particular, it was shown [3]
that there is a memory effect of pion or axion radiation associated with the soft pion theorem.
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nontrivial change of the distribution of charged matters from far past to far future.
The choice of the finite region also enables us to evaluate the subleading terms in the gauge-

charge conservation in a safe manner. Through the evaluations in subsection 2.2, the subleading
memory effect will be shown [see (2.29) and (2.31)]. It will also be shown that there is no sub-
subleading memory effect because at this order we should take account of the contributions
to the gauge-charge from the spacelike infinity i0. In appendix A, the leading and subleading
memory effects are confirmed for a concrete setup.

It is also not obvious whether the large gauge symmetry is physical symmetry, because it
näıvely seems to be a part of gauge redundancies. One approach to this question is the canoni-
cal treatment of radiation data as in [29, 7] (see also [30, 31]). In section 3, we will address this
question from a different perspective. We will consider QED in the BRST formalism [32, 33],
and argue that the large gauge transformations should be regarded as physical symmetry. In
fact if we regard the large gauge transformations as gauge redundancies, the physical scattering
data which we can treat is too restricted. We will also see that the large gauge transforma-
tions automatically become physical transformations of the Cauchy data if ghost fields can be
expanded in the standard Fourier modes. In subsection 3.3, we will review for completeness
that the leading soft theorem is equivalent to the Ward-Takahashi identity for the asymptotic
symmetry in our notation. This review may be useful to read section 4.

In section 4, we will interpret the subleading soft photon theorem as the Ward-Takahashi
identity for the asymptotic symmetry. As mentioned above, such interpretation was given in
[14, 15, 16] for massless QED. However, massive particles were not included in their analysis
because a different treatment are needed for massive particles. We will carry out this treatment
for massive charged scalars, and obtain the expression of the hard charge operators in mas-
sive scalar QED. Asymptotic behaviors of the massive scalar are summarized in appendix C.
Some complicated calculations in the derivation of the hard charge operators are confined in
appendix D.

Finally some discussions will be given in section 5.

2 Infinite number of conserved charges

In this section, we illustrate the existence of an infinite number of asymptotically conserved
charges associated with large gauge transformation in the classical electromagnetism. We rep-
resent the matter current for massive charged particles by jµmat, which is the source in Maxwell’s
equation ∂νF

νµ = −jµmat. Here, we assume that the charged particles behave as free particles
except for a small region where they scatter, and we ignore the back-reaction. We also impose
the initial condition that there is no radiation before the scattering of charged particles.

The conserved current for the gauge transformation with gauge parameter ε(x) is given by

Jµ = F µν∂νε+ jµmatε. (2.1)

We now consider the integration of the current conservation equation ∂µJ
µ = 0 over the region

represented in Fig. 1. The region is parametrized by two parameters T and U , and has five
boundaries, Σf ,Σi,Σ+,Σ−,Σ0. The Σf and Σi are time-slices at far future and past t = ±(T +
U) with 0 ≤ r ≤ T −U . Σ0 is a timelike surface r = const. = T +U with −T +U < t < T −U ,
respectively. Σ± are null surfaces where ±t + r = const. = 2T . We take the parameter T is
so large such that the massive matter current jµmat vanishes on Σ± and Σ0. We also take U so
large that any electromagnetic radiation coming from the scattering region goes through the null
surface Σ+. Later, we take the limit first T →∞ and then U →∞ such that Σ± become the
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Figure 1: The region where we consider the current conservation. The directions along the two
sphere S2 are suppressed in this figure. The blue lines represent trajectories of massive charged
particles, which scatter at a small region. The red line represents a direction of the radiation
emitted from this scattering. The region is parametrized by two parameters T and U . The
parameter T is so large that all of the given massive particles go through the surface Σi and
Σf , and U is also so large that any radiation coming from the scattering region passes through
Σ+.

future and past null infinities I ±, where I + (I −) is parametrized by the retarded (advanced)
time u = t − r (v = t + r) and angular coordinates ΩA. The ordering of the limits, T → ∞
before U →∞, is crucial for our derivation of the memory effect formulae. The integration of
the current conservation proves that the sum of the surface integral of the current over each
boundary vanishes:

0 =

∫
dV ∂µJ

µ = Qf +Q+ +Q0 −Q− −Qi (2.2)

with

Qa ≡
∫

Σa

dSµJµ , (a = f, i, 0,+,−) , (2.3)

where we choose the surface element dSµ is future-directed when the surface is spacelike or
null.

We consider a residual large gauge parameter ε(x) in the Lorenz gauge, which is a solution
of 2ε(x) = 0 asymptotically approaching an arbitrary function ε(0)(Ω) on the two-sphere,2

2We represent the coordinates on the unit two-sphere by ΩA (A=1,2) with metric γAB .
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independently of u, on I +. The solution is given by [8, 1]

ε(x) =

∫
d2Ω′

√
γ(Ω′)G(x; Ω′)ε(0)(Ω′) , (2.4)

G(x; Ω′) = − 1

4π

xµxµ
(qµxµ)2

with qµ = (1, q̂(Ω′)), (2.5)

where q̂(Ω) is a three-dimensional unit vector parametrized by ΩA.3 One can find that this ε(x)
satisfies the antipodal matching condition, i.e., ε(t, r,Ω) approaches ε(0)(Ω̄) on I − where Ω̄A

denotes the antipodal point of ΩA. The current conservation (2.2) for large gauge transforma-
tions characterized above ε(x) will lead to the memory effects.

2.1 Leading memory effect

We now see that Q0, which is defined on Σ0 as

Q0 =

∫ T−U

−T+U

dt d2Ω
√
γr2Jr|r=T+U , (2.6)

vanishes in the limit T → ∞ without the limit U → ∞. Noting that the current can be
represented as a total derivative Jr = ∂µ(F rµε), Q0 splits into the integrations over two spheres
on the future and past boundaries of Σ0 as

Q0 =

∫
d2Ω
√
γr2Ftrε|t=T−U,r=T+U −

∫
d2Ω
√
γr2Ftrε|t=−T+U,r=T+U . (2.7)

Since any radiation cannot reach Σ0 due to our choice of the region, the field strength Ftr is
the Coulombic electric field created by free-moving charged particles before the scattering, and
it behaves as Ftr ∼ O(T−2) in the large T limit. The leading O(T−2) terms of the Coulombic
electric fields are independent of U , which are represented as

lim
T→∞

r2Ftr(t, r,Ω)|t=T−U,r=T+U ≡ F
+(2)
tr (Ω) , (2.8)

lim
T→∞

r2Ftr(t, r,Ω)|t=−T+U,r=T+U ≡ F
−(2)
tr (Ω) , (2.9)

and they satisfy the antipodal matching condition (see appendix A.1)

F
+(2)
tr (Ω) = F

−(2)
tr (Ω̄) . (2.10)

We thus obtain

lim
T→∞

Q0 =

∫
d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω)−

∫
d2Ω
√
γF
−(2)
tr (Ω)ε(0)(Ω̄) (2.11)

3More precisely, Green’s function is defined as G(x; Ω̃) = − 1
8π limε→0

[
xµxµ

(qµxµ−iε)2 +
xµxµ

(qµxµ+iε)2

]
.
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where we used the fact that ε(x) approaches ε(0)(Ω) near I + and ε(0)(Ω̄) near I −. Therefore,
due to the matching condition (2.10), Q0 vanishes in the limit T →∞:

lim
T→∞

Q0 =

∫
d2Ω
√
γ[F

+(2)
tr (Ω)− F−(2)

tr (Ω̄)]ε(0)(Ω) = 0 . (2.12)

Thus, in the limit T →∞, the conservation equation (2.2) indicates

lim
T→∞

(Qf +Q+) = lim
T→∞

(Qi +Q−) . (2.13)

The Qf and Qi are given by

Qf =

∫ T−U

0

drd2Ω
√
γr2(F ti∂iε+ jtmatε)|t=T+U , (2.14)

Qi =

∫ T−U

0

drd2Ω
√
γr2(F ti∂iε+ jtmatε)|t=−T−U . (2.15)

The field strength F ti in the above integrands is the Coulombic electric field created by free-
moving charged particles since the radiation does not reach Σf and Σi. Thus, Qf and Qi are
the usual gauge charges for free-moving charged particles and their Coulomb-like potential in
the three-dimensional ball with radius T − U at time t = ±(T + U). In particular, if ε is a
constant, Qf and Qi equal to the total electric charges (×ε). Eq. (2.13) just means that such
gauge charges do not conserve for the nontrivial large gauge parameters ε(x) unless we include
the contributions from the radiation Q±.4 It should be remarked that the conservation laws
(2.13) holds only asymptotically, i.e., in the limit T → ∞. We call this kind of conservation
“asymptotic conservation”. Since we can take arbitrary functions ε(0)(Ω) on two-sphere, we
have an infinite number of asymptotic conservation laws.

Using the retarded time u = t− r,5 Q+ is written as

Q+ =

∫ 2U

−2U

dud2Ω
√
γr2(F ru∂uε+ F rA∂Aε)|r=T−u/2 . (2.16)

In the large T limit, the integration region approaches to the subregion −2U ≤ u ≤ 2U in I +.
Near I +, Au and Ar decay faster, and only the angular components AB behave as O(1). We

represent the O(1) components by A
(0)
B (u,Ω). Then, we obtain6

lim
T→∞

Q+ = −
∫ 2U

−2U

dud2Ω
√
γγAB∂uA

(0)
B ∂Aε

(0)

= −
∫
d2Ω
√
γγAB[A

(0)
B (u = 2U)− A(0)

B (u = −2U)]∂Aε
(0) . (2.17)

On the other hand, for our setup or our initial condition, there is no radiation at Σ−, and thus

4A similar statement was given for the case without massive charged fields in [34].
5The line element in the retarded coordinates takes the form ds2 = −du2 − 2dudr + r2γABdΩAdΩB .
6We have F rB = −∂uAB + ∂rA

B + γBC

r2 ∂C(Au −Ar).
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limT→∞Q− = 0. Therefore, we have the following memory effect formula:∫
d2Ω
√
γγAB[A

(0)
B (u = 2U)− A(0)

B (u = −2U)]∂Aε
(0) = lim

T→∞
(Qf −Qi) . (2.18)

This equation holds for any function ε(0)(Ω) on the two-sphere. It implies that the shift of A
(0)
B

on I + is related to the change of the gauge charges between Qf and Qi.
7

If we take the limit U →∞, the charge from the radiation (2.17) becomes the so called ‘soft
charge’ [7, 8]

Qlead,+
S ≡ −

∫
I +

dud2Ω
√
γγAB∂uA

(0)
B ∂Aε

(0). (2.19)

Although limT→∞Q− vanishes in our setup, if we consider the general situation that electro-
magnetic radiation exists initially, limU→∞ limT→∞Q− becomes the soft charge Qlead,−

S defined
on I −. Qf and Qi become the so called hard charges Qlead,±

H in the limit. Note that the hard
charges include not only matter currents but also the contributions from the Coulombic electric
field produced by the charged matters.

In the limit U →∞, we thus obtain

Qlead,+
S +Qlead,+

H = Qlead,−
S +Qlead,−

H . (2.20)

We note again that the conservation laws (2.20) come from the fact that the charge on spacelike
infinity, limT→∞Q0, vanishes due to the antipodal matching condition. In other words, the total
asymptotic charge Qlead,+

S + Qlead,+
H equals to the integral on two-sphere at the past boundary

of I + at u = −∞ as

Qlead,+
S +Qlead,+

H = −
∫

I +
−

d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω) , (2.21)

because the current Jµ is a total derivative, and Qlead,−
S +Qlead,−

H also equals to the integral on
two-sphere at the future boundary of I − as

Qlead,−
S +Qlead,−

H = −
∫

I −
+

d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω̄) , (2.22)

which is equal to (2.21). We also remark that the surface Σ±∪Σf/i becomes the Cauchy surface

in the limit U →∞ after T →∞. Therefore, Qlead,±
S + Qlead,±

H is actually a charge defined on
the asymptotic Cauchy surface.

2.2 Subleading memory effect

We have seen that the current conservation equation (2.2) leads to the formula of the leading
memory effect (2.18) in the large T limit because the charge from spacelike infinity, Q0, vanishes
in the limit due to the antipodal matching. The subleading memory effect can also be obtained
by considering the corrections in large T expansion.

7The Ω-independent part of the shift cannot be determined from this formula.
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We first consider the correction to Q+ defined as eq. (2.16). On Σ+, the gauge parameter
ε(x) in the large T limit is expanded using the formula (A.11) as

ε(u, r = T − u/2,Ω) = ε(0)(Ω)−
u log |u|

2T

2T
∆S2ε(0)(Ω) +O(T−1) , (2.23)

where ∆S2 is the Laplacian on the unit two-sphere. Note that the correction to ε(0)(Ω) starts
from O(T−1 log T ). In appendix B, we give general expansions of radiation fields which are
compatible with this large gauge parameters. Using the expansions (2.23), (B.1), (B.2) and
(B.3), we find that the first correction to Q+ is O(T−1 log T ), and Q+ takes the form

Q+ = −
∫ 2U

−2U

dud2Ω
√
γ∂uA

(0)
B γBA∂Aε

(0) − (Qlog
+ +Qlog′

+ )
log T

T
+O(T−1) , (2.24)

where the first term is just the leading soft charge (2.17), and the second term is the first
correction. Here, Qlog

+ and Qlog′
+ are given by

Qlog
+ =

1

2

∫ 2U

−2U

dud2Ω
√
γu∂uA

(0)
B γBA∂A∆S2ε(0)

= −1

2

∫ 2U

−2U

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (2.25)

Qlog′
+ = −1

2

∫ 2U

−2U

dud2Ω
√
γ
[(
A(1)
r +∇BA

(0)
B + 2C(1)

u

)
∆S2ε(0) + 2γAB

(
∂uC

(1)
A − ∂AC

(1)
u

)
∂Bε

(0)
]
,

(2.26)

where ∇B denotes the covariant derivative on the unit two-sphere w.r.t. the metric γAB, and
the derivative with upper index is defined as ∇A ≡ γAB∇B. The definition of C

(1)
u , A

(1)
r and

C
(1)
A are given in (B.1), (B.2) and (B.3).
On spatially distant surface Σ0, the leading part of the charge Q0 in large T expansion is
O(T−1) as shown in eq. (A.16) in appendix A.1, and it does not have any O(T−1 log T ) term.
Thus, the coefficient of T−1 log T is also conserved without contribution from Σ0 like the leading
memory. The contributions from future and past timelike infinities are extracted as

Qlog
f,i = lim

T→∞

T 2

log T

dQf,i

dT
. (2.27)

Using these symbols, the finite U version of the subleading memory effect formula takes the
form

−1

2

∫ 2U

−2U

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B = −Qlog′

+ −Qlog
f +Qlog

i . (2.28)

In the limit U →∞, the subleading radiation charge Qlog
+ becomes

Qsub,+
S ≡ lim

U→∞
Qlog

+ = −1

2

∫
I +

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (2.29)
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which agrees, up to a numerical factor, with the electric-type subleading soft charge in [15],
and it is shown that the charge also agrees with that in [14] by taking their vector field Y A on
unit two-sphere as Y A ∝ ∇Aε(0). We also represent the other contributions in the limit U →∞
including the initial radiation on Σ− by8

Qsub,−
S ≡ lim

U→∞
Qlog
− , Qsub,+

H ≡ lim
U→∞

(Qlog′
+ +Qlog

f ) , Qsub,−
H ≡ lim

U→∞
(Qlog′
− +Qlog

i ) . (2.30)

We then obtain the subleading charge conservation

Qsub,+
S +Qsub,+

H = Qsub,−
S +Qsub,−

H . (2.31)

Before closing this section, we briefly comment on the sub-subleading order. We have seen
that the charge Q0 on spacelike infinity isO(T−1), which is the same order as the sub-subleading
corrections to Qa (a = +,−, f, i). Therefore, we conclude that there is no asymptotic conser-
vation at the sub-subleading order without including the contribution from Q0 (see also similar
discussions in [15, 16]).9 This conclusion is probably related to the fact that there is no sub-
subleading soft photon theorem in QED (see [35] for the discussion that the soft expansion of
amplitudes is not associated with a universal soft factor at the sub-subleading order).

3 Asymptotic symmetry as physical symmetry in QED

We have seen that the current conservation for the asymptotic symmetry (large gauge symme-
try) leads to the memory effects in classical electrodynamics. In this section, we argue in the
BRST formalism that asymptotic symmetry should be physical one in QED, although they are
näıvely parts of the gauge symmetry. We first review the covariant quantization of QED in the
BRST formalism in subsection 3.1. Next, we look at the asymptotic behaviors of gauge fields
in subsection 3.2. Based on that, we argue that the leading order of the angular components of
the gauge fields are physical degrees of freedom in the asymptotic regions, and parts of the large
gauge transformations are physical symmetry which transform the physical degrees of freedom
nontrivially. In subsection 3.3, we review, because it might be useful to read next section, that
the Ward-Takahashi identities for the large transformations actually result in the leading soft
photon theorem as [7, 8].

3.1 Review of the covariant quantization in QED

In this subsection we review the covariant quantization of massive scalar QED in the BRST
formalism10, and discuss the symmetries.

8As shown in appendix A.2, Qlog′
+ generally diverges in the limit U →∞, and Qlog

f also does. Nevertheless,

the combination (Qlog′
+ +Qlog

f ) is finite as far as we know.
9The arguments that there is no subsubleading charge were given in [15, 16]. However, the reason seems to

be different from ours. Their reason is that the sub-subleading charge has an inevitable divergence. On the
other hand, from our construction, the charges for the large gauge transformations are “conserved” if we take
account of the contributions from spacelike infinity.

10In QED, the ghost sector is completely decoupled. Nevertheless, we use the BRST formalism to discuss
what the physical states are.
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The Lagrangian in the Feynman gauge is given by

LQED = LEM + Lmatter + LGF + LFP , (3.1)

where

LEM = −1

4
FµνF

µν , Lmatter = −1

2
Dµφ̄Dµφ−

1

2
m2φ̄φ , (3.2)

LGF = −1

2

(
∂µAµ

)2
, LFP = i∂µc̄∂µc. (3.3)

Here, φ is a massive charged scalar field11 with charge e where Dµφ = ∂µφ − ieAµφ, and c is
the ghost field. LGF + LFP 12 is a BRST exact term, which is added so that there is no first
class constraint [36]. For this Lagrangian, the free Heisenberg equations for gauge fields and
the ghost field are 2Aµ(x) = 0 and 2c(x) = 0, and then the “general”13 solutions are given by

Aµ(x) =

∫
d3k

(2π)32ωk

(
aµ(~k)eikx + a†µ(~k)e−ikx

)
, (3.4)

c(x) =

∫
d3k

(2π)32ωk

(
c(~k)eikx + c†(~k)e−ikx

)
, (3.5)

where kµ are massless on-shell momenta. In quantum theory, aµ(~k) and c(~k) are the annihilation

operators for photons and ghost particles with momentum ~k, respectively. In particular, the
commutation relation of the photon operator is given by

[aµ(~k), a†ν(
~k′)] = (2π)3(2ωk)ηµνδ

(3)(~k − ~k′). (3.6)

The total Lagrangian has a BRST symmetry [32, 33]. It also has residual symmetries, namely

δgφ(x) = ieε(x)φ(x) , δgφ̄(x) = −ieε(x)φ̄(x) , δgAµ(x) = ∂µε(x), (3.7)

with

2ε(x) = 0. (3.8)

These residual symmetries are usually regarded as “gauge” redundancies, but we will argue in
next subsection 3.2 that parts of them, which are given by large gauge parameters (2.4), are
physical symmetries, which impose the nontrivial constraints on the S-matrices as the Ward-
Takahashi identities. Using the Lagrangian (3.1), one can find the Noether current associated

11In this paper, we consider only a single species of charge for simplicity. The generalization to many species
is straightforward.

12We already integrated out the Nakanishi-Lautrup field in LGF .
13The Fourier expansion automatically gives the following fall-off condition:

lim
r→∞,u:fixed

c(x) = O(r−1).

The justification of this fall-off condition is discussed in next subsection.
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with (3.7);

jµε (x) = jµS(x) + jµH(x), (3.9)

where

jµS(x) = ∂νε(x)F µν(x) + ∂µε(x)∂νA
ν(x) , (3.10)

jµH(x) = ε(x)jµmat(x) , with jµmat(x) = ie
(
Dµφ̄(x)φ(x)− φ̄(x)Dµφ(x)

)
. (3.11)

The current is different from (2.1) by the gauge fixing term.
We also have a charge associated with the BRST symmetry. It is given by

QBRST =

∫
Σ

dSµ
[
B(x)∂µc(x)− ∂µB(x)c(x)

]
, (3.12)

where Σ is an arbitrary Cauchy slice and B(x) = ∂µAµ(x). When we take Σ as the usual time
slice (t = const.) and substitute (3.4) and (3.5) into (3.12), the BRST charge is expressed as

QBRST = i

∫
d3k

(2π)32ωk

[
c†(~k)B(~k)− c(~k)B†(~k)

]
, (3.13)

where B(~k) is defined as

B(x) =

∫
d3k

(2π)32ωk

(
B(~k)eikx +B†(~k)e−ikx

)
. (3.14)

Consequently, if we impose the BRST condition [37] on the ghost zero sector of the Hilbert
space to extract the physical states, the Gupta-Bleuler condition [38, 39] is imposed on the
physical Hilbert space,

QBRST |ψ〉 = 0⇔ B(~k)|ψ〉 = 0, (3.15)

which ensures that the longitudinal modes of gauge fields do not contribute to the dynamics
of QED. Note that since the ghost field c(x) is decoupled from the gauge fields in the Abelian
gauge theory, we can treat c(x) as a Grassmann number function in practice. If gauge fields

can be regarded as free fields, B(~k) is related to the annihilation operator of photons as B(~k) =

ikµaµ(~k), and the Gupta-Bleuler condition is written as

kµaµ(~k) |ψ〉 = 0 . (3.16)

The subspace annihilated by QBRST is represented by Hclosed; and it contains the BRST
exact subspace Hexact in which states are orthogonal to all states in Hclosed since Q2

BRST = 0.
Adding a BRST exact state λQBRST |ξ〉, where λ is a Grassmann number and |ξ〉 is any state,
to the closed state |ψ〉 ∈ Hclosed as

|ψ〉 → |ψ′〉 = |ψ〉+ λQBRST |ξ〉 , (3.17)
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corresponds to a “gauge transformation”, i.e. |ψ〉 and |ψ′〉 are physically equivalent. The
true physical space is obtained by identifying such equivalent states and thus given by the
cohomology of QBRST :

Hphys ≡ Hclosed/Hexact . (3.18)

Any physical operator O on Hphys must satisfy the BRST invariant condition, namely

δBRSTO =
[
iλQBRST ,O

]
= 0 . (3.19)

If we define the “physical symmetry” as the symmetry whose charge acts on the physical
states nontrivially, then the BRST transformation is not the physical symmetry but a “gauge
symmetry” since the BRST charge acts trivially on physical states by the BRST condition.

3.2 Asymptotic gauge fields as the physical Cauchy data

In this subsection, we consider the asymptotic behaviors of gauge fields to identify the physical
degrees of freedom in the asymptotic regions. We then argue that the large gauge transforma-
tions, which are parts of the symmetry (3.7), constitute a true physical symmetry, i.e., they
are not gauge redundancies.

In order to investigate the asymptotic behaviors near future null infinity I +, we use the
retarded coordinates (u, r,ΩA) where u is the retarded time u = t − r and ΩA (A = 1, 2)
are (arbitrary) coordinates on the unit two-sphere as in section 2. In the coordinates, the
Minkowski line element is written as

ds2 = −du2 − 2dudr + r2γABdΩAdΩB (3.20)

where γAB(Ω) is the metric on the unit two-sphere.
At the asymptotic region I +, the radiation fields Aµ(x) would be well approximated by the

free field which has the plane wave expansion (3.4). At large r with fixed u, one can find the
following asymptotic behavior by using the saddle point approximation (see e.g. [1])

Aµ(x) = − i

8π2r

∫ ∞
0

dω
[
aµ(ωx̂)e−iωu − (h.c.)

]
+O(r−2 log r). (3.21)

Accordingly, each component of the gauge field in the (u, r,ΩB) coordinates is obtained as
follows:

Au(x) =
A

(1)
u (u,Ω)

r
+O(r−2 log r),

Ar(x) =
A

(1)
r (u,Ω)

r
+O(r−2 log r), (3.22)

AB(x) = A
(0)
B (u,Ω) +O(r−1 log r)
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with

A(1)
u (u,Ω) = − i

8π2

∫ ∞
0

dω
[
au(ωx̂)e−iωu − (h.c.)

]
,

A(1)
r (u,Ω) = − i

8π2

∫ ∞
0

dω
[
ar(ωx̂)e−iωku − (h.c.)

]
, (3.23)

A
(0)
B (u,Ω) = − i

8π2

∫ ∞
0

dω
[
aB(ωx̂)e−iωu − (h.c.)

]
,

where each annihilation operator is defined as

au(~k) = at(~k) , ar(~k) = qµaµ(~k) , aB(~k) =
∂x̂i

∂ΩB
ai(~k) , qµ ≡ (1, x̂) . (3.24)

Therefore, we can say that the Fourier expansions of Aµ (3.4) automatically give the following
fall-off conditions:

lim
r→∞

Ar = O(r−1) , lim
r→∞

Au = O(r−1) , lim
r→∞

AB = O(1). (3.25)

We now see that the leading O(1) components A
(0)
B constitute the Cauchy data on the future

null infinity. In other words, the two components correspond to the two physical degrees
of freedom of photons. As we have already noted in the previous subsection, we have the
BRST symmetry as a “gauge symmetry”. The gauge fields Aµ transform under the BRST
transformations as follows:

δBRSTAµ(x) =
[
iλQBRST , Aµ(x)

]
= λ∂µc(x) . (3.26)

Since the ghost field satisfies the free equation of motion

2c(x) = 0, (3.27)

we may use the mode expansion (3.5). However, it is not the general solution of (3.27) in the
following sense. By using the saddle point approximation as in the calculation of (3.21), the
ghost field is expanded around I + as

c(x) = − i

8π2r

∫ ∞
0

dωk
[
c(ωkx̂)e−iωku − (h.c.)

]
+O(r−2 log r). (3.28)

Namely, the expansion (3.5) only describes the solutions with the fall-off condition:

lim
r→∞,u:fixed

c(x) = O(r−1). (3.29)

Supposing that the ghost field satisfies this fall-off condition, we can see that the leading
components A

(0)
B (u,Ω) of the gauge fields at the null infinity are invariant under the BRST

transformation (3.26), namely

δBRSTA
(0)
B (u,Ω) = 0. (3.30)
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This is because ∂Bc(x) does not have any O(1) term at the future null infinity due to the fall-off

(3.29). Thus, A
(0)
B would be regarded as the physical operators in the sense of (3.19). They

create and annihilate quantum excitations of radiation fields on the null infinity.
In consequence, one can find that parts of the transformations (3.7) are physical symmetry. In

fact, if one takes the form (2.4) as the parameter function ε(x), the Cauchy data A
(0)
B transform

under (3.7) as

δgAB(u,Ω) = ∂Bε
(0)(Ω). (3.31)

Thus, the large “gauge” transformations changes the physical operators; in this sense they
should be regarded as physical symmetry.

Here, we remark that one can theoretically take the large “gauge” transformations as gauge
redundancies by extending the BRST transformations. If one allows the ghost field to take O(1)
values at the null infinity, the transformation (3.31) is regarded as the extended BRST exact
variation. One may define the “physical Hilbert space” as the extended BRST cohomology; in
other words, one may require that the “physical states” should also be singlet under the large
gauge transformations. However, we know that the large gauge charges generally take nonzero
values in the classical scattering events in nature as seen in section 2 and appendix A. Thus,
in this extended BRST cohomology, the dynamics of QED is too restricted (or too trivial),
i.e., sectors with nonzero charges are ignored. Hence, if we want to have the quantum theory
describing scatterings with the electromagnetic memories, we should not regard the large gauge
transformations as gauge redundancies. This is a justification for the fall-off condition (3.29)
and the conclusion that large “gauge” transformations (3.31) are physical symmetry.

3.3 Leading soft photon theorem

We have shown the large gauge transformations act nontrivially on asymptotic states and as
a result they are physical symmetries. In this subsection we reconfirm (in our notation) by
following [8] (see also [9]) that the Ward-Takahashi identity for the symmetry is equivalent to
the leading soft photon theorem in massive QED (the argument for massless QED is in [7]).
This computation is probably useful to read next section.

The Noether current for the symmetry takes the expression (3.9) with parameter ε(x) given
by (2.4). As we saw in section 2, the associated Noether charge is asymptotically conserved,
and it consists of soft part Qlead,±

S [ε(0)] and hard part Qlead,±
H [ε(0)]. For simplicity, we concentrate

on future infinities and omit the analysis for past infinities because it is just a repeat of the
similar argument.

The soft part Qlead,+
S [ε(0)] is defined on the future null infinity I + and given by

Qlead,+
S [ε(0)] ≡

∫
I+
dud2Ω

√
γ lim
r→∞

[
r2jrS(u, r,Ω)

]
. (3.32)

We then have the expansion

r2jrS = lim
r→∞

log
2r

|u|
∂uA

(1)
r ∆S2ε(0) − γAB∂uA(0)

B ∂Aε
(0) +O(r−1 log r) , (3.33)
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because the gauge parameter ε(x) is expanded, as given in eq. (2.23), as

ε(u, r,Ω) = ε(0)(Ω) +
u log 2r

|u|

2r
∆S2ε(0)(Ω) +O(r−1) , (3.34)

and gauge fields are expanded as (3.22). The soft charge operator Qlead,+
S is thus given by

Qlead,+
S = QT+

S +QL+
S (3.35)

with

QT+
S = −

∫
I+
dud2Ω

√
γγAB∂uA

(0)
B ∂Aε

(0), (3.36)

QL+
S = lim

r→∞

∫
I+
dud2Ω

√
γ log

2r

|u|
∂uA

(1)
r ∆S2ε(0). (3.37)

The expression of QT+
S agrees with the soft charge (2.19) in the classical case. It actually creates

or annihilates soft photons [7]; Using eq.(3.23), eq. (3.36) can be rewritten as14

QT+
S =

1

8π
lim
ω→0

∫
d2Ω
√
γγAB

[
ωaB(ωx̂(Ω)) + ωa†B(ωx̂(Ω))

]
∂Aε

(0)(Ω) . (3.38)

However, we also have extra divergent term QL+
S . The reason why there is no such a term

in the classical case is that we impose the Lorenz gauge condition ∂µA
µ = 0 which leads to

∂uA
(1)
r = 0. Correspondingly, also at the quantum level, QL+

S vanishes in the physical S-matrix

elements as follows. Using eq. (3.23), an S-matrix element including ∂uA
(1)
r is computed as

〈out| ∂uA(1)
r (u,Ω)S |in〉

= − 1

8π2

∫ ∞
0

dω 〈out|
[
ωqµaµ(ωx̂)e−iωu + ωqµa†µ(ωx̂)eiωu

]
S |in〉 , (3.39)

where qµ = (1, x̂). Only longitudinal modes appear in the bracket in the second line. The
second term vanishes due to the Gupta-Bleuler condition (3.16) and the first term also does by
the Ward-Takahashi identity for the global U(1) symmetry. Thus, eq. (3.39) is equal to zero.

In other words, the operator ∂uA
(1)
r vanishes in the physical amplitude because longitudinal

modes of photons do not contribute to the physical scatterings. Thus, we can ignore QL+
S .

Next, we consider hard part Qlead,+
H [ε(0)], which is defined on the timelike infinity i+.15 It is

useful to introduce the coordinates (τ, ρ,ΩA) (see, e.g., [8]). The coordinates are defined as

τ 2 = t2 − r2 , ρ =
r√

t2 − r2
. (3.40)

The constant τ -surface is given by three-dimensional hyperbolic space with the curvature radius

14The past soft charge QT−S is defined similarly, and takes the same expression as eq. (3.38).
15In our notation, the hard charge is defined on the surface Σf (or Σi) in Fig. 1 with limits U → ∞ after

T →∞. Under the limits, the surface Σf coincide with the constant τ surface with τ →∞.
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τ , and the Minkowski line element takes the form

ds2 = −dτ 2 + τ 2 hαβdσ
αdσβ, (3.41)

where σα = (ρ,ΩA) are coordinates of the unit three-dimensional hyperbolic space H3 with the
line element

hαβdσ
αdσβ =

dρ2

1 + ρ2
+ ρ2γABdΩAdΩB. (3.42)

If we assume that charged particles can be regarded as free particles near timelike infinity
i+,16 the hard part is given by

Qlead,+
H [ε(0)] =

∫
H3

d3σ
√
h εH3(σ)j

τ(3)
mat (σ) . (3.43)

Here, εH3(σ) is a limit of large gage parameter ε(x) given by (2.4) to i+, which is defined as17

εH3(σ) ≡ lim
τ→∞

ε(τ, ρ,Ω) =

∫
d2Ω′

√
γ(Ω′)GH3(σ; Ω′)ε(0)(Ω′) (3.44)

with

GH3(σ; Ω′) =
1

4π
[
−
√

1 + ρ2 + ρ q̂(Ω′) · x̂(Ω)
]2 . (3.45)

Besides, j
τ(3)
mat (σ) in (3.43) is the leading coefficient at large τ of the matter current with the

normal ordering, defined as

j
τ(3)
mat (σ) ≡ lim

τ→∞
τ 3 : jτmat(τ, σ) : , (3.46)

and it is given by

j
τ(3)
mat (σ) =

em2

2(2π)3

[
b†(~p)b(~p)− d†(~p)d(~p)

]
|~p=mρx̂(Ω) . (3.47)

See appendix (C) for our convention of the quantization of the scalar field. From this expression,
one can easily find that hard operator Qlead,+

H [ε(0)] acts on a asymptotic future state 〈out|
containing charged particles with momenta ~pk = mρkŷ(Ω̃k) and charge ek as18

〈out|Qlead,+
H [ε(0)] =

∑
k∈out

ekεH3(ρk, Ω̃k) 〈out| . (3.48)

16We will give comments on this assumption in section 5.
17In fact, in the coordinates (τ, ρ, σ), Green’s function (2.5) does not depend on τ . Hence, εH3(σ) = ε(τ, σ).
18ŷ(Ω̃) is a unit three-dimensional vector parametrized by spherical coordinates Ω̃A, and ek is +e for particles

and −e for antiparticles.
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Similarly, past hard charge Qlead,−
H [ε(0)] acts on asymptotic past states as

Qlead,−
H [ε(0)] |in〉 =

∑
k∈in

ekεH3(ρk, Ω̃k) |in〉 . (3.49)

As explained in section 2, the leading charges associated with the large gauge transforma-
tions are “asymptotically conserved”. Therefore, we should have the following Ward-Takahashi
identity for the physical S-matrix:

〈out|
[(
Qlead,+
S +Qlead,+

H

)
S − S

(
Qlead,−
S +Qlead,−

H

)]
|in〉 = 0. (3.50)

It is known [7, 8] that this identity is equivalent to the leading soft photon theorem [5, 6]:

lim
ω→0
〈out|ωaB(ωx̂)S |in〉 =

[∑
k∈out

ek~pk · ∂Bx̂
pk · q

−
∑
k∈in

ek~pk · ∂Bx̂
pk · q

]
〈out| S |in〉 , (3.51)

where qµ = (1, x̂). In fact, integrating the l.h.s. of the soft theorem (3.51) w.r.t. the direction
x̂(Ω) of the momentum of the soft photon, we obtain an S-matrix element with the insertion
of soft charge (3.38) as follows:

lim
ω→0

1

4π

∫
d2Ω
√
γγAB∂Aε

(0) 〈out|ωaB(ωx̂)S |in〉 = 〈out|
(
Qlead,+
S S − SQlead,−

S

)
|in〉 , (3.52)

where we have used the fact

lim
ω→0
〈out|ωaB(ωx̂)S |in〉 = − lim

ω→0
〈out| Sωa†B(ωx̂) |in〉 . (3.53)

The soft theorem (3.51) equates (3.52) with

1

4π

∫
d2Ω
√
γγAB∂Aε

(0)
∑
k

ηkek~pk · ∂Bx̂
pk · q

〈out| S |in〉 , (3.54)

where we have introduced the symbol ηk which is +1 (−1) for k ∈ out (k ∈ in). Performing a
partial integration and using the formula

∇A

[
γAB

~pk · ∂Bx̂(Ω)

pk · q(Ω)

]
= 4πGH3(ρk, Ω̃k; Ω)− 1 with ~pk ≡ mρkŷ(Ω̃k) , (3.55)

we then have

1

4π

∫
d2Ω
√
γγAB∂Aε

(0)
∑
k

ηkek~pk · ∂Bx̂
pk · q

= −
∑
k

ηkek

∫
d2Ω
√
γε(0)(Ω)

[
GH3(ρk, Ω̃k; Ω)− 1

4π

]

= −
∑
k

ηkekεH3(ρk, Ω̃k) +
1

4π

(∑
k

ηkek

)∫
d2Ω
√
γε(0) . (3.56)
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Since
∑

k ηkek = 0 due to the total electric charge conservation, we finally obtain

(3.52) = −
∑
k

ηkekεH3(ρk, Ω̃k) 〈out| S |in〉 = −〈out|
(
Qlead,+
H S − SQlead,−

H

)
|in〉 (3.57)

where we have used (3.48) and (3.49). Therefore, we have reconfirmed that we can obtain the
Ward-Takahashi identity (3.50) from the soft theorem (3.51), and vice versa because (3.50)
holds for any ε(0).

4 Subleading charges in massive QED

In subsection 3.3, we have confirmed that the leading soft theorem is equivalent to the Ward-
Takahashi identity for the large gauge transformation. The similar analysis for the subleading
soft theorem was done in [14, 15, 16] for massless QED. In [15, 16] it was found that the
symmetries are nothing but the large gauge transformations19.

We extend the discussions to massive QED, and obtain the expression of the charges associ-
ated with the subleading soft theorem. First, we review the soft part of the subleading charges
along the work [14] in subsection 4.1. In subsection 4.2, we next derive the expression of the
hard part of the subleading charges defined on the future (or past) timelike infinity.

4.1 Subleading soft photon theorem and the soft part of the sub-
leading charges

Like the leading soft theorem (3.51), the subleading soft photon theorem gives the following
relation between an amplitude containing a soft photon and an amplitude without that:

lim
ω→0
〈out| (1 + ω∂ω)aB(ωx̂)S |in〉 = S

(sub)
B 〈out| S |in〉 with S

(sub)
B ≡ −i

∑
k

ekq
µJkµB

pk · q
, (4.1)

where the sum in S
(sub)
B is taken for all of the incoming and outgoing charged particles which are

labeled by k, and Jkµν is the total angular momentum operator of k-th particle (with momentum
~pk and charge ek) defined as

Jkµν = −i
(
pkµ

∂

∂pνk
− pkν

∂

∂pµk

)
, (4.2)

and qµ = (1, x̂) represents the direction of the soft photon. As seen in the leading theorem
(3.51), aB(ωx̂) creates 1/ω divergence in the soft limit ω. The factor (1 + ω∂ω) in l.h.s of (4.1)
removes the leading divergence because (1 + ω∂ω)(1/ω) = 0.

It was argued in [14] that the subleading soft theorem (4.1) can be interpreted as a Ward-
Takahashi identity of asymptotic symmetries, like the leading soft theorem reviewed in sec-
tion 3.3. The subleading soft theorem is a quantum realization of the subleading memory effect

19The large gauge transformations are slightly different in two papers [15, 16]. In [15], the gauge parameter
is O(r) at I +, and thus the generator is divergent but includes the subleading finite part, which is relevant to
the subleading soft theorem. On the other hand, in [16], it is shown that the subleading part of O(1) gauge
parameter is related to the subleading soft theorem. Our argument is similar to the latter, although the gauge
fixing condition is different.
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(2.31), and it is written as

〈out|
[(
Qsub,+
S +Qsub,+

H

)
S − S

(
Qsub,−
S +Qsub,−

H

)]
|in〉 = 0. (4.3)

As noted below eq. (2.29), the soft part is given by

Qsub,+
S = −1

2

∫
I +

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (4.4)

and using eq. (3.23), it is further written as

Qsub,+
S = − i

16π
lim
ω→0

∫
d2Ω
√
γ∆S2ε(0)∇B

[
(1 + ω∂ω)(aB(ωx̂)− a†B(ωx̂))

]
. (4.5)

The soft part of the past charge, Qsub,−
S , also takes the same expression. Hence, Qsub,±

S contains
(1 +ω∂ω)[aB(ωx̂)− a†B(ωx̂)] which corresponds to the subleading soft photons. The subleading
soft theorem (4.1) thus states that

〈out| (Qsub,+
S S − SQsub,−

S ) |in〉 = − 1

8π

∫
d2Ω
√
γ∆S2ε(0)

∑
k

∇B

[
ekq

µ∂Bx̂
i

pk · q
Jkµi

]
〈out| S |in〉 .

(4.6)

If operators Qsub,±
H exist such that the r.h.s. of (4.6) is equal to

−〈out| (Qsub,+
H S − SQsub,−

H ) |in〉 , (4.7)

we can establish the Ward-Takahashi identity (4.3).
For massless QED, such hard operators Qsub,±

H were obtained [14, 15, 16], where the operators
are defined on the future and past null infinities I ±. What we want to do is to obtain the
expression of Qsub,±

H for massive charged particles. This is the goal of next subsection.

4.2 Hard part of the subleading charges

Unlike massless QED, Qsub,±
H is an operator on timelike infinities i± acting on the asymptotic

states of massive particles. Thus, like the leading case (3.43), it should be expressed as an
integral over three-dimensional hyperbolic space H3 with gauge parameter εH3(σ) on the space.
We now obtain such an expression for the future part Qsub,+

H .
First, let us parametrize an on-shell momentum by (p, Ω̃A) as pµ = (Ep, pŷ(Ω̃)) where Ep =√
p2 +m2 and ŷ · ŷ = 1. Using this parametrization, the angular momentum operators are

expressed as

J0i = i

[
ŷiEp∂p +

Ep
p
γ̃AB(∂̃Aŷ

i)∂′B

]
(4.8)

Jij = −i
[
ŷi(∂̃Aŷ

j)− ŷj(∂̃Aŷi)
]
γ̃AB∂′B, (4.9)

where ∂̃A ≡ ∂
∂Ω̃A is the derivative w.r.t. the direction of on-shell momentum of massive particle.
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Here, γ̃AB is the inverse of the induced metric γ̃AB ≡ (∂̃Aŷ) · (∂̃B ŷ). Note that if we parametrize
the on-shell momentum as ~p = mρ~y(Ω̃), Ep = m

√
1 + ρ2, the angular momentum operators

also can be represented as

J0i = i
√

1 + ρ2

[
ŷi∂ρ +

1

ρ
γ̃AB(∂̃Aŷ

i) ∂̃B

]
, (4.10)

Jij = −i
[
ŷi(∂̃Aŷ

j)− ŷj(∂̃Aŷi)
]
γ̃AB∂̃B. (4.11)

We then define the following operator Qsub
B (Ω) with angular index B as

Qsub
B (Ω) =

e

2

∫
d3p

(2π)32Ep

qµ(Ω)∂Bx̂
i(Ω)

p · q(Ω)

× [(Jµib
†(~p))b(~p)− b†(~p)(Jµib(~p))− (Jµid

†(~p))d(~p) + d†(~p)(Jµid(~p))]. (4.12)

One can confirm, by performing some partial integrations20, that the first term and the second
term in (4.12) are the same when they act on the physical states. The third term and the forth
term are also the same. Accordingly, one can find that Qsub

B acts on the 1-particle state as

Qsub
B (Ω) |pk〉 = ek

qµ(Ω)∂Bx̂
i(Ω)

pk · q(Ω)
Jkµi |pk〉 , (4.13)

〈pk|Qsub
B (Ω) = −ek

qµ(Ω)∂Bx̂
i(Ω)

pk · q(Ω)
Jkµi 〈pk| . (4.14)

Therefore, if one defines the hard charge operator as

Qsub,±
H = − 1

8π

∫
d2Ω
√
γ∆S2ε(0)∇BQsub

B (Ω) , (4.15)

it satisfies the desired property

〈out| (Qsub,+
H S − SQsub,−

H ) |in〉 =
1

8π

∫
d2Ω
√
γ∆S2ε(0)

∑
k

∇B

[
ekq

µ∂Bx̂
i

pk · q
Jkµi

]
〈out| S |in〉 .

(4.16)

Next, we now express Qsub
B in terms of the local matter current of charged particles in

the asymptotic region i+. The matter current jmatµ asymptotically decays as O(τ−3) with τ -
dependent oscillations. Assuming that the charged scalar is free in the asymptotic region, one
can extract τ -independent finite parts of jmatµ (see appendix C) as

Imatα (σ̃) ≡ lim
τ→∞

(
1

4m2
∂2
τ + 1

)
τ 3 : jmatα (τ, σ̃) : (4.17)

=
iem

4(2π)3

[
∂αb

†(~p)b(~p)− b†(~p)∂αb(~p)− ∂αd†(~p)d(~p) + d†(~p)∂αd(~p)
]
|~p=mρŷ(Ω̃) , (4.18)

20These partial integrations involve not only the creation and annihilation operators but also soft factors and
the integration measure.
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where σ̃α = (ρ, Ω̃A) are the coordinates on H3. In addition, using this and also eqs. (4.10),
(4.11), one can obtain the following equations:

[(J0ib
†(~p))b(~p)− b†(~p)(J0ib(~p))− (J0id

†(~p))d(~p) + d†(~p)(J0id(~p))]|~p=mρŷ(Ω̃)

=
4(2π)3

em

√
1 + ρ2[ŷiImatρ (ρ, Ω̃) +

1

ρ
γ̃AB∂̃Aŷ

iImatB (ρ, Ω̃)] , (4.19)

[(Jijb
†(~p))b(~p)− b†(~p)(Jijb(~p))− (Jijd

†(~p))d(~p) + d†(~p)(Jijd(~p))]|~p=mρŷ(Ω̃)

= −4(2π)3

em
(ŷi∂̃Aŷ

j − ŷj ∂̃Aŷi)γ̃ABImatB (ρ, Ω̃). (4.20)

From these equations, (4.12) can be rewritten as

Qsub
B (Ω) =

∫
H3

d3σ̃
√
h̃

[√
1 + ρ2∂Bx̂(Ω) · ŷ(Ω̃)

q · Y
Imatρ (ρ, Ω̃)

+
1

q · Y

{√
1 + ρ2

ρ
∂Bx̂ · ∂̃Aŷ − (x̂ · ŷ)(∂Bx̂ · ∂̃Aŷ) + (x̂ · ∂̃Aŷ)(∂Bx̂ · ŷ)

}
γ̃ACImatC (ρ, Ω̃)

]
,

(4.21)

where d3σ̃
√
h̃ = dρd2Ω̃ ρ2√

1+ρ2

√
γ̃ and Y µ = (

√
1 + ρ2, ρŷ(Ω̃)).

Therefore, the hard charge Qsub,+
H can be expressed in terms of the asymptotic matter current

Imatα by inserting (4.21) into (4.15). However, it seems to be unnatural because Qsub,+
H is given

by an integral over S2 with parameter function ε(0), not εH3 . Since Qsub,+
H is associated with the

large gauge transformation acting on massive particles, it should be written as an integral over
the surface at timelike infinity H3 with parameter function εH3 on that surface, like the leading
case (3.43). In fact, after some computations (see appendix D), one can express Qsub,+

H in such
an integral as follows:

Qsub,+
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hαβ(∇(h)

α ∇(h)
ρ εH3)Imatβ + 2ρhαβ(∇(h)

α εH3)Imatβ

]
, (4.22)

where ∇(h)
α denotes the covariant derivative compatible with the metric hαβ on H3.

5 Discussions and Outlook

In section 2, we have shown that the leading memory effect is nothing but the charge conserva-
tion of the large gauge transformations at the leading order in classical electromagnetism. In
addition, looking at the subleading order, we can obtain the subleading memory effect. One
can extend this analysis to gravity. There is the sub-subleading graviton theorem in pertur-
bative gravity [40]. Thus, it is expected that, unlike electromagnetism, the contributions from
the spacelike infinity vanish even at the sub-subleading order, and we have the sub-subleading
memory effect.21 It is more interesting to work in the (dynamical) blackhole backgrounds
[41, 42].

21It was shown that the classical gravitational wave produced by a kick of particles has a term corresponding
to the sub-subleading memory [27].
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The conserved charges in section 2 resemble multipole charges in [43] (see also its gravita-
tional extension [44]). The multipole charges are also defined as the Noether charge for the
residual large gauge symmetry in the Lorenz gauge. In [43], it was shown that electric multipole
moments of charged matters are conserved if we also take account of the contributions from
radiations. However, the l-th multipole charges are associated with the time-independent large
gauge parameters ε(x) which behave as rlYlm(Ω) at large r. Thus, they are different from the
large gauge parameters that we considered, and we are not sure whether they are related.

In subsection 3.3, we have reviewed that the Ward-Takahashi identity for the large gauge
symmetry is equivalent to the leading soft photon theorem. In the analysis, we have assumed
that we can regard massive particles as free particles in the asymptotic region. However, as
we saw in the classical case in subsection 3.3, the hard charge Qlead,+

H always contains the
contributions from electromagnetic potential created by massive charges. This problems has a
long history, and related to the infrared divergences in QED [45, 46]. In [45, 46], asymptotic
states are defined by solving the asymptotic dynamics, and it is shown that such asymptotic
states do not cause IR divergences in the S-matrix at least in simple examples (see also [47]
where similar arguments were done for gravity). Recently, the connection between the IR-finite
asymptotic states and asymptotic symmetry has been discussed [48, 49, 50, 51, 52, 53]. As
we argued in section 3, large gauge symmetry is actually physical symmetry. Thus, we should
classify states by the representation of the symmetry. It is interesting to consider this subject
in the BRST formalism, and we leave this problem for our future work.

In section 4, we also used the same assumption that particles are free in the asymptotic
regions. Probably, the use of appropriate asymptotic states is more relevant in the analysis
at the subleading order. In the derivation of the expression of the “hard parts”, we have
assumed the subleading soft theorem and have written down the operator associated with the
subleading soft factors. We did not look at the consistency with the expression of the “hard
parts” of the subleading charges derived in the classical case in section 2. The “hard parts”
consist of Qlog′

+ +Qlog
f , and Qlog′

+ is defined on I +, while Qlog
f on H3 at future timelike infinity.

Each of Qlog′
+ and Qlog

f is a divergent quantity in the large U limit, although the sum is finite.

Thus, we cannot consider them separately, and we think that the finiteness of Qlog′
+ + Qlog

f is
ensured only when we take account of the asymptotic interactions in QED. We hope to come
back to this issue in the non-asymptotic future.
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A A concrete example

A.1 Electromagnetic fields of uniformly moving charges

If there is a charge e moving with a constant velocity ~v as

~x = ~x0 + ~v(t− t0) , (A.1)
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the gauge potential produced by the charge in the Lorenz gauge is

A0(x) =
e

4π `(x)
, ~A(x) =

e~v

4π `(x)
, (A.2)

where

`(x) =
√

(1− |~v|2)(|~x− ~x0|2 − [v̂ · (~x− ~x0)]2) + (v̂ · (~x− ~x0)− |~v|(t− t0))2 (A.3)

with

v̂ =
~v

|~v|
. (A.4)

At the point t = T − U, r = T + U with large T , the electric flux Ftr is expanded as

Ftr(t, r,Ω)|t=T−U,r=T+U =− e(1− |~v|2)

4π(1− ~v · x̂(Ω))2T 2
+
e(1− |~v|2)f(U,Ω;~v, t0, ~x0)

4π(1− ~v · x̂(Ω))4T 3
+O(T−4)

(A.5)

with

f(U,Ω;~v, t0, ~x0) ≡2U(1− |~v|2 − 2|~v⊥|2) + [1− ~v · x̂(Ω)− 3(1− |~v|2)]~x0 · x̂(Ω)

+ 3[1− ~v · x̂(Ω)]~v · ~x0 + [2(1− |~v|2)− 2(1− ~v · x̂(Ω))− |~v⊥|2]t0 , (A.6)

where ~v⊥ ≡ ~v − [~v · x̂(Ω)]x̂(Ω). At the point t = −T + U, r = T + U with large T , the electric
flux Ftr is

Ftr(t, r,Ω)|t=−T+U,r=T+U =− e(1− |~v|2)

4π(1 + ~v · x̂(Ω))2T 2
+
e(1− |~v|2)f(U,Ω;−~v,−t0, ~x0)

4π(1 + ~v · x̂(Ω))4T 3
+O(T−4).

(A.7)

Thus, the antipodal matching condition eq. (2.10) at the leading order

F
+(2)
tr (Ω) = F

−(2)
tr (Ω̄) (A.8)

holds where Ω̄ denotes the antipodal point of Ω.
On the other hand, for eq. (2.5), in the limit that r →∞ with u = t− r fixed, we have

∫
d2Ω′

√
γ(Ω′)G(u, r,Ω; Ω′)Y`m(Ω′) = Y`m(Ω) +

`(`+ 1)u log |u|
2r

+ s`u

2r
Y`m(Ω) +O(r−1−ε) ,

(A.9)
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where Y`m(Ω) are the spherical harmonics, and the coefficients s` are22

s` =
1

2`

b`/2c∑
j=0

(−1)j(2`− 2j)!

j!(`− j)!(`− 2j)!
c`−2j with cn = −1 + (−1)n + n

4
n∑
k=1

1

k
− 2

bn/2c∑
k=1

1

k

 .

(A.10)

As a result, the large gauge parameter ε(u, r,Ω) has following large-r expansion,

ε(u, r,Ω) = ε(0)(Ω) +
u log 2r

|u|

2r
∆S2ε(0)(Ω) +O(r−1). (A.11)

Similarly, in the limit that r →∞ with v = t+ r fixed, it is expanded as

ε(v, r,Ω) = ε(0)(Ω̄)−
v log 2r

|v|

2r
∆S2ε(0)(Ω̄) +O(r−1). (A.12)

Therefore, if we define the coefficients of large-r expansion of ε(x) as

lim
r→∞,u:fixed

ε(x) = ε(0)(Ω) + ε(log,+)(u,Ω)
log r

r
+O(r−1), (A.13)

lim
r→∞,v:fixed

ε(x) = ε(0)(Ω̄) + ε(log,−)(v,Ω)
log r

r
+O(r−1), (A.14)

then ε(log,+)(u = −2U,Ω) = ε(log,−)(v = 2U, Ω̄) holds. Thus, if we have initially charges en
moving as

~x(n) = ~x
(n)
0 + ~vn(t− t(n)

0 ) , (A.15)

Q0 given by eq. (2.7) is computed as

Q0 =
∑
n

en(1− |~vn|2)

2πT

∫
d2Ω

√
γ(Ω)

ε(0)(Ω)

(1− ~vn · x̂(Ω))4

{
[1− ~vn · x̂(Ω)− 3(1− |~vn|2)]~x

(n)
0 · x̂(Ω)

+3[1− ~vn · x̂(Ω)]~vn · ~x(n)
0 + [2(1− |~vn|2)− 2(1− ~vn · x̂(Ω))− |~vn⊥|2]t

(n)
0

}
+O(T−2) .

(A.16)

A.2 Computation of memories

Here, we check the memory effect formulae (2.18) and (2.28) for a concrete example. We
consider the following trajectory of a charged particle with charge e such as it first rests at ~x0

and moves with a constant velocity ~v after a time t0:

~x = ~x0 + Θ(t− t0)~v(t− t0). (A.17)

We represent the matter current for this trajectory by jµmat, which is the source in Maxwell’s
equation ∂νF

νµ = −jµmat. The retarded electromagnetic field created by this particle is written

22c0 = 0, c1 = 2.
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in the Lorenz gauge ∂µA
µ = 0 as

A0(x) = Θ(|~x− ~x0| − t+ t0)
e

4π|~x− ~x0|
+ Θ(−|~x− ~x0|+ t− t0)

e

4π `(x)
, (A.18)

~A(x) = Θ(−|~x− ~x0|+ t− t0)
e~v

4π `(x)
, (A.19)

where `(x) is given by eq. (A.3).
We first consider the charge Qf . It is given by

Qf =

∫
d2Ω
√
γ
(
r2F trε

)
|t=T+U,r=T−U . (A.20)

At t = T + U, r = T − U with large T , electric field F tr is expanded as

F tr|t=T+U,r=T−U =
e(1− |~v|2)

4π(1− ~v · x̂)2T 2
+O(T−3) . (A.21)

Since our gauge parameter has the expansion as eq. (2.23), Qf is expanded as

Qf =
e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
+
U log T

T

e(1− |~v|2)

4π

∫
d2Ω
√
γ

∆S2ε(0)

(1− ~v · x̂)2
+O(T−1) .

(A.22)

Thus, we have

lim
T→∞

Qf [ε
(0)] =

e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
, (A.23)

Qlog
f [ε(0)] = −Ue(1− |~v|

2)

4π

∫
d2Ω
√
γ

∆S2ε(0)

(1− ~v · x̂)2
= −U lim

T→∞
Qf [∆S2ε(0)] . (A.24)

Note that Qlog
f diverges in the limit U →∞ although Qlog

f + Qlog′
+ is finite as we will see later.

Similarly, the charge Qi is computed as

lim
T→∞

Qi[ε
(0)] =

e

4π

∫
d2Ω
√
γε(0) , (A.25)

Qlog
i [ε(0)] = −Ue

4π

∫
d2Ω
√
γ∆S2ε(0) = 0 . (A.26)

Next, we compute the future null infinity charge limT→∞Q+ given by (2.17). Since the
angular components of the gauge field is expanded as

AB(x) = Θ(u+ ~x0 · x̂− t0)
e~v · ∂Bx̂

4π(1− ~v · x̂)
+O(T−1) , (A.27)
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the charge is given by

lim
T→∞

Q+ =

∫
d2Ω
√
γε(0)γAB∇A

[
e~v · ∂Bx̂

4π(1− ~v · x̂)

]
. (A.28)

Noting that the formula

γAB∇A

[
~v · ∂Bx̂
1− ~v · x̂

]
=
−2~v · x̂
1− ~v · x̂

+
|~v|2 − (~v · x̂)2

(1− ~v · x̂)2
= 1− 1− |~v|2

(1− ~v · x̂)2
, (A.29)

the charge has the form

lim
T→∞

Q+ =
e

4π

∫
d2Ω
√
γε(0) − e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
= − lim

T→∞
(Qf −Qi) . (A.30)

This certainly agrees with the leading memory effect (2.18).
Finally, we compute the subleading charges Qlog

+ and Qlog′
+ . Since we now have

∂uA
(0)
B = δ(u+ ~x0 · x̂− t0)

e~v · ∂Bx̂
4π(1− ~v · x̂)

, (A.31)

the charge Qlog
+ given by eq. (2.25) is computed as

Qlog
+ = −1

2

∫
d2Ω
√
γγAB(~x0 · x̂− t0)

e~v · ∂Bx̂
4π(1− ~v · x̂)

∇A∆S2ε(0)

=
e

8π

∫
d2Ω
√
γ

[
(~x0 · x̂− t0)

(
1− 1− |~v|2

(1− ~v · x̂)2

)
+
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) .

(A.32)

Note that this does not depend on U . As shown in [27], this charge is related to the soft factor
in the subleading soft photon theorem. The momentum of the charged particle is initially
pµ = m(1, 0) and finally p′µ = ω(1, ~v) with ω = m/

√
1− |~v|2. The angular momentum is

initially Jµν = xµ0p
ν − xν0p

µ and finally J ′µν = xµ0p
′ν − xν0p

′µ. They read pu = m = −q · p,
p′u = ω(1−~v·x̂) = −q·p′, p′B = ω~v·∂B~x, JuB = −pu~x0·∂B~x and J ′uB = −(~x0·x̂−t0)p′B−p′u~x0·∂B~x
where qµ = (1, x̂). Using them, we have

(~x0 · x̂− t0)
~v · ∂Bx̂
1− ~v · x̂

=
1

r

[
J ′uB
q · p′

− JuB
q · p

]
. (A.33)

Thus, Qlog
+ can also be written as

Qlog
+ = − e

8π

∫
d2Ω
√
γ lim
r→∞

(
rJ ′uA

q · p′
− rJuA

q · p

)
∇A∆S2ε(0) . (A.34)

The charge Qlog′
+ given by (2.26) is computed as follows. The radial component Ar in (u, r,Ω)
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coordinates is

Ar = − e

4πr
+O(r−2), (A.35)

and we thus have A
(1)
r = −e/(4π), which does not contribute to the charge Qlog′

+ because∫
d2Ω
√
γA(1)

r ∆S2ε(0) = − e

4π

∫
d2Ω
√
γ∆S2ε(0) = 0 . (A.36)

We also have C
(1)
u = 0, C

(1)
A = 0 and

∇BA
(0)
B =

e

4π
Θ(u+ ~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
+

e

4π
δ(u+ ~x0 · x̂− t0)

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
. (A.37)

Therefore,

Qlog′
+ = − e

8π

∫
d2Ω
√
γ(2U + ~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
∆S2ε(0)

− e

8π

∫
d2Ω
√
γ

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) , (A.38)

and for any ε(0)(Ω) we have

Qlog′
+ +Qlog

f = − e

8π

∫
d2Ω
√
γ(~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
∆S2ε(0)

− e

8π

∫
d2Ω
√
γ

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) (A.39)

= −Qlog
+ . (A.40)

This is the subleading memory effect.
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B Asymptotic expansion of radiation fields

We here investigate the large-r expansion of radiation fields in the Lorenz gauge ∂µA
µ = 0. We

suppose that gauge fields are generally expanded as follows:23

Au =
log |u|

2r

r
C(1)
u (u,Ω) +

1

r
A(1)
u (u,Ω) +

log |u|
2r

r2
C(2)
u (u,Ω) +

1

r2
A(2)
u (u,Ω) + · · · , (B.1)

Ar =
1

r
A(1)
r (u,Ω) +

log |u|
2r

r2
C(2)
r (u,Ω) +

1

r2
A(2)
r (u,Ω) + · · · , (B.2)

AB = A
(0)
B (u,Ω) +

log |u|
2r

r
C

(1)
B (u,Ω) +

1

r
A

(1)
B (u,Ω) + · · · . (B.3)

Inserting them into the Lorenz gauge condition

−∂uAr + ∂r(−Au + Ar) +
2

r
(−Au + Ar) +

1

r2
∇BAB = 0, (B.4)

we find

∂uA
(1)
r = 0 , C(1)

u + ∂uC
(2)
r = 0 , −∂uA(2)

r −
1

u
C(2)
r + C(1)

u − A(1)
u + A(1)

r +∇BA
(0)
B = 0 ,

(B.5)

where ∇B is the covariant derivative associated with the two-sphere metric γAB, and ∇B =
γBA∇A.

Eq. (2.26) is obtained by expanding F rB and F ru in (2.16) with (B.1), (B.2) and (B.3). Using
the above expansion, F rB and F ru are computed as

F rB = −∂uAB + ∂rA
B +

γBC

r2
∂C(Au − Ar)

= − 1

r2
γBC∂uA

(0)
C −

log |u|
2r

r3
γBA

(
∂uC

(1)
A − ∂AC

(1)
u

)
+O(r−3) , (B.6)

F ru = ∂uAr − ∂rAu =
1

r2

(
A(1)
r +∇BA

(0)
B + 2C(1)

u

)
+O(r−2−ε) , (B.7)

and the expansions lead to (2.26).
The free equations of motion 2Aµ = 0 in the Lorenz gauge can be written in the retarded

coordinates as[
∂2
r − 2∂u∂r +

2

r
(−∂u + ∂r) +

1

r2
∆S2

]
Au = 0 , (B.8)[

∂2
r − 2∂u∂r +

2

r
(−∂u + ∂r) +

1

r2
∆S2

]
Ar −

2

r2
(−Au + Ar)−

2

r3
∇BAB = 0 , (B.9)[

∂2
r − 2∂u∂r

]
AB +

1

r2
∆S2AB +

2

r
∂B(−Au + Ar) = 0 . (B.10)

23The expansion is more general than that in [1], because we allow log r terms like the gauge parameter ε(x)
[see (2.23)].
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Inserting the expansions (B.1), (B.2) and (B.3), we obtain

∂uC
(1)
u = 0, ∂uC

(2)
u = −1

2
∆S2C(1)

u , ∂uA
(2)
u +

1

u
C(2)
u = −1

2
C(1)
u +

1

2
∆S2

(
C(1)
u − A(1)

u

)
, (B.11)

∂uC
(2)
r = −C(1)

u , ∂uA
(2)
r +

1

u
C(2)
r = C(1)

u − A(1)
u + A(1)

r −
1

2
∆S2A(1)

r +∇BA
(0)
B , (B.12)

∂uC
(1)
B = ∂BC

(1)
u , ∂uA

(1)
B +

1

u
C

(1)
B = −∂B(C(1)

u − A(1)
u + A(1)

r )− 1

2
∆S2A

(0)
B . (B.13)

Using the condition (B.5), we find that A
(1)
r is a constant.

C Asymptotic behaviors of the massive particles

In this appendix, we summarize our notation used in the analysis of massive particles, and
provide the concrete expressions of the matter current of a massive scalar in the asymptotic
regions.

A free massive complex scalar φ(x) can be expressed as

φ(x) =

∫
d3p

(2π)32Ep

(
b(~p)eipx + d†(~p)e−ipx

)
, (C.1)

where b(~p) and d(~p) are the annihilation operators for particles and antiparticles, respectively.
The nonzero commutation relations of the creation and annihilation operators are given by

[b(~p), b†(~p ′)] = [d(~p), d†(~p ′)] = (2π)3(2Ep)δ
(3)(~p− ~p ′) . (C.2)

All massive particles go to the future timelike infinity i+ not the null infinity in the asymptotic
future time. When we work around the timelike infinity, it is convenient to introduce the
following rescaled time and radial coordinates [8]:

τ 2 = t2 − r2 , ρ =
r√

t2 − r2
. (C.3)

The Minkowski line element then takes the form

ds2 = −dτ 2 + τ 2 hαβdσ
αdσβ, (C.4)

where σα = (ρ,ΩA) are coordinates of the unit three-dimensional hyperbolic space H3 with the
line element

hαβdσ
αdσβ =

dρ2

1 + ρ2
+ ρ2γABdΩAdΩB. (C.5)

In the large τ limit (τ → +∞), using the saddle point approximation [8], the scalar field can
be expressed as

φ(τ, ρ,Ω) =

√
m

2(2πτ)3/2

(
b(~p)e−imτ−3πi/4 + d†(~p)eimτ+3πi/4

)
|~p=mρx̂(Ω) +O(τ−

3
2
−ε). (C.6)
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Therefore, in the asymptotic region, φ(τ, ρ,Ω) only creates (or annihilates) the (anti-)particle
with localized momentum,

~p = mρx̂(Ω) , Ep = m
√

1 + ρ2 (C.7)

at the leading order.
Then, if we ignore the interaction near the timelike infinity, the global U(1) current of the

massive charged scalar with the normal ordering is given by

jmatµ (τ, ρ,Ω) = ie :
(
∂µφ̄(x)φ(x)− φ̄(x)∂µφ(x)

)
: (C.8)

=
j

(3)
µ (τ, ρ,Ω)

τ 3
+O(τ−3−ε), (C.9)

where

j(3)
τ (τ, ρ,Ω) = j(3)

τ (σ) = − em2

2(2π)3

(
b†b− d†d

)
, (C.10)

j(3)
ρ (τ, ρ,Ω) =

iem

4(2π)3

[(
∂ρb
† b− b†∂ρb

)
+ i
(
b†∂ρd

†e2imτ − ∂ρb de−2imτ
)
− (b↔ d)

]
, (C.11)

j
(3)
A (τ, ρ,Ω) =

iem

4(2π)3

[(
∂Ab

† b− b†∂Ab
)

+ i
(
b†∂Ad

†e2imτ − ∂Ab de−2imτ
)
− (b↔ d)

]
. (C.12)

Here, we have represented b = b(mρx̂(Ω)), d = d(mρx̂(Ω)) for brevity. Then one can extract

the diagonal parts from the j
(3)
ρ and j

(3)
A by multiplying the projection operator 1

4m2 (∂2
τ + 4m2),

∂ρb
†b− b†∂ρb− ∂ρd†d+ d†∂ρd =

−i(2π)3

em3
(∂2
τ + 4m2)j(3)

ρ , (C.13)

∂Ab
†b− b†∂Ab− ∂Ad†d+ d†∂Ad =

−i(2π)3

em3
(∂2
τ + 4m2)j

(3)
A . (C.14)

Since 1
4m2 (∂2

τ + 4m2)j
(3)
ρ and 1

4m2 (∂2
τ + 4m2)j

(3)
A are independent of τ , we represent them by

Imatα (σ) as

Imatα (σ) ≡ lim
τ→∞

[
1

4m2
∂2
τ + 1

]
τ 3jmatα (τ, σ) (C.15)

=
iem

4(2π)3

[
∂αb

†b− b†∂αb− ∂αd†d+ d†∂αd
]
. (C.16)
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D Derivation of eq. (4.22)

In this appendix, we explain some details of computation to derive (4.22). Inserting (4.21) into

(4.15), Qsub,+
H is written as a sum of two parts Q

sub,(ρ)
H and Q

sub,(ϕ)
H :

Qsub,+
H = Q

sub,(ρ)
H +Q

sub,(ϕ)
H (D.1)

Q
sub,(ρ)
H ≡ − 1

8π

∫
d2Ω
√
γ

∫
H3

d3σ̃
√
h̃∆S2ε(0) Imatρ (ρ, Ω̃)∇B

[√
1 + ρ2 ∂Bx̂(Ω) · ŷ(Ω̃)

q · Y

]
, (D.2)

Q
sub,(ϕ)
H ≡ − 1

8π

∫
d2Ω
√
γ

∫
H3

d3σ̃
√
h̃∆S2ε(0) γ̃CDImatD (ρ, Ω̃)

×∇B

[
1

q · Y

{√
1 + ρ2

ρ
∂Bx̂ · ∂̃C ŷ − (x̂ · ŷ)(∂Bx̂ · ∂̃C ŷ) + (x̂ · ∂̃C ŷ)(∂Bx̂ · ŷ)

}]
,

(D.3)

where d3σ̃
√
h̃ = dρd2Ω̃ ρ2√

1+ρ2

√
γ̃. We now show that

Q
sub,(ρ)
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hρρ(∇(h)

ρ ∇(h)
ρ εH3)Imatρ + 2ρhρρ(∇(h)

ρ εH3)Imatρ

]
, (D.4)

Q
sub,(ϕ)
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hAB(∇(h)

A ∇
(h)
ρ εH3)ImatB + 2ρhAB(∇(h)

A εH3)ImatB

]
, (D.5)

where ∇(h)
α denotes the covariant derivative compatible with the metric hαβ on H3. If these

(D.4) and (D.5) are obtained, eq. (4.22) is obvious.
In the following calculations, the formulae

∂Ax̂ · ∂Bx̂ = γAB, γAB∂Ax̂i ∂Bx̂j = δij − x̂i x̂j, ∆S2x̂i = −2x̂i (D.6)

are useful.
We first derive eq. (D.4). The key equation is

∇B

[
∂Bx̂(Ω) · ŷ(Ω̃)

q(Ω) · Y (ρ, Ω̃)

]
=

4π

ρ
GH3(ρ, Ω̃; Ω)− 1

ρ
, (D.7)

where GH3(ρ, Ω̃; Ω) was defined by eq. (3.45). Furthermore, GH3(ρ, Ω̃; Ω) satisfies the following
property

∆S2GH3(ρ, Ω̃; Ω) = ∆̃S2GH3(ρ, Ω̃; Ω), (D.8)

since GH3(ρ, Ω̃; Ω) depends on angle ΩA only through the inner product x̂(Ω) · ŷ(Ω̃). We thus
have∫

d2Ω
√
γ [∆S2ε(0)(Ω)]GH3(ρ, Ω̃; Ω) = ∆̃S2

∫
d2Ω
√
γ ε(0)(Ω)GH3(ρ, Ω̃; Ω) = ∆̃S2εH3(ρ, Ω̃),

(D.9)
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where εH3 was defined by (3.44). By virtue of above equations, Q
sub,(ρ)
H can be written as

Q
sub,(ρ)
H = −1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
Imatρ (ρ, Ω̃)

∫
d2Ω
√
γ∆S2ε(0)

[
GH3(ρ, Ω̃; Ω)− 1

4π

]
(D.10)

= −1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
Imatρ (ρ, Ω̃)∆̃S2εH3(ρ, Ω̃) . (D.11)

From the first line to the second line, we have used (D.9) and
∫
d2Ω
√
γ∆S2ε(0) = 0. In addition,

since εH3(σ) is a solution of the Laplace equation on H3 as ∆H3εH3(σ) = 0, it satisfies

∆S2εH3 = −(1 + ρ2)ρ2∇(h)
ρ ∇(h)

ρ εH3 − 2(1 + ρ2)ρ∇(h)
ρ εH3 . (D.12)

Using this equation and noting that hρρ = 1 + ρ2, eq. (D.4) can be obtained.
We next consider eq. (D.5). In (D.3), performing a partial integration, one encounters the

following quantity:

∆S2∇A

[
1

q · Y

{√
1 + ρ2

ρ
∂Ax̂ · ∂̃C ŷ − (x̂ · ŷ)(∂Ax̂ · ∂̃C ŷ) + (x̂ · ∂̃C ŷ)(∂Ax̂ · ŷ)

}]
. (D.13)

Performing the derivative, it becomes

(D.13) = ∆S2

[
x̂ · ∂̃C ŷ
(q · Y )2

(
2

ρ
+ ρ−

√
1 + ρ2x̂ · ŷ

)]
. (D.14)

Performing the Laplacian, it further becomes

(D.14) = −2x̂ · ∂̃C ŷ
(q · Y )4

(
2

ρ
− ρ+

√
1 + ρ2x̂ · ŷ

)
= −4π

√
1 + ρ2

ρ

[
∇(h)
ρ ∇̃

(h)
C GH3(ρ, Ω̃; Ω) +

2

ρ
∇̃(h)
C GH3(ρ, Ω̃; Ω)

]
. (D.15)

Therefore, (D.3) can be written as

Q
sub,(ϕ)
H =

1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
γ̃CDImatD (ρ, Ω̃)

×
∫
d2Ω
√
γε(0)

[
∇(h)
ρ ∇̃

(h)
C GH3(ρ, Ω̃; Ω) +

2

ρ
∇̃(h)
C GH3(ρ, Ω̃; Ω)

]
=

1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
γ̃CDImatD (ρ, Ω̃)

[
∇(h)
ρ ∇̃

(h)
C εH3(ρ, Ω̃) +

2

ρ
∇̃(h)
C εH3(ρ, Ω̃)

]
=

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ
hCDImatD (ρ,Ω)

[
ρ2∇(h)

ρ ∇
(h)
C εH3(ρ,Ω) + 2ρ∇(h)

C εH3(ρ,Ω)
]
,

(D.16)

where we have renamed the integration variables and used γAB = ρ2hAB in the last line. Thus,
we have obtained eq. (D.5).
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