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Renormalizing gravity: a new insight into an old problem
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Abstract

It is well-known that perturbative quantum gravity is non-renormalizable. The metric or vierbein

has generally been used as the variable to quantize in perturbative quantum gravity. In this essay,

we show that one can use the spin connection instead, in which case it is possible to obtain a

ghost-free renormalizable theory of quantum gravity. Furthermore in this approach, gravitational

analogs of particle physics phenomena can be studied. In particular, we study the gravitational

Higgs mechanism using spin connection as a gauge field, and show that this provides a mechanism

for the effective reduction in the dimensionality of spacetime.
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General relativity (GR) and quantum field theory (QFT) are theoretically well-founded

and experimentally verified theories. Even though QFTs have divergences, they can be dealt

with by renormalization, for theories where the interactions are bounded by the free action

[1]-[2]. In four dimensions, interactions are bounded by the free action in theories with quar-

tic interactions terms because the first Sobolev norm bounds the volume integral of such

interactions (as is the case of Yang-Mills theories) [1]-[2]. Since all interactions in the Stan-

dard Model (SM) of particle physics are described by such theories, SM is renormalizable.

On the other hand, for perturbative quantum gravity (QG) in four dimensions, governed

by the action S = (1/16πGN)
∫

d4x
√−g R (where R = curvature scalar, GN = Newton’s

constant), the interactions are not bounded by the free action and thus perturbative QG

is non-renormalizable [3]-[6]. Furthermore, in the above action, perturbation theory breaks

down as the perturbations can exceed the values of the original metric or vierbein [1]-[2].

The situation changes, however, if one adds higher curvature terms to the action, namely

S =

∫

d4x
√
−g

[

− R

16πGN

− αRµνR
µν + βR2

]

. (1)

In this case, although one has interactions greater than quartic, the theory is still renor-

malizable [7], as now the second Sobolev norm bounds the pointwise value of perturbations,

and hence the free action bounds the interactions [1]-[2]. However, it is well-known that

this theory contains Ostrogradsky ghosts, giving rise to negative norm states and negative

probabilities [8]-[9]. The origin of these ghosts is the presence of higher derivative terms,

which occur in this theory when the curvature scalar R is expressed in terms of the metric

(gµν) or the vierbein (eaµ)
1.

In this essay, we show that the above problem does not occur if one uses the spin connec-

tion (ωab
µ ) as the variable to quantize. It may be noted that the spin connection has also been

used in Loop QG [10]. However they have not been studied in detail in perturbative QG.

Note that in classical gravity the use of the spin connection gives rise to identical predictions

as with metric variables, including experimentally measurable (gauge invariant) quantities.

However their behavior in quantum theory can be quite different.

In this picture, gravity can be considered as a gauge theory with the spin connection as a

SO(3, 1) gauge field [11]. The metric is given by gµν = eaµeaν with e =
√

|g|. Therefore, the

1 Greek letters denote spacetime indices and run from 0 to d, while Latin letters are used as tangent space

indices and run from 1 to d, in a (d+ 1)-dimensional spacetime.
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curvature tensor can be written as the field strength of the spin connection Rab
µν ≡ F ab

µν =

∂[µω
ab
ν] −ωca

[µω
b
ν]c . Then the curvature scalar is R = R(ω), while the action is S = S[e, ω] (the

e comes from the measure). The expression for the spin connection in terms of vierbeins

ωab
µ = −eνa∇µe

b
ν and the Einstein equations are obtained by varying S with respect to ωab

µ

and eaµ respectively [11]. Next, one can write a higher curvature action for gravity as a

topological field theory coupled to Yang-Mills theory in four dimensions as follows

S =

∫

d4x e

[

−
Bab

µνF
µν
ab

16πGN

− 1

4g2
F µν
ab F

ab
µν

]

(2)

with Bab
µν = eaµe

b
ν and g is a coupling constant. It may be noted that in this formalism,

Einstein gravity (the first term) is a topological theory similar to a BF theory [12]. Further-

more, the second term is of the form of the higher curvature terms in Eq.(1), using the fact

that
∫

d4x e
[

Rab
µνR

µν
ab − 4Ra

µR
µ
a +R2

]

is the (Gauss-Bonnet) topological invariant in four-

dimensions, and vanishes for a topologically trivial background. It may be noted that even

though consistency of Newtonian limit of this theory with observational data needs further

investigation, this theory is clearly a ghost-free renormalizable theory in these variables.

This is because, as seen from Eq.(2), the interactions therein are quartic, just as in the case

of SM. Here instead of perturbing the metric or vierbein, one now studies the theory by

perturbing the spin connection

ωab
µ = ω̃ab

µ + ω̄ab
µ . (3)

where ω̄ab
µ is the background, and one quantizes the fluctuations ω̃ab

µ around it. This can

then be used to compute scattering processes involving gravity, now described in terms of

these fluctuations.

Having proposed a ghost-free renormalizable theory of gravity as a gauge theory, one

can explore gravity analogs of SM phenomena. In particular, in what follows, we study one

such example, namely spontaneous symmetry breaking (SSB) or the Higgs mechanism in

gravity. Gravitational Higgs mechanism has been studied in the past in various contexts,

including in a few instances using the spin connection [13]-[27], but none with the aim of

spontaneous dimensional reduction, to the best of our knowledge. For generality, we will

analyze SSB in (d+1)-spacetime dimensions. We start with a Higgs field Φ which transforms

under the vector representation of the (d+1)-dimensional Lorentz group (note that the vector

representation was also used in the Georgi-Glashow model for weak interactions [28]). Then,
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Φ has (d+ 1) real components. We choose a non-negative Higgs potential of the form

V (Φ†Φ) =
m2

φ2
0

[

Φ†Φ− φ2
0

]2 ≥ 0 , (4)

where m and φ0 are constants. The vacuum minimizing the above potential is Φ =

(0, . . . , φ0)
T . Fluctuations around this vacuum are denoted by h, i.e. Φ = (0, . . . , φ0 + h)T .

Next, using the covariant derivative DµΦ = (∂µ+
i
2
ωµ)Φ,

2 the Lagrangian for the Higgs field

coupled to gravity via spin connection can be written as follows, with subsequent expansions

around the vacuum

L = (DµΦ)
†(DµΦ)− V (Φ†Φ)

=
φ2
0

4

[

ω0d
µ ω0dµ + ω1d

µ ω1dµ + · · ·+ ωd−1,d
µ ωd−1,dµ

]

+2m2h2 +
1

2
∂µh∂

µh+

[

h2

8
+

hφ0

2
√
2

]

× (5)

[

ω0d
µ ω0dµ + ω1d

µ ω1dµ + · · ·+ ωd−1,d
µ ωd−1,dµ

]

+
m2

φ2
0

[√
2 φ0 h3 +

1

4
h4

]

.

It is seen from the above, that the d spin-connections, namely ωad
µ , with a = 0, . . . , d − 1

have each acquired a mass Mω = φ0/
√
2. The corresponding interactions are therefore short-

ranged. The Higgs field also acquires a mass m. The remaining d(d− 1)/2 spin connections

remain massless, accounting from the long-ranged nature of gravity. The symmetry of the

theory spontaneously reduces from: SO(d, 1) → SO(d− 1, 1). One can easily show that the

total number of degrees of freedom (d.o.f.) before and after SSB is the same. Before SSB,

one has (d− 1) d.o.f. for each of the d(d+1)/2 massless spin connection and one for each of

the (d+1) scalar components, i.e. a total of d(d+1)(d−1)/2+(d+1) = (d3+d)/2+1 d.o.f.

After SSB, one adds up the d.o.f. for the d massive spin connections (each with d d.o.f.),

d(d − 1)/2 massless spin connections (each with (d − 1) d.o.f.) and one residual massless

scalar field. This results in d × d+ d(d− 1)/2× (d− 1) + 1 = (d3 + d)/2 + 1 exactly same

as before.

It is natural to equate the SSB scale to the Planck scale in d-spacetime dimensions, such

that the mass acquired by massive spin connections is of the order of Planck mass M
(d)
pl .

This implies that they cannot be accessed by low-energy phenomena, and the dynamics in

2 Here, ωµ = ωab
µ Σab with Σab = −i[γa, γb]/4 and [Dµ, Dν ] =

i
2
Rab

µνΣab .
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spacetime is effectively described by a lower, d-dimensional theory. In other words, SSB has

caused an effective dimensional reduction from (d + 1) → d dimensions. This mechanism

provides an alternative to Kaluza-Klein compactification as a means of dimensional reduc-

tion, and may have potential applications in string/M-theory for dimensional reduction from

ten/eleven-dimensions to the observed four-dimensions.

We conclude from the above that gravitational Higgs mechanism presents a viable method

for the emergence of the observed 4-dimensional spacetime from a 5-dimensional one, near

the Planck energy scale MP lc
2 ≈ 1016 TeV . Our earlier comments about the renormaliz-

ability of gauge and gravity theories continue to hold in the final four-dimensional theory.

It is worth noting that in this case of 5 → 4 dimensional reduction via SSB, for matter

coupled to the residual massive spin connections, the dimensional Newton’s constant GN

appears naturally from a dimensionless coupling λ. The easiest way to see this is to start with

a matter current jµab coupled to the massive spin connections via an interaction Lagrangian,

Lint = −λ
∑

jµab ω
ab
µ , where the sum is over the massive spin-connections. Then, at energies

belowMω = MP l, the mass terms in Eq.(5) dominate and the effective Lagrangian is given by

Leff = λ
∑

[

1
2
M2

ω ωabµω
abµ − λjabµω

µ
ab

]

. Varying this with respect to ωab
µ , and substituting

the stationary solution ωabµ = λ
M2

ω

jabµ back in the effective action yields

Leff = −
∑

GN jabµ jµab with GN ≡
(

λ√
2Mω

)2

. (6)

This phenomenon is similar to the emergence of the effective dimensional Fermi constant

GF from the dimensionless SU(2) coupling constant g2, namely GF = g22/4
√
2M2

W with MW

as the W boson mass [29]-[30]. Note that this only occurs for massive spin connections, and

not for the massless long-ranged spin connections.

In summary, we have shown here that one can study perturbative QG using spin con-

nections as the dynamical variable, and that a higher curvature theory of gravity written in

terms of these connections gives a ghost-free and renormalizable theory of QG. Furthermore,

it is possible to study gravitational analogs of phenomena in particle physics in this picture.

In particular, we have studied SSB due to gravitational Higgs mechanism. Further work

in this direction may include computing corrections to Newton’s law and other scattering

processes involving particles interacting via spin connections to show that they are finite.

Acknowledgment: This work was supported in part by the Natural Sciences and Engi-

5



neering Research Council of Canada and the University of Lethbridge.

[1] S. W. Hawking and T. Hertog, Phys. Rev. D 65, 103515 (2002) [hep-th/0107088].

[2] M. Fontanini and M. Trodden, Phys. Rev. D 83, 103518 (2011) [arXiv:1102.4357 [gr-qc]].

[3] R. P. Feynman, Lectures on Gravitation, Addison-Wesley (1971).

[4] G. ’t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).

[5] S. Deser and P. van Nieuwenhuizen, Phys. Rev. D 10, 401 (1974).

[6] M. H. Goroff and A. Sagnotti, Nucl. Phys. B 266, 709 (1986).

[7] K. S. Stelle, Phys. Rev. D 16, 953 (1977).

[8] M. Ostrogradsky, Mem. Acad. St. Petersbourg 6, no. 4, 385 (1850).

[9] R. P. Woodard, Lect. Notes Phys. 720, 403 (2007) [astro-ph/0601672].

[10] A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004) [gr-qc/0404018].

[11] P. Ramond, Field Theory: A Modern Primer, Front. Phys. 74, 1 (1989).

[12] J. C. Baez, Lett. Math. Phys. 38, 129 (1996) [q-alg/9507006].

[13] A. Zee, Phys. Rev. Lett. 42, 417 (1979).

[14] J. Magueijo and L. Smolin, Class. Quant. Grav. 21, 1725 (2004) [gr-qc/0305055].

[15] R. Percacci, Phys. Lett. 144B, 37 (1984).

[16] R. Percacci, Nucl. Phys. B 353, 271 (1991) [arXiv:0712.3545 [hep-th]].

[17] V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989).

[18] I. L. Shapiro and H. Takata, Phys. Rev. D 52, 2162 (1995) [hep-th/9502111].

[19] R. Bluhm, A. Kostelecky, Phys. Rev. D 71, 065008, (2005) [hep-th/0412230].

[20] I. Kirsch, Phys. Rev. D 72, 024001 (2005) [hep-th/0503024].

[21] M. Leclerc, Annals Phys. 321, 708 (2006) [gr-qc/0502005].

[22] C. S. P. Wever, A Higgs Mechanism for Gravity, Univ. Utrecht Master’s Thesis (2009).

[23] A. H. Chamseddine and V. Mukhanov, JHEP 1208, 036 (2012) [arXiv:1205.5828 [hep-th]].

[24] J. W. Moffat, Class. Quant. Grav. 27, 135016 (2010) [arXiv:0905.1668 [hep-th]].

[25] J. W. Moffat, Found. Phys. 23, 411 (1993) [gr-qc/9209001].

[26] K. Krasnov, Phys. Rev. D 85, 125023 (2012) [arXiv:1112.5097 [hep-th]].

[27] I. Arraut, Europhys. Lett. 111 61001 (2015) [arXiv:1509.08338].

[28] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 28, 1494 (1972).

6

http://arxiv.org/abs/hep-th/0107088
http://arxiv.org/abs/1102.4357
http://arxiv.org/abs/astro-ph/0601672
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/q-alg/9507006
http://arxiv.org/abs/gr-qc/0305055
http://arxiv.org/abs/0712.3545
http://arxiv.org/abs/hep-th/9502111
http://arxiv.org/abs/hep-th/0412230
http://arxiv.org/abs/hep-th/0503024
http://arxiv.org/abs/gr-qc/0502005
http://arxiv.org/abs/1205.5828
http://arxiv.org/abs/0905.1668
http://arxiv.org/abs/gr-qc/9209001
http://arxiv.org/abs/1112.5097
http://arxiv.org/abs/1509.08338


[29] W. N. Cottingham and D. A. Greenwood, An introduction to the standard model of particle

physics, Cambridge University Press (2007).

[30] T. Cheng and L. Li, T. P. Cheng and L. F. Li, Gauge Theory Of Elementary Particle Physics,

Oxford University Press (1988).

7


	 References

