CYLINDERS IN MORI FIBER SPACES: FORMS OF THE QUINTIC DEL PEZZO THREEFOLD

ADRIEN DUBOULOZ AND TAKASHI KISHIMOTO

ABSTRACT. Motivated by the general question of existence of open \mathbb{A}^1 -cylinders in higher dimensional projective varieties, we consider the case of Mori Fiber Spaces of relative dimension three, whose general closed fibers are isomorphic to the quintic del Pezzo threefold V_5 , the smooth Fano threefold of index two and degree five. We show that the total spaces of these Mori Fiber Spaces always contain relative \mathbb{A}^2 -cylinders, and we characterize those admitting relative \mathbb{A}^3 -cylinders in terms of the existence of certain special lines in their generic fibers.

Introduction

An \mathbb{A}^r_k -cylinder in a normal algebraic variety defined over a field k is a Zariski open subset U isomorphic to $Z \times \mathbb{A}^r_k$ for some algebraic variety Z defined over k. In the case where $k = \overline{k}$ is algebraically closed, normal projective varieties V containing \mathbb{A}^1_k -cylinders have received a lot of attention recently due to the connection between unipotent group actions on their affine cones and polarized \mathbb{A}^1_k -cylinders in them, that is \mathbb{A}^1_k -cylinders whose complements are the supports of effective \mathbb{Q} -divisors linearly equivalent to an ample divisor on V (cf. [12, 13]). Certainly, the canonical divisor K_V of a normal projective variety containing an \mathbb{A}^r_k -cylinder for some $r \geq 1$ is not pseudo-effective. Replacing V if necessary by a birational model with at most \mathbb{Q} -factorial terminal singularities, [1] guarantees the existence of a suitable K_V -MMP $V \dashrightarrow X$ whose output X is equipped with a structure of Mori Fiber Space $f: X \to Y$ over some lower dimensional normal projective variety Y. Since an \mathbb{A}^1_k -cylinder in X can always be transported back in the initial variety V [4, Lemma 9], total spaces of Mori Fiber Spaces form a natural restricted class in which to search for varieties containing \mathbb{A}^1_k -cylinders.

In the case where dim Y=0, X is a Fano variety of Picard number one. The only smooth Fano surface of Picard number is the projective plane $\mathbb{P}^2_{\overline{k}}$ which obviously contains $\mathbb{A}^1_{\overline{k}}$ -cylinders. Several families of examples of smooth Fano varieties of dimension 3 and 4 and Picard number one containing $\mathbb{A}^1_{\overline{k}}$ -cylinders have been constructed [14, 21, 22]. The question of existence of $\mathbb{A}^1_{\overline{k}}$ -cylinders in other possible outputs of MMPs was first considered in [2, 3], in which del Pezzo fibrations $f: X \to Y$, which correspond to the case where dim $Y = \dim X - 2 > 0$, were extensively studied. In such a relative context, it is natural to shift the focus to cylinders which are compatible with the fibration structure:

Definition. Let $f: X \to Y$ be a morphism between normal algebraic varieties defined over a field k and let $U \simeq Z \times \mathbb{A}_k^r$ be an \mathbb{A}_k^r -cylinder inside X. We say that U is vertical with respect to f if the restriction $f|_U$ factors as

$$f|_{U} = h \circ \operatorname{pr}_{Z} : U \simeq Z \times \mathbb{A}_{k}^{r} \xrightarrow{\operatorname{pr}_{Z}} Z \xrightarrow{h} Y$$

for a suitable morphism $h: Z \to Y$.

In the present article, we initiate the study of existence of vertical \mathbb{A}^1 -cylinders in Mori Fiber Spaces $f: X \to Y$ of relative dimension three, whose general fibers are smooth Fano threefolds. Each smooth Fano threefold of Picard number one can appear as a closed fiber of a Mori Fiber Space, and among these,

1

²⁰⁰⁰ Mathematics Subject Classification. 14E30; 14J30; 14J45; 14R10; 14R25;

Key words and phrases. Fano threefold, Mori Fiber Space, Sarkisov link: Cremona involutions: Cylinders,

The second author was partially funded by Grant-in-Aid for Scientific Research of JSPS No. 15K04805. The research was initiated during a visit of the first author at Saitama University and continued during a stay of the second author at University of Burgundy as a CNRS Research Fellow. The authors thank these institutions for their generous support and the excellent working conditions offered.

it is natural to first restrict to classes which contain a cylinder of the maximal possible dimension, namely the affine space \mathbb{A}^3_k , and expect that some suitable sub-cylinders of these fiber wise maximal cylinders could arrange into a vertical cylinder with respect to f, possibly of smaller relative dimension. The only four classes of Fano threefold of Picard number one containing \mathbb{A}^3_k are \mathbb{P}^3_k , the quadric \mathbb{Q}^3 , the del Pezzo quintic threefold V_5 of index two and degree five [7, 8], and a four dimensional family of prime Fano threefolds V_{22} of genus twelve [6, 20].

The existence inside X of a vertical \mathbb{A}^r -cylinder with respect to $f: X \to Y$ translates equivalently into that of an \mathbb{A}^r_K -cylinder inside the fiber X_η of f over the generic point η of Y, considered as a variety defined over the function field K of Y [3]. We are therefore led to study the existence of \mathbb{A}^r_K -cylinders inside K-forms of the aforementioned Fano threefolds over non-closed fields K of characteristic zero, that is, smooth projective varieties defined over K whose base extensions to an algebraic closure \overline{K} are isomorphic over \overline{K} to one of these Fano threefolds. The case of \mathbb{P}^3 is easily dispensed: a K-form V of \mathbb{P}^3 contains an \mathbb{A}^3_K -cylinder if and only if it has a K-rational point hence if and only if it is the trivial K-form \mathbb{P}^3_K . So equivalently, a Mori Fiber Space $f: X \to Y$ whose general closed fibers are isomorphic to \mathbb{P}^3_K contains a vertical \mathbb{A}^3_K -cylinder if and only if it has a rational section. The case of the quadric \mathbb{Q}^3 is already more intricate: one can deduce from [6] that a K-form V of \mathbb{Q}^3 contains \mathbb{A}^3_K if and only if it has a hyperplane section defined over K which is a K-rational quadric cone. In this article, we establish a complete characterization of the existence of \mathbb{A}^r_K -cylinders in forms of V_5 which can be summarized as follows:

Theorem. Let K be a field of characteristic zero and let Y be a K-form of V_5 . Then Y always contains an \mathbb{A}^2_K -cylinder, and it contains an \mathbb{A}^3_K -cylinder if and only if it contains a curve $\ell \simeq \mathbb{P}^1_K$ of anticanonical degree $-K_Y \cdot \ell = 2$ and with normal bundle $\mathcal{N}_{\ell/Y} \simeq \mathcal{O}_{\mathbb{P}^1_K}(-1) \oplus \mathcal{O}_{\mathbb{P}^1_K}(1)$.

An irreducible curve ℓ of anticanonical degree $-K_Y \cdot \ell = 2$ on a K-form Y of V_5 becomes after base extension to an algebraic closure \overline{K} of K a usual line on $Y_{\overline{K}} \simeq V_5$ embedded into $\mathbb{P}^6_{\overline{K}}$ via its half-anticanonical complete linear system. By combining the previous characterization with a closer study of the Hilbert scheme of such curves ℓ on Y (see §2.1), we derive the following result (see Corollary 13):

Corollary. Let \overline{k} be an algebraically closed field of characteristic zero and let $f: X \to C$ be a Mori Fiber Space over a curve C defined over \overline{k} , whose general closed fibers are quintic del Pezzo threefolds V_5 . Then X contains a vertical $\mathbb{A}^3_{\overline{k}}$ -cylinder with respect to f.

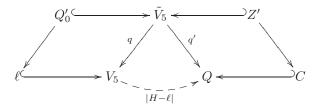
Section 1 contains a brief recollection on the quintic del Pezzo threefold V_5 and its Hilbert scheme of lines. In Section 2, we establish basic geometric properties of forms of V_5 and describe their Hilbert schemes of lines. We also describe an adaptation to non-closed fields of a standard construction of V_5 as the variety of trisecant lines to a Veronese surface in \mathbb{P}^4 , from which we derive for suitable fields the existence of forms of V_5 which do not contain any line with normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$. The technical core of the article is then Section 3: we give a new construction of a classical rational map, called the double projection from a rational point of a form of V_5 in the form of a Sarkisov link from a \mathbb{P}^1 -bundle over \mathbb{P}^2 explicitly determined by the base locus of a quadratic birational involution of \mathbb{P}^2 . The main results concerning \mathbb{A}^r -cylinders in forms of V_5 are then derived from this construction in Section 4.

1. Geometry of the smooth quintic del Pezzo threefold

In the rest of this article, unless otherwise stated, the notations k and \overline{k} refer respectively to a field of characteristic zero and a fixed algebraic closure of k. In this section, we recall without proof classical descriptions and properties of the quintic del Pezzo threefold V_5 over \overline{k} and of its Hilbert scheme of lines.

- 1.1. Two classical descriptions of V_5 . A quintic del Pezzo threefold V_5 over \overline{k} is a smooth projective threefold whose Picard group is isomorphic to \mathbb{Z} , generated by an ample class H such that $-K_{V_5} = 2H$ and $H^3 = 5$. In other words, V_5 is a smooth Fano threefold of index two and degree five.
- 1.1.1. Sarkisov links to a smooth quadric in \mathbb{P}^4 . Let us first recall the classical description due to Iskovskikh [11, Chapter II, §1.6]. Letting H be an ample class such that $-K_{V_5}=2H$, the complete linear system |H| defines a closed embedding $\Phi_{|H|}:V_5\hookrightarrow \mathbb{P}^6_{\overline{k}}$. A general hyperplane section of V_5 contains a line ℓ whose

normal bundle in V_5 is trivial, and the projection from ℓ induces a birational map $V_5 \dashrightarrow Q$ onto a smooth quadric $Q \subset \mathbb{P}^4_k$. The inverse map $Q \dashrightarrow V_5$ can be described as the blow-up of Q along a rational normal cubic $C \subset Q$ contained in a smooth hyperplane section $Q_0 \simeq \mathbb{P}^1_k \times \mathbb{P}^1_k$ of Q, followed by the contraction of the proper transform Q'_0 of Q_0 onto the line ℓ . In sum, the projection from the line ℓ induces a Sarkisov link



where $q: \tilde{V}_5 \to V_5$ is the blow-up of V_5 along ℓ with exceptional divisor Q_0' and $q': \tilde{V}_5 \to Q$ is the contraction onto the curve C of the proper transform Z' of the surface $Z \subset V_5$ swept out by lines in V_5 intersecting ℓ .

Since the automorphism group $\operatorname{PGL}_5(\overline{k})$ of $\mathbb{P}^4_{\overline{k}}$ acts transitively on the set of flags $C \subset Q_0 \subset Q$, it follows that over an algebraically closed field \overline{k} , all smooth Fano threefold of Picard number one, index two and degree five embedded into $\mathbb{P}^6_{\overline{k}}$ by their half-anticanonical complete linear system are projectively equivalent.

1.1.2. Quasi-homogeneous space of $\operatorname{PGL}_2(\overline{k})$. We now recall an alternative description of V_5 due to Mukai-Umemura [19] (see also [16, §5.1]). Let $M_d = \operatorname{Sym}^d(\overline{k}^2)^{\vee} \simeq \overline{k}[x,y]_{(d)}$ be the space of homogeneous polynomials of degree d with coefficients in \overline{k} . The natural action of $\operatorname{GL}_2(\overline{k})$ on M_1 induces a linear action on M_6 , hence an action of $\operatorname{PGL}_2(\overline{k})$ on $\operatorname{P}(M_6) \simeq \operatorname{P}_{\overline{k}}^6$. We then have the following description:

Proposition 1. The Fano threefold V_5 is isomorphic to the closure $\operatorname{PGL}_2(\overline{k}) \cdot [\phi]$ of the class of the polynomial $\phi = xy(x^4 + y^4) \in M_6$. Furthermore, the $\operatorname{PGL}_2(\overline{k})$ -orbits on V_5 are described as follows:

- (i) The open orbit $O = \operatorname{PGL}_2(\overline{k}) \cdot [\phi]$ with stabilizer equal to the binary octahedral group,
- (ii) The 2-dimensional orbit $S_2 = \operatorname{PGL}_2(\overline{k}) \cdot [xy^5]$, which is neither open nor closed, with stabilizer equal to the diagonal torus \mathbb{T} .
- (iii) The 1-dimensional closed orbit $C_6 = \operatorname{PGL}_2(\overline{k}) \cdot [x^6]$ with stabilizer equal to the Borel subgroup B of upper triangular matrices.

It follows from this description that the automorphism $\operatorname{Aut}(V_5)$ is isomorphic to $\operatorname{PGL}_2(\overline{k})$. We also observe that C_6 is a normal rational sextic curve and that the closure $\overline{S}_2 = S_2 \cup C_6$ of S_2 is a quadric section of V_5 , hence an anti-canonical divisor on V_5 , which coincides with the tangential scroll of C_6 , swept out by the tangent lines to C_6 contained in V_5 . It is singular along C_6 , and its normalization morphism coincides with the map $\nu : \mathbb{P}(M_1) \times \mathbb{P}(M_1) \to \mathbb{P}(M_6)$, $(f_1, f_2) \mapsto f_1^5 f_2$.

1.2. Lines on V_5 . The family of lines on V_5 is very well-studied [11, 7, 10]. We list below some of its properties which will be useful later on for the study of cylinders on forms of V_5 .

First, by a line on V_5 , we mean an integral curve $\ell \subset V_5$ of anticanonical degree $-K_{V_5} \cdot \ell = 2$. It thus corresponds through the half-anticanonical embedding $\Phi_{|H|} : V_5 \hookrightarrow \mathbb{P}^6_{\overline{k}}$ to a usual line in $\mathbb{P}^6_{\overline{k}}$ which is contained in the image of V_5 . A general line ℓ in V_5 has trivial normal bundle, whereas there is a one-dimensional subfamily of lines with normal bundle $\mathcal{N}_{\ell/V_5} \simeq \mathcal{O}_{\mathbb{P}^1_{\overline{k}}}(-1) \oplus \mathcal{O}_{\mathbb{P}^1_{\overline{k}}}(1)$, which we call special lines.

The Hilbert scheme $\mathcal{H}(V_5)$ of lines in V_5 is isomorphic to $\mathbb{P}^{\frac{\mathcal{S}}{k}}$, and the evaluation map $v: \mathcal{U} \to V_5$ from the universal family $\mathcal{U} \to \mathcal{H}(V_5)$ is a finite morphism of degree 3. There are thus precisely three lines counted with multiplicities passing through a given closed point of V_5 .

The curve in $\mathcal{H}(V_5) \simeq \mathbb{P}^2_{\overline{k}}$ that parametrizes special lines in V_5 is a smooth conic C. The restriction of v to $\mathcal{U}|_C$ is injective, and in the description of V_5 as a quasi-homogeneous space of $\operatorname{PGL}_2(\overline{k})$ given in § 1.1.2 above, $v(\mathcal{U}|_C)$ is the tangential scroll \overline{S}_2 to the rational normal sextic C_6 , while C_6 itself coincides with the image of the intersection of $\mathcal{U}|_C$ with the ramification locus of v. In particular, special lines on V_5 never intersect each others. Furthermore, there are three lines with trivial normal bundle through any point in $V_5 \setminus \overline{S}_2$, a line with trivial normal bundle and a special line through any point of S_2 , and a unique special line through every point of C_6 .

2. Forms of V_5 over non-closed fields

A k-form of V_5 is a smooth projective variety Y defined over k such that $Y_{\overline{k}}$ is isomorphic to V_5 . In this subsection, we establish basic properties of these forms and their Hilbert schemes of lines.

2.1. Hilbert scheme of lines on a k-form of V_5 . Let Y be a k-form of V_5 , let $\mathcal{H}(Y)$ be the Hilbert scheme of irreducible curves of $-K_Y$ -degree equal to 2 on Y and let $v: \mathcal{U} \to Y$ be the evaluation map from the universal family $\mathcal{U} \to \mathcal{H}(Y)$. By \S 1.2, $\mathcal{H}(Y)_{\overline{k}} = \mathcal{H}(Y_{\overline{k}})$ is isomorphic to $\mathbb{P}^2_{\overline{k}}$, i.e. $\mathcal{H}(Y)$ is a k-form of $\mathbb{P}^2_{\overline{k}}$. Furthermore, since the smooth conic parametrizing special lines on $Y_{\overline{k}}$ is invariant under the action of the Galois group $\mathrm{Gal}(\overline{k}/k)$, it corresponds to a smooth curve $C \subset \mathcal{H}(Y)$ defined over k, and such that $C_{\overline{k}} \simeq \mathbb{P}^1_{\overline{k}}$.

Lemma 2. Let Y be a k-form of V_5 .

- a) The Hilbert scheme $\mathcal{H}(Y)$ of lines on Y is isomorphic to \mathbb{P}^2_k , in particular Y always contains lines defined over k with trivial normal bundles.
 - b) The following assertions are equivalent:
 - (i) Y contains a special line defined over k,
 - (ii) The conic C has a k-rational point,
 - (iii) The surface $v(\mathcal{U}|_C)$ has a k-rational point,
 - (iv) The image of the intersection of $\mathcal{U}|_C$ with the ramification locus of v has a k-rational point.

Proof. Since $\mathcal{H}(Y)$ is a k-form of $\mathbb{P}^2_{\overline{k}}$, to prove the first assertion it is enough to show that $\mathcal{H}(Y)$ has a k-rational point. Since $C_{\overline{k}} \simeq \mathbb{P}^1_{\overline{k}}$, there exists a quadratic extension $k \subset k'$ such that C(k') is nonempty, so that in particular $\mathcal{H}(Y)_{k'} \simeq \mathbb{P}^2_{k'}$. Let p be a k'-rational point of $C_{k'}$. If p is invariant under the action of the Galois group $\operatorname{Gal}(k'/k)$, then it corresponds to a k-rational point of C, hence of $\mathcal{H}(Y)$, and we are done. Otherwise, its Galois conjugate \overline{p} is a k'-rational point of $C_{k'}$ distinct from p, and then the tangent lines $T_pC_{k'}$ and $T_{\overline{p}}C_{k'}$ to $C_{k'}$ at p and \overline{p} respectively intersect each other at unique point. The latter is thus $\operatorname{Gal}(k'/k)$ -invariant, hence corresponds to a k-rational point of $\mathcal{H}(Y) \setminus C$. The existence of lines with trivial normal bundles defined over k then follows from the description of $\mathcal{H}(V_5)$ given in § 1.2.

The second assertion is an immediate consequence of the facts that special lines in $Y_{\overline{k}}$ are in one-to-one correspondence with closed points of the image D of the intersection of $(\mathcal{U}|_C)_{\overline{k}}$ with the ramification locus of v, and that $v(\mathcal{U}|_C)_{\overline{k}}$ coincides with the surface swept out by the tangent lines to D.

Corollary 3. A k-form Y of V_5 is k-rational and the natural map $\operatorname{Pic}(Y) \to \operatorname{Pic}(Y_{\overline{k}})$ is an isomorphism.

Proof. By Lemma 2 a), Y contains a line $\ell \simeq \mathbb{P}^1_k$ with trivial normal bundle. The surface Z in $Y_{\overline{k}}$ swept out by lines intersecting $\ell_{\overline{k}}$ is defined over k. As in § 1.1.1, the composition of the blow-up $q: \tilde{Y} \to Y$ of ℓ with exceptional divisor $Q'_0 \simeq \mathbb{P}^1_k \times \mathbb{P}^1_k$ followed by the contraction $q': \tilde{Y} \to Q$ of the proper transform of Z' of Z yields a birational map $Y \dashrightarrow Q$ defined over k onto a smooth quadric $Q \subset \mathbb{P}^4_k$, which maps Q'_0 onto a hyperplane section Q_0 of Q. Since Q contains k-rational points, it is k-rational. The natural map $\operatorname{Pic}(Y) \to \operatorname{Pic}(Y_{\overline{k}})$ is an isomorphism if and only $-K_Y$ is divisible in $\operatorname{Pic}(Y)$. But since $-K_Q \sim 3Q_0$ and $q'^*Q_0 = Q'_0 + Z'$, we deduce from the ramification formula for q and q' that

$$-K_Y \sim q_*(-K_{\tilde{Y}}) \sim q_*(-{q'}^*K_Q - Z') \sim q_*(3Q_0' + 2Z') \sim 2Z.$$

2.2. Varieties of trisecant lines to Veronese surfaces in \mathbb{P}^4 . In this subsection, we review a third classical construction of V_5 as the variety of trisecant line to the Veronese surface in $\mathbb{P}^4_{\overline{k}}$ which, when performed over k gives rise, depending on the choices made, to nontrivial k-forms of V_5 .

Let V be a k-vector space of dimension 3, let $f \in \operatorname{Sym}^2V^*$ be a homogeneous form defining a smooth conic $Q \subset \mathbb{P}(V)$, and let $W = \operatorname{Sym}^2(V^*/\langle f \rangle)$. Recall that a closed subscheme $Z \subset \mathbb{P}(V^*)$ defined over k is called apolar to Q if the class of $[f] \in \mathbb{P}(\operatorname{Sym}^2V^*)$ lies in the linear span of the image of Z by the second Veronese embedding $v_2 : \mathbb{P}(V^*) \hookrightarrow \mathbb{P}(\operatorname{Sym}^2V^*)$. When $Z = \{[\ell_1], [\ell_2], [\ell_3]\} \subset \mathbb{P}(V^*)$ consists of three distinct k-rational points, this says equivalently that there are scalars $\lambda_i \in k$, i = 1, 2, 3, such that $f = \lambda_1 \ell_1^2 + \lambda_2 \ell_2^2 + \lambda_3 \ell_3^2$. We denote by $\operatorname{VSP}(f)$ the variety of closed subschemes of length 3 of $\mathbb{P}(V^*)$ which are apolar to Q.

Let $\pi_{[f]} : \mathbb{P}(\operatorname{Sym}^2 V^*) \dashrightarrow \mathbb{P}(W)$ be the projection from [f]. Since Q is smooth, the composition $\pi_{[f]} \circ v_2$ is a closed embedding of $\mathbb{P}(V^*)$, whose image is a Veronese surface X in $\mathbb{P}(W)$. Since X is defined over k,

the closed subscheme Y of the Grassmannian $G(1, \mathbb{P}(W_{\overline{k}}))$ of lines in $\mathbb{P}(W_{\overline{k}})$ consisting of trisecant lines to $X_{\overline{k}}$, that is, lines ℓ in $\mathbb{P}(W_{\overline{k}})$ such that $\ell \cdot X_{\overline{k}}$ is a closed subscheme of length 3 of ℓ , is defined over k, and we obtain an identification between $\mathrm{VSP}(f)$ and Y.

Proposition 4. (see [9, §2.3]) With the notation above, Y = VSP(f) is a k-form of V_5 . Furthermore, the stratification of $Y_{\overline{k}}$ by the types of the corresponding closed subschemes of length 3 of $\mathbb{P}(V^*)$ is related to that of V_5 as a quasi-homogenous space of $PGL_2(\overline{k})$ given in § 1.1.2 as follows:

- (i) Points of the open orbit O correspond to reduced subschemes $\{[\ell_1], [\ell_2], [\ell_3]\}$ apolar to $Q_{\overline{k}}$ such that none of the $[\ell_i]$ belongs to the dual conic $Q_{\overline{k}}^* \subset \mathbb{P}(V_{\overline{k}}^*)$ of $Q_{\overline{k}}$.
- (ii) Points in the 2-dimensional orbit S_2 correspond to non-reduced subschemes $\{2[\ell_1], [\ell_2]\}$ where $[\ell_1]$ belongs to $Q_{\overline{k}}^*$ and $[\ell_2]$ is a point of the tangent line $T_{[\ell_1]}Q_{\overline{k}}^*$ to $Q_{\overline{k}}^*$ at $[\ell_1]$ distinct from $[\ell_1]$.
- (iii) Points in the 1-dimensional orbit C_6 correspond to non-reduced subschemes $\{3[\ell]\}$ where $[\ell]$ is a point of $Q_{\overline{k}}^*$.

The Hilbert scheme $\mathcal{H}(Y)$ of lines on a k-form $Y = \mathrm{VSP}(f) \subset G(1,\mathbb{P}(W))$ can be explicitly described as follows. Viewing $G(1,\mathbb{P}(W))$ as a closed subscheme of $\mathbb{P}(\Lambda^2W)$ via the Plücker embedding, $\mathcal{H}(Y)$ is a closed subscheme of the Hilbert scheme $\mathcal{H}(G(1,\mathbb{P}(W)))$ of lines on $G(1,\mathbb{P}(W))$. The latter is isomorphic to the flag variety $\mathcal{F}(0,2,\mathbb{P}(W)) \subset \mathbb{P}(W) \times G(2,\mathbb{P}(W))$ of pairs (x,P) consisting of a point $x \in \mathbb{P}(W)$ and a 2-dimensional linear space $P \subset \mathbb{P}(W)$ containing it.

Proposition 5. (see e.g. [10, §1.2]) Let $f \in \operatorname{Sym}^2 V^*$ be a homogeneous form defining a smooth conic $Q \subset \mathbb{P}(V)$, let $W = \operatorname{Sym}^2(V^*/\langle f \rangle)$, and let $\operatorname{VSP}(f) \subset G(1,\mathbb{P}(W))$ be the variety of trisecant lines to the Veronese surface $X = \pi_{\lceil f \rceil} \circ v_2(\mathbb{P}(V^*))$.

- (i) The projection $\operatorname{pr}_1: \mathcal{F}(0,2,\mathbb{P}(W)) \to \mathbb{P}(W)$ restricts to a closed embedding $\mathcal{H}(\operatorname{VSP}(f)) \hookrightarrow \mathbb{P}(W)$ whose image is equal to $X \simeq \mathbb{P}(V^*)$.
- (ii) The image of the smooth conic $C \subset \mathcal{H}(\mathrm{VSP}(f))$ parametrizing special lines in $\mathrm{VSP}(f)$ coincides with the conic $Q^* \subset \mathbb{P}(V^*)$ dual to $Q \subset \mathbb{P}(V)$.
- (iii) For every line ℓ in $VSP(f)_{\overline{k}}$ defined by a point $x \in \mathbb{P}(V_{\overline{k}}^*)$, the set of lines in $VSP(f)_{\overline{k}}$ which intersect ℓ is parametrized by the conjugate line of x with respect to $Q_{\overline{k}}^*$.

As a consequence, we obtain the following characterization of which k-forms Y = VSP(f) of V_5 contain special lines defined over k.

Corollary 6. The k-form Y = VSP(f) of V_5 contains a special line defined over k if and only if the conic $Q = V(f) \subset \mathbb{P}(V)$ has a k-rational point.

Proof. By combining Lemma 2 b) and Proposition 5 (ii), we deduce that Y contains a special line defined over k if and only if the conic $Q^* \subset \mathbb{P}(V^*)$ dual to Q has a k-rational point, hence if and only if Q has a k-rational point.

Example 7. Let $k = \mathbb{C}(s,t)$ with s,t algebraically independent over \mathbb{C} , and let $f = x^2 + sy^2 + tz^2 \in k[x,y,z]$. Since the conic $Q = V(f) \subset \mathbb{P}^2_k = \operatorname{Proj}_k(k[x,y,z])$ has no k-rational point, the variety $Y = \operatorname{VSP}(f)$ is a k-form of V_5 which does not contain any special line defined over k.

3. Double Projection from a rational point

Let $V_5 \hookrightarrow \mathbb{P}^6_{\overline{k}}$ be embedded by its half-anticanonical complete linear system. For every closed point $y \in V_5$, the linear system $|\mathcal{O}_{V_5}(1) \otimes \mathfrak{m}_y^2|$ of hyperplane sections of V_5 which are singular at y defines a rational map $\psi_y : V_5 \dashrightarrow \mathbb{P}^2_{\overline{k}}$ called the double projection from y, whose description is classical knowledge in the birational geometry of threefolds [8, 15]. In this section, inspired by [24], we give an explicit "reverse construction" of these maps, valid over any field k of characteristic zero, formulated in terms of Sarkisov links performed from certain locally trivial \mathbb{P}^1 -bundles over \mathbb{P}^2 associated to standard birational quadratic involutions of \mathbb{P}^2 .

3.1. Recollection on standard quadratic involutions of \mathbb{P}^2 . Let $\sigma: \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ be a birational quadratic involution of \mathbb{P}^2_k and let $\Gamma_{\sigma} \subset \mathbb{P}^2_k \times \mathbb{P}^2_k$ be its graph. Via the two projections $\tau = \operatorname{pr}_1: \Gamma_{\sigma} \to \mathbb{P}^2_k$ and $\tau' = \operatorname{pr}_2: \Gamma_{\sigma} \to \mathbb{P}^2_k$, Γ_{σ} is canonically identified with the blow-up of the scheme-theoretic base loci $Z = \operatorname{Bs}(\sigma)$ and $Z' = \operatorname{Bs}(\sigma^{-1})$ respectively. We denote by $e = \tau^* Z$ and $e' = \tau'^* Z'$ the scheme-theoretic inverse images

of Z and Z' respectively in Γ_{σ} . It is well-known that Z and Z' are local complete intersection 0-dimensional closed sub-scheme of length 3 of \mathbb{P}^2_k with one of the following possible structure:

(Type I) Z (resp. Z') is smooth and its base extension to \overline{k} consists of three non-collinear points p_1, p_2, p_3 (resp. p'_1, p'_2, p'_3) whose union is defined over k. The surface Γ_{σ} is smooth, $e_{\overline{k}} = e_{p_1} + e_{p_2} + e_{p_3}$, $e'_{\overline{k}} = e'_{p'_1} + e'_{p'_2} + e'_{p'_3}$ where the e_{p_i} and $e'_{p'_i}$ are (-1)-curves.

(Type II) Z (resp. Z') consists of the disjoint union (p_1, \mathbf{p}_2) (resp. (p'_1, \mathbf{p}'_2)) of a smooth k-rational point p_1 (resp. p'_1) and a 0-dimensional sub-scheme \mathbf{p}_2 (resp. \mathbf{p}'_2) of length 2 locally isomorphic to $V(x, y^2)$ and supported at a k-rational point p_2 (resp. p'_2). We have $e = e_{p_1} + 2e_{p_2}$, $e' = e'_{p'_1} + 2e'_{p'_2}$ where e_{p_1} and e_{p_2} (resp. $e'_{p'_1}$ and $e'_{p'_2}$) are smooth k-rational curves with self-intersections -1 and $-\frac{1}{2}$ respectively, and Γ_{σ} has a unique A_1 -singularity at the k-rational point $e_{p_2} \cap e'_{p'_2}$.

(Type III) Z (resp. Z') is supported on a unique k-rational point p (resp. p') and is locally isomorphic to $V(y^3, x - y^2)$. We have $e = 3e_p$ and $e' = 3e'_{p'}$ where e_p and $e'_{p'}$ are smooth k-rational curves with self-intersection $-\frac{1}{3}$, and Γ_{σ} has a unique A_2 -singularity at the k-rational point $e_p \cap e'_{p'}$.

The following lemma whose proof is left to the reader records for later use some additional basic properties of the surfaces Γ_{σ} .

Lemma 8. With the notation above, the following hold:

- a) The canonical divisor $K_{\Gamma_{\sigma}}$ is linearly equivalent to -e-e'.
- b) The pull-back by $\tau: \Gamma_{\sigma} \to \mathbb{P}^2_k$ (resp. $\tau': \Gamma_{\sigma} \to \mathbb{P}^2_k$) of a general line $\ell \simeq \mathbb{P}^1_k$ in \mathbb{P}^2_k is \mathbb{Q} -linearly equivalent to $\frac{1}{3}(2e+e')$ (resp. $\frac{1}{3}(e+2e')$).
- 3.2. Locally trivial \mathbb{P}^1 -bundles over \mathbb{P}^2 associated to quadratic involutions. Let $\sigma: \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ be a birational quadratic involution of \mathbb{P}^2_k with graph $\Gamma_{\sigma} \subset \mathbb{P}^2_k \times \mathbb{P}^2_k$, and let $\mathcal{I}_Z \subset \mathcal{O}_{\mathbb{P}^2_k}$ be the ideal sheaf of its scheme-theoretic base locus Z.

Lemma 9. There exists a locally free sheaf \mathcal{E} of rank 2 on \mathbb{P}^2_k and an exact sequence

$$(3.1) 0 \to \mathcal{O}_{\mathbb{P}^2_{t}}(-1) \xrightarrow{s} \mathcal{E} \longrightarrow \mathcal{I}_Z \to 0.$$

Proof. Since Z is a local complete intersection of codimension 2 in \mathbb{P}^2_k , the existence of \mathcal{E} with the required properties follows from Serre correspondence [23]. More precisely, the local-to-global spectral sequence

$$E_2^{p,q} = H^P(\mathbb{P}^2_k, \mathcal{E}xt^q(\mathcal{I}_Z, \mathcal{O}_{\mathbb{P}^2_k}(-1)) \Rightarrow \operatorname{Ext}^{p+q}(\mathcal{I}_Z, \mathcal{O}_{\mathbb{P}^2_k}(-1))$$

degenerates to a long exact sequence

$$0 \to H^1(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2_k}(-1)) \to \operatorname{Ext}^1(\mathcal{I}_Z, \mathcal{O}_{\mathbb{P}^2_k}(-1)) \to H^0(Z, \det \mathcal{N}_{Z/\mathbb{P}^2_k} \otimes \mathcal{O}_Z(-1)) \to H^2(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2_k}(-1)).$$

Since $H^i(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2_k}(-1)) = 0$ for i = 1, 2 and Z is 0-dimensional, this sequence provides an isomorphism

$$\operatorname{Ext}^1(\mathcal{I}_Z, \mathcal{O}_{\mathbb{P}^2_k}(-1)) \simeq H^0(Z, \det \mathcal{N}_{Z/\mathbb{P}^2_k} \otimes \mathcal{O}_Z(-1)) \simeq H^0(Z, \mathcal{O}_Z).$$

The extension corresponding via this isomorphism to the constant section $1 \in H^0(Z, \mathcal{O}_Z)$ has the desired property.

Let $\pi: \mathbb{P}(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym}^{\cdot}\mathcal{E}) \to \mathbb{P}_{k}^{2}$ be the locally trivial \mathbb{P}^{1} -bundle associated with the locally free sheaf \mathcal{E} of rank 2 as in Lemma 9. Since det $\mathcal{E} \simeq \mathcal{O}_{\mathbb{P}_{k}^{2}}(-1)$, the canonical sheaf $\omega_{\mathbb{P}(\mathcal{E})}$ of $\mathbb{P}(\mathcal{E})$ is isomorphic to

$$(3.2) \mathcal{O}_{\mathbb{P}(\mathcal{E})}(-2) \otimes \pi^* \det \mathcal{E} \otimes \pi^* \omega_{\mathbb{P}^2_k} \simeq \mathcal{O}_{\mathbb{P}(\mathcal{E})}(-2) \otimes \pi^* \mathcal{O}_{\mathbb{P}^2_k}(-4).$$

The surjection $\mathcal{E} \to \mathcal{I}_Z \to 0$ defines a closed embedding $\mathbb{P}(\mathcal{I}_Z) = \operatorname{Proj}(\operatorname{Sym}^{\cdot}\mathcal{I}_Z) \hookrightarrow \mathbb{P}(\mathcal{E})$. Since Z is a local complete intersection, the canonical homomorphism of graded $\mathcal{O}_{\mathbb{P}^2_k}$ -algebras $\operatorname{Sym}^{\cdot}\mathcal{I}_Z \to \mathcal{R}(\mathcal{I}_Z) = \bigoplus_{n\geq 0} \mathcal{I}_Z \cdot t^n$ is an isomorphism [17, Théorème 1], and it follows that the restriction $\pi: \mathbb{P}(\mathcal{I}_Z) \to \mathbb{P}^2_k$ is isomorphic to the blow-up $\tau: \Gamma_\sigma \to \mathbb{P}^2_k$ of Z. We can thus identify from now on Γ_σ with the closed sub-scheme $\mathbb{P}(\mathcal{I}_Z)$ of $\mathbb{P}(\mathcal{E})$. The composition of $\pi^*s: \pi^*\mathcal{O}_{\mathbb{P}^1_k}(-1) \to \pi^*\mathcal{E}$ with the canonical surjection $\pi^*\mathcal{E} \to \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ defines a global section

$$\overline{s} \in \mathrm{Hom}_{\mathbb{P}(\mathcal{E})}(\pi^*\mathcal{O}_{\mathbb{P}^1_k}(-1), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)) \simeq H^0(\mathbb{P}(\mathcal{E}), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) \otimes \pi^*\mathcal{O}_{\mathbb{P}^2_k}(1))$$

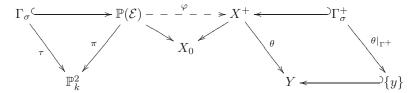
whose zero locus $V(\overline{s})$ coincides with Γ_{σ} .

Letting ξ and A be the classes in the divisor class group of $\mathbb{P}(\mathcal{E})$ of $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ and of the inverse image of a general line in \mathbb{P}^2_k by π respectively, we have $\Gamma_{\sigma} = V(\overline{s}) \sim \xi + A$. On the other hand, it follows from (3.2) that the canonical divisor $K_{\mathbb{P}(\mathcal{E})}$ of $\mathbb{P}(\mathcal{E})$ is linearly equivalent to $-2(\Gamma_{\sigma} + A) \sim -2(\xi + 2A)$. Since $c_1(\mathcal{E}) = -1$ and $c_2(\mathcal{E}) = 3$ by construction, we derive the following numerical information:

$$(3.3) K_{\mathbb{P}(\mathcal{E})}^3 = -32, K_{\mathbb{P}(\mathcal{E})}^2 \cdot \Gamma_{\sigma} = 4, K_{\mathbb{P}(\mathcal{E})} \cdot \Gamma_{\sigma}^2 = 2, \Gamma_{\sigma}^3 = -2.$$

3.3. Construction of Sarkisov links.

Proposition 10. Let $\pi : \mathbb{P}(\mathcal{E}) \to \mathbb{P}^2_k$ be the \mathbb{P}^1 -bundle associated to a quadratic involution $\sigma : \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ with graph $\Gamma_{\sigma} \subset \mathbb{P}(\mathcal{E})$ as in §3.2. Then there exists a k-form Y of V_5 and a Sarkisov link



where:

- (i) $\varphi: \mathbb{P}(\mathcal{E}) \longrightarrow X^+$ is a flop whose flopping locus coincides with the support of $e' \subset \Gamma_{\sigma}$,
- (ii) $\Gamma_{\sigma}^{+} \simeq \mathbb{P}_{k}^{2}$ is the proper transform of Γ_{σ} and $\theta|_{\Gamma_{\sigma}} : \Gamma_{\sigma} \dashrightarrow \Gamma_{\sigma}^{+}$ is the contraction of e',
- (iii) $\theta: X^+ \to Y$ is the divisorial contraction of Γ_{σ}^+ to a smooth k-rational point $y \in Y$,
- (iv) The support of the image in Y of the flopped locus $e^+ \subset X^+$ of φ coincides with the union of the lines in $Y_{\overline{k}}$ passing through y.

Proof. We denote $\mathbb{P}(\mathcal{E})$ and $\Gamma_{\sigma} \subset \mathbb{P}(\mathcal{E})$ simply by X and Γ . Since $-K_X \sim 2\xi + 4A \sim 2\Gamma + 2A$ we see that $-K_X$ is nef and that any irreducible curve $C \subset X_{\overline{k}}$ such that $-K_{X_{\overline{k}}} \cdot C \leq 0$ is contained in $\Gamma_{\overline{k}}$. By the adjunction formula and Lemma 8 a), we have

$$\Gamma^2 = -K_{\Gamma} - 2A \cdot \Gamma \sim_{\mathbb{Q}} \frac{1}{3} (-e + e') \quad \text{and} \quad \Gamma^2 - K_{\Gamma} \sim_{\mathbb{Q}} \frac{2}{3} (e + 2e'),$$

which implies by adjunction again that

$$-K_{X_{\overline{k}}} \cdot C = (\Gamma_{\overline{k}}^2 - K_{\Gamma_{\overline{k}}}) \cdot C = \frac{2}{3} (e_{\overline{k}} + 2e'_{\overline{k}}) \cdot C.$$

Since e + 2e' is τ -ample and τ' -numerically trivial by virtue of Lemma 8 b), we conclude that the irreducible curves $C \subset X_{\overline{k}}$ such that $-K_{X_{\overline{k}}} \cdot C = 0$ are precisely the irreducible components of the exceptional locus $e'_{\overline{k}}$ of $\tau'_{\overline{k}} : \Gamma_{\overline{k}} \to \mathbb{P}^2_{\overline{k}}$ (see § 3.1 for the notation).

Let $\varphi: X \dashrightarrow X^+$ be the flop of the union of the irreducible components of $e'_{\overline{k}}$. Since the union of these components is defined over k, so is the union e^+ of the flopped curves of φ , and so X^+ is a smooth threefold defined over k and φ is a birational map defined over k restricting to an isomorphism between $X \setminus e'$ and $X^+ \setminus e^+$. Let Γ^+ and A^+ be the proper transforms in X^+ of Γ and A respectively. By construction, the restriction $\varphi|_{\Gamma}: \Gamma \dashrightarrow \Gamma^+$ coincide with $\tau': \Gamma \to \mathbb{P}^2_k$. Since $K_{X^+} \sim -2(\Gamma^+ + A^+)$, we deduce from the adjunction formula that

$$-(\Gamma^{+})^{2} = K_{\Gamma^{+}} + 2A^{+} \cdot \Gamma^{+} = \tau'_{*}(K_{\Gamma} + 2A \cdot \Gamma) = \frac{1}{3}\tau'_{*}e,$$

which is linearly equivalent to a line $\ell \simeq \mathbb{P}^1_k$ in $\Gamma^+ \simeq \mathbb{P}^2_k$. The normal bundle $\mathcal{N}_{\Gamma^+/X^+}$ of Γ^+ in X^+ is thus isomorphic to $\mathcal{O}_{\mathbb{P}^2_k}(-1)$.

The divisor class group of X^+ is freely generated by Γ^+ and A^+ . The Mori cone NE(X^+) is spanned by two extremal rays: one R_1 corresponding to the flopped curves of φ and a second one R_2 which is K_{X^+} -negative. Since $\Gamma^+ \cdot C \geq 0$ for any irreducible curve not contained in Γ^+ , including thus the irreducible components of e^+ , whereas $\Gamma^+ \cdot \ell = -1$ for any line $\ell \simeq \mathbb{P}^1_k$ in $\Gamma^+ \simeq \mathbb{P}^2_k$, it follows that R_2 is generated by the class of ℓ . The extremal contraction associated to R_2 is thus the divisorial contraction $\theta: X^+ \to Y$ of $\Gamma^+ \simeq \mathbb{P}^2_k$ to a smooth k-rational point p of a smooth projective threefold Y.

Since $-K_{X^+} = 2(\Gamma^+ + A^+)$, we conclude that the image H of A^+ by θ is an ample divisor on Y generating the divisor class group of Y and such that $-K_Y = 2H$. Furthermore, we have

$$K_Y^3 = \theta^* (K_Y)^3 = (K_{X^+} - 2\Gamma^+)^3$$

= $K_{X^+}^3 - 6K_{X^+}^2 \cdot \Gamma^+ + 12K_{X^+} \cdot (\Gamma^+)^2 - 8(\Gamma^+)^3$
= $K_X^3 - 6K_X^2 \cdot \Gamma + 12K_X \cdot \Gamma - 8$

so that $K_Y^3 = -40$ by (3.3). Altogether, this shows $Y_{\overline{k}}$ is a smooth Fano threefold of Picard number 1, index 2 and degree $d = H^3 = 5$, hence is isomorphic to V_5 .

The fact that the support of the image in Y of e^+ coincides with the union of the lines in $Y_{\overline{k}}$ passing through p is clear by construction.

By construction, the proper transform by the reverse composition $\psi_y = \pi \circ \varphi^{-1} \circ \theta^{-1} : Y \dashrightarrow \mathbb{P}(\mathcal{E}) \xrightarrow{\pi} \mathbb{P}_k^2$ of the complete linear system of lines in \mathbb{P}_k^2 consists of divisors H on Y singular at y and such that $-K_Y = 2H$. This shows that $\psi_{y,\overline{k}}: Y_{\overline{k}} \simeq V_5 \dashrightarrow \mathbb{P}_k^2$ coincides with the double projection from the point y. Conversely, given any k-form Y of V_5 , Corollary 3 ensures that $-K_Y$ is divisible, equal to 2H for some ample divisor H on Y. So given any k-rational point $y \in Y$, the double projection $\psi_y : Y \dashrightarrow \mathbb{P}_k^2$ from y is defined over k, given by the linear system $|\mathcal{O}_Y(H) \otimes \mathfrak{m}_y^2|$, and it coincides with the composition $\pi \circ \varphi^{-1} \circ \theta^{-1} : Y \dashrightarrow \mathbb{P}(\mathcal{E}) \xrightarrow{\pi} \mathbb{P}_k^2$ for a suitable quadratic birational involution σ of \mathbb{P}_k^2 .

4. Application: Cylinders in forms of the quintic del Pezzo threefold

Theorem 11. Let Y be a k-form of V_5 , let $y \in Y$ be a k-rational point and let C be the union of the lines in $Y_{\overline{k}}$ passing through y. Then $Y \setminus C$ has the structure of a Zariski locally trivial \mathbb{A}^1 -bundle $\rho: Y \setminus C \to \mathbb{P}^2_k \setminus Z$ over the complement of a closed sub-scheme $Z \subset \mathbb{P}^2_k$ of length 3 with as many irreducible geometric components as C.

Proof. Indeed, the birational map $\xi = \theta \circ \varphi : \mathbb{P}(\mathcal{E}) \dashrightarrow Y$ constructed in Proposition 10 restricts to an isomorphism between $Y \setminus C$ and the complement of the proper transform Γ in $\mathbb{P}(\mathcal{E})$ of the exceptional divisor of the blow-up of Y at y. On the other hand, it follows from the construction of \mathcal{E} in § 3.2 that Γ is the graph of a quadratic birational involution σ of \mathbb{P}^2_k and that the restriction of $\pi : \mathbb{P}(\mathcal{E}) \to \mathbb{P}^2_k$ to the complement of Γ is a locally trivial \mathbb{A}^1 -bundle over the complement $\mathbb{P}^2_k \setminus Z$ of the base locus Z of σ .

Theorem 12. Every k-form Y of V_5 contains a Zariski open \mathbb{A}^2_k -cylinder. Furthermore, Y contains \mathbb{A}^3_k as a Zariski open subset if and only if it contains a special line defined over k.

Proof. By Lemma 2, Y contains a line $\ell \simeq \mathbb{P}^1_k$ with trivial normal bundle. Projecting from ℓ as in the proof of Corollary 3, we obtain a birational map $Y \dashrightarrow Q$ onto a smooth quadric $Q \subset \mathbb{P}^4_k$ defined over k, which restricts to an isomorphism between the complement of the surface $Z \subset Y$ defined over k swept out by the lines in $Y_{\overline{k}}$ intersecting $\ell_{\overline{k}}$ and the complement of a hyperplane section $Q_0 \simeq \mathbb{P}^1_k \times \mathbb{P}^1_k$ of Q. The complement $Q \setminus Q_0$ is isomorphic to the smooth affine quadric $\tilde{Q}_0 = \{xv - yu = 1\} \subset \mathbb{A}^4_k$, which contains for instance the principal open \mathbb{A}^2_k -cylinder $\tilde{Q}_{0,x} \simeq \operatorname{Spec}(k[x^{\pm 1}][y,u])$.

By Lemma 2 b), Y contains a special line if and only it has a k-rational point p through which there exists at most two lines in $Y_{\overline{k}}$. Letting C be the union of these lines, the previous theorem implies that $\rho: Y \setminus C \to \mathbb{P}^2_k \setminus Z$ is a Zariski locally trivial \mathbb{A}^1 -bundle over the complement of a 0-dimensional closed subset Z defined over k whose support consists of at most two points. Letting $L \simeq \mathbb{P}^1_k$ be any line in \mathbb{P}^2_k containing the support of Z, the restriction of ρ over $\mathbb{P}^2_k \setminus L \simeq \mathbb{A}^2_k$ is then a trivial \mathbb{A}^1 -bundle, so that $Y \setminus \rho^{-1}(L)$ is a Zariski open subset of Y isomorphic to \mathbb{A}^3_k .

Conversely, suppose that Y contains a Zariski open subset $U \simeq \mathbb{A}^3_k$. Since U is affine, $D = Y \setminus U$ has pure codimension 1 in Y. Since $Y_{\overline{k}} \simeq V_5$ and $Y_{\overline{k}} \setminus D_{\overline{k}} \simeq U_{\overline{k}} \simeq \mathbb{A}^3_{\overline{k}}$, according to [7, Corollary 1.2, b] and [8], we have the following alternative for the divisor $D_{\overline{k}}$ in $Y_{\overline{k}}$:

- 1) $D_{\overline{k}}$ is a normal del Pezzo surface of degree 5 with a unique singular point q of type A_4 ,
- 2) $D_{\overline{k}}$ is a non-normal del Pezzo surface of degree 5 whose singular locus is a special line ℓ in $Y_{\overline{k}}$, and $D_{\overline{k}}$ is swept out by lines in V_5 which intersect ℓ .

In the first case, there exists a unique special line ℓ in $Y_{\overline{k}}$ passing through q, which is then automatically contained in $D_{\overline{k}}$. Since D is defined over k and q is the unique singular point of $D_{\overline{k}}$, q corresponds to a

k-rational point of D, so that ℓ is actually a special line in Y defined over k. In the second case, since ℓ is the singular locus of $D_{\overline{k}}$, it is invariant under the action of the Galois group $\operatorname{Gal}(\overline{k}/k)$, hence is defined over k. So in both cases, Y contains a special line defined over k.

Corollary 13. Every form of V_5 defined over a C_1 -field k contains \mathbb{A}^3_k as a Zariski open subset.

Proof. This follows from Lemma 2 b) and the previous theorem since every conic over a C_1 -field has a rational point.

Example 14. The $\mathbb{C}(s,t)$ -form $Y = \mathrm{VSP}(f)$ of V_5 associated to the quadratic form $f = x^2 + sy^2 + tz^2 \in \mathbb{C}(s,t)[x,y,z]$ considered in Example 7 does not contain any special line defined over $\mathbb{C}(s,t)$, hence does not contain $\mathbb{A}^3_{\mathbb{C}(s,t)}$ as a Zariski open subset.

References

- C. Birkar, P. Cascini, C.D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, Journal of AMS, 23 (2010), 405-468.
- A. Dubouloz and T. Kishimoto, Explicit biregular/birational geometry of affine threefolds: completions of A³ into del Pezzo fibrations and Mori conic bundles, Adv. Stud. Pure Math. 75, Mathematical Society of Japan, Tokyo, 2017, 49-71.
- 3. A. Dubouloz and T. Kishimoto, Cylinders in del Pezzo fibrations, arXiv:1607.00840v1 [math.AG], 2016, Israel Journal of Mathematics DOI 10.1007/s11856-018-1679-z (to appear).
- 4. A. Dubouloz and T. Kishimoto, Deformations of A¹-cylindrical varieties, arXiv:1710.09108v1 [math.AG] 25 Oct 2017.
- M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J., 104 (1986), 1-28.
- 6. M. Furushima, The complete classification of compactifications of C³ which are projective manifolds with the second Betti number one, Math. Ann., 297 (1993), 627-662.
- 7. M. Furushima and N. Nakayama, The family of lines on the Fano threefolds V₅, Nagoya Math. J., 116 (1989), 111-122.
- 8. M. Furushima and N. Nakayama, A new construction of a compactification of \mathbb{C}^3 , Tõhoku Math. J., 41 (1989), 543-560.
- 9. A. Iliev, Lines on the Gushel' threefold, Indag. Mathem., N.S., 5 (3) (1994), 307-320.
- A. Iliev, The Fano surface of the Gushel threefold, Compositio Mathematica 94, no1 (1994), 81-107.
- V.A. Iskovskikh, Anticanonical models of three-dimensional algebraic varieties, J Math Sci (1980) 13 (6), 745-814.
- T. Kishimoto, Y. Prokhorov and M. Zaidenberg, Group actions on affine cones. Affine algebraic geometry, 123-163. Peter Russell's Festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011.
- 13. T. Kishimoto, Y. Prokhorov and M. Zaidenberg, \mathbb{G}_a -actions on affine cones, Transformation Groups, 18 (2013), 1137-1153.
- T. Kishimoto, Y. Prokhorov and M. Zaidenberg, Affine cones over Fano threefolds and additive group actions, Osaka J. Math., 51 (2014), 1093-1112.
- I.Y. Kolpakov-Miroshnichenko and Y.G. Prokhorov, Rationality construction of fields of invariants of some finite fourdimensional linear groups associated with Fano threefolds, Math Notes 51 (1) (1992), 74-76.
- A. G. Kuznetsov, Y. G. Prokhorov and C. A. Shramov, Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math. (2018) 13 (1), 109-185.
- 17. A. Micali, Sur les algèbres universelles, Annales de l'Institut Fourier, Volume 14 (1964) no. 2, p. 33-87.
- 18. S. Mori and S. Mukai, On Fano 3-folds with $B_2 \ge 2$, Advanced Studies in Pure Mathematics, 1 (1983), 101-129.
- 19. S. Mukai and H. Umemura, Minimal rational threefolds, Lect. Notes Math., 1016 (1983), 490-518.
- 20. Yu. Prokhorov, Fano threefolds of genus 12 and compactifications of \mathbb{C}^3 , St. Petersburg Math. J., 3 (1992), 855-864.
- 21. Y. Prokhorov, M. Zaidenberg, Examples of cylindrical Fano fourfolds, Eur. J. Math., 2 (2016), 262-282.
- 22. Y. Prokhorov, M. Zaidenberg, New examples of cylindrical Fano fourfolds, New examples of cylindrical Fano fourfolds, Adv. Stud. Pure Math. 75, Mathematical Society of Japan, Tokyo, 2017, 443-463.
- 23. J.P. Serre, Sur les modules projectifs, Séminaire Dubreil-Pisot (1960/61), Secr. Math. Paris, exposé 2, (1961).
- 24. K. Takeuchi, Some birational maps of Fano 3-folds, Compositio Math., 71 (1989), 265-283.

IMB UMR5584, CNRS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France $E\text{-}mail\ address$: adrien.dubouloz@u-bourgogne.fr

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SAITAMA UNIVERSITY, SAITAMA 338-8570, JAPAN E-mail address: tkishimo@rimath.saitama-u.ac.jp