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Is there an upper bound on the size of a black-hole?1
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Abstract

According to the third law of Thermodynamics, it takes an infinite number of steps

for any object, including black-holes, to reach zero temperature. For any physical

system, the process of cooling to absolute zero corresponds to erasing information or

generating pure states. In contrast with the ordinary matter, the black-hole temper-

ature can be lowered only by adding matter-energy into it. However, it is impossible

to remove the statistical fluctuations of the infalling matter-energy. The fluctuations

lead to the fact the black-holes have a finite lower temperature and, hence, an upper

bound on the horizon radius. We make an estimate of the upper bound for the hori-

zon radius which is curiosly comparable to Hubble horizon. We compare this bound

with known results and discuss its implications.
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Black-hole entropy has remained one of the most inexplicable quantities in Theoretical

Physics [1]. It is puzzling because it raises two related issues: Entropy is very large for

macroscopic black-holes — it is the highest for objects of similar size [2], and it lacks any

understanding from a statistical mechanical description [1]. Although the two issues may

seem different, they are two sides of the same coin. Apart from the fact that the black-hole

entropy comes from the lack of information about the microscopic degrees of freedom of

space-time inside the event-horizon, little else is agreed upon in the literature [1].

There have been several proposals to interpret black-hole entropy [1]. One proposal

states that the black-hole entropy is the number of ways a black-hole (characterized by

Mass M , Charge Q and angular momentum a) is formed [3]. Thus, the increase in the

black-hole entropy corresponds to the number of ways in which the matter-energy can fall

into the black-hole. For a faraway observer, the black-hole entropy corresponds to not being

to able determine how the microscopic degrees of freedom (DOF) fell into the black-hole.

A very important consequence of this proposal is that the information about the black-hole

DOF also resides in the information about how the matter-energy fell into the black-hole.

However, the distant observer can receive the Hawking radiation from the black-holes. But

as this is thermal, it gives very little information about the black-hole DOF.

Thus two opposite processes take place in the presence of black-holes. First, black-

hole entropy keeps increasing as it swallows matter around it leading to the reduction in

black-hole temperature. Second, due to Hawking radiation black-hole reduces its mass and

hence raising its temperature. It is often assumed, in the literature, that the second process

dominates and one is lead to the question: What happens at the end-stages of the black-

hole evaporation? In this essay, we ask what happens when the first process dominates: Do

black-holes keep increasing ad infinitum? Is there an upper bound on the size of a black-

hole? We address these questions in this essay. We first argue, using general assumptions,

that an upper bound exists. Later, within the Horizon-Fluid correspondence [4, 5, 6, 7],

we obtain a value of this bound.

The third law of black-hole mechanics states that it takes infinite steps to reach a

black-hole with zero temperature. More generally, for any physical system, the process of

cooling to absolute zero corresponds to erasing information or generating pure states [8]. In

the case of black-holes, the physical process of decreasing the temperature corresponds to

adding energy to the system. However, the statistical fluctuations of the infalling matter-

energy can never be removed. The fluctuations lead to the fact there exist a non-zero lower

bound on the black-hole temperature and, hence, an upper bound on the horizon radius.
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The above discussion was general and qualitative. In the rest of this essay, we obtain

the upper-bound using Fluid-Gravity correspondence following Damour [4]. Fluid-Gravity

correspondence aims to associate fluid degrees of freedom to the horizon and, eventually,

to the gravitational degrees of freedom [4, 5]. Fluid-Gravity correspondence can be con-

sidered as an extension of black-hole thermodynamics, where charges are upgraded into

local currents and black-hole entropy into a local entropy current. Since Damour’s calcu-

lation 30 years ago [4], attempts have been made to gain new physical insight from the

Fluid-Gravity correspondence. More importantly, how to use the Fluid-Gravity correspon-

dence to connect macroscopic and microscopic physics through the study of the statistical

properties of the fluid on the black-hole horizon. Recently, the present authors have shown

that horizon-fluid is of physical interest [6], and obtained several physical quantities using

general assumptions about the horizon-fluid [7].

To obtain the bound, we define N as the number of degrees of freedom (DOF) of the

horizon-fluid that is proportional to the area of the horizon (or entropy). N is the measure

of the number of Planck scale DOF on the horizon [9]. We also define the number density

(N per black-hole area) as a field ρ. At the semi-classical level, ρ is constant. However,

the field can have fluctuations about the mean value. For a given temperature, one can

determine the average energy (ǭ) of the horizon DOF [10]. Let us compare this energy to

the infalling matter-energy constituents that increase the energy and entropy of the black-

hole. It is known that only the highest energy excitations contribute to the entropy [11].

We assume the highest energy scale to be the same for all the fields. Thus, the horizon

can be viewed as surrounded by a thin layer of such excitations. Even for a macroscopic

black-hole, ǭ is much higher than the excitations of the surrounding medium. However as

the temperature of the black-hole decreases, ǭ decreases. Eventually, for a specific value of

the black-hole temperature, say T = T c, the above two energy scales become comparable.

Unlike the cooling of ordinary objects, we cannot decrease the energy of the excitations

of the medium surrounding the black-hole. Hence, the black-hole temperature cannot be

lowered beyond T c. For any lower value of ǭ, the excitations of the surrounding medium

would impart energy increasing ǭ and the black-hole temperature.

Thermal wave-length (λT ) corresponding to the average energy (ǭ = kBT/2) for the

field ρ is given by:

λT ∼
h v

kB T
. (1)

where v is the speed with which the wave travels. Using the fact that T corresponds to
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the black-hole temperature [4, 5, 6], we have

λT ∼
4π2 c v

a
(2)

where a is the surface gravity. As mentioned above, we now compare the above length

scale with the excitation wavelength λ0 of the medium surrounding the black-hole for a

far-away observer. Using the red-shift relation, we have

1

λ0
≈

1

λe

√

δ

rH
. (3)

where rH is the horizon radius, δ(≪ rH) is the distance of the excitation from the horizon,

and λe is the excitation wavelength close to the horizon.

Until now the discussion has been for a general black-hole. For simplicity and clarity,

we now consider 4-D Schwarzschild black-holes. We get,

λe

λ0

= c

√

δ

2GM
. (4)

Expressing the above equation in terms of surface gravity, we have,

λ0 = λe

c
√
2 δ a

(5)

It is important to compare and contrast the two length-scales λT , λ0 obtained in Eqs. (2, 5),

respectively. First, both these length scales increase as mass of the black-hole increases.

However, λT increases much faster than λ0. Second, λ0 contains information about the

shortest possible excitations. For λT ≪ λ0, for a typical macroscopic black-hole, it is

impossible for an outside observer to obtain information about the Black-hole DOF.

Let us now ask the question: "When are the two length scales comparable?". Equating

(5) and (2), we get,

ac = 32π4 δ

(

v

λe

)2

. (6)

Once we know ac, we can determine T c and corresponding horizon radius rc
h
. To determine

ac, we need to know δ, v and λe. Both, δ and λe correspond to the smallest possible

length scales which we can set to Planck length (ℓP ). As mentioned earlier, ρ is a constant.

This means that the spatio-temporal variations of ρ are suppressed. In other words, the

excitation of ρ has a large rest-mass energy compared to its kinetic energy, i. e.,

K.E.

Rest mass energy
=

(v

c

)2

∼ (
ℓP
ℓs
)2, (7)
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where, lP

ℓs
provides the magnitude of any deviations from constant ρ and usually, ℓs ≫ ℓP .

Substituting δ, v and λe in (6), we get,

ac ∼ 32π4 c2
ℓP
ℓ2
s

and rc
H
∼

1

64π4

ℓ2
s

ℓP
. (8)

Taking ℓs to be in range [10−3m, 1m], we then have rc
H

in the range [1025m, 1031m]. The

horizon radius is comparable to the Hubble horizon which is ≈ 1026m.

Let us put these results in perspective: We have related irreversible processes in non-

equilibrium (infalling matter-energy) to thermal fluctuations (of the horizon DOF) in equi-

librium. However, we have obtained the result without the detailed analysis using the

fluctuation-dissipation theorem [12, 6, 7] and hence, the arbitrariness in ℓs. Given the

mesoscopic range of ℓs, we have shown that the maximum size of the horizon radius can

approximately be as large as the Hubble horizon of the Universe. This result is consistent

with other arguments in the literature that the black-holes cannot grow arbitrarily large.

Based on the topological properties of FRW space-time, it was argued that black-holes

could not be arbitrary large [13]. For the entropy bounds to be valid, it was claimed that

black-holes should be bounded from above. Specifically, Bekenstein bound suggests an

upper bound to the black-hole size without which the holographic entropy bound appears

to be violated [14, 15]. While the analysis has been performed for Schwarzschild, the study

here is general enough that this can be applied to asymptotically non-flat black-holes. Since

black-holes have the highest entropy for objects of similar size, our analysis suggests that

the entropy corresponding to the above horizon size is the maximum allowable entropy

for any system. Our analysis poses an interesting question: Whether the entropy of the

Universe [16] also has an upper bound? We plan to look into this elsewhere.
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