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CONGRUENCES OF PARAHORIC GROUP SCHEMES
RADHIKA GANAPATHY

ABSTRACT. Let F be a non-archimedean local field and let T' be a torus over F. With 7V
denoting the Néron-Raynaud model of T, a result of Chai and Yu asserts that the model

TN x5, Or/p is canonically determined by (Tr;(F),A) for I >> m, where Tr;(F) =

(DF/pﬁw,pF/pl;l7 €) with € denoting the natural projection of pF/plFJrl on pr/ph, and A =

X.(T). In this article we prove an analogous result for parahoric group schemes attached to
facets in the Bruhat-Tits building of a connected reductive group over F.

1. INTRODUCTION

Let F' be a non-archimedean local field, Op its ring of integers, and pp its maximal ideal.
Let T be a torus over F. Such a torus is canonically determined by the lattice A := X, (T")
together with the action of I'r = Gal(Fs/F') on it (here Fjs is a separable closure of F'). For
large m, the action of I'r on A factors through the quotient I'p /1" of I'p, where I} is the
m-th higher ramification subgroup (with upper numbering) of the inertia group Ip. This

Galois group depends only on truncated data Tr,,(F) := (Op/pR,pr/patt ), where € is

the natural projection of ]Jp/p?’Jrl on pr/p, via Deligne’s theory; see (b) below.

Let 7V denote the Néron-Raynaud model of T (see [BLR90]). The main result of [CY01]
asserts that TVE xo, Op/p is canonically determined by (Tr;(F),A) for [ >> m (see
Theorem 8.5 of [CYO01] for the precise statement; the parameters that [ depends on are also
explicitly determined there). With 7 denoting the neutral component of 7™V this also
implies that T xo, Op/p% is canonically determined by (Tr;(F'), A) with [ as above. From
the point of view of Bruhat-Tits theory, when the connected reductive group is a torus, the
model T can be thought of as its Iwahori (or parahoric) group scheme. The purpose of this
article is to prove an analogous result for parahoric group schemes attached to facets in the
Bruhat-Tits building of a connected reductive group over F'.

Our motivation for proving such a result arises naturally from the question of generalizing
Kazhdan’s theory of studying representation theory of split p-adic groups over close local
fields to general connected reductive groups. Let us briefly recall the Deligne-Kazhdan cor-
respondence:

(a) Given a local field F’ of characteristic p and an integer m > 1, there exists a local field
F of characteristic 0 such that F’ is m-close to F, i.e., Op/pp = Op /p.

(b) In [Del84], Deligne proved that if Tr,, (F') = Try,(F"), then the Galois groups Gal(F/F) /I3
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and Gal(F./F')/I}% are isomorphic. This gives a bijection

{Iso. classes of cont., complex, f.d. representations of Gal(Fs/F) trivial on I}

+— {Iso. classes of cont., complex, f.d. representations of Gal(F./F") trivial on I }.

Moreover, all of the above holds when Gal(Fs/F) is replaced by Wy, the Weil group of F.

(c) Let G be a split, connected reductive group defined over Z. For an object X associated
to the field F', we will use the notation X’ to denote the corresponding object over F’. In
[Kaz86], Kazhdan proved that given m > 1, there exists [ > m such that if F' and F’ are
I-close, then there is an algebra isomorphism Kaz,, : H(G(F), K,,) — H(G(F"), K},), where
K, is the m-th usual congruence subgroup of G(Op). Hence, when the fields F' and F’ are
sufficiently close, we have a bijection

{Iso. classes of irr. admissible representations (II, V) of G(F) such that T +£ 0}
+— {Iso. classes of irr. admissible representations (II', V') of G(F") such that II'Km £ 0}.

These results suggest that, if one understands the representation theory of Gal(Fy/F') for all
local fields F of characteristic 0, then one can use it to understand the representation theory
of Gal(F!/F") for a local field F” of characteristic p, and similarly, with an understanding of
the representation theory of G(F) for all local fields F' of characteristic 0, one can study the
representation theory of G(F”), for F’ of characteristic p. This method has proved useful for
studying the local Langlands correspondence for reductive p-adic groups in characteristic p via
the corresponding theory in characteristic 0 (see [Bad02, Lem01, Ganl5, ABPS16, GV17]).
An obvious observation, that goes into proving the Kazhdan isomorphism, is

G(OF)/Km = G(Or/pF) = G(Op [pp) = G(Op) /Ky, (1.1)

if the fields F' and F’ are m-close.

A useful variant of the Kazhdan isomorphism is now available for split reductive groups.
Let I be the standard Iwahori subgroup of G. It is shown in [BT84] that there is a smooth
affine group scheme Z defined over Op with generic fiber G xz F such that Z(Op) = I.
Define I,,, := Ker(Z(Or) — Z(Or/p})). In Section 3 of [Ganl5], a presentation has been
written down for this Hecke algebra H(G, I;,) (extending Theorem 2.1 of [How85] for GL,,).
Furthermore if the fields F' and F’ are m-close, an argument of J.K.Yu (see Section 3.4.A of
[Gan15]) gives an isomorphism

B:1/I, =TI, (1.2)

Let us note here that unlike (1.1), the above isomorphism is not obvious since the group
scheme 7 is defined over O and not over Z. In fact the above isomorphism is obtained by
proving that the reduction Z x o, Op/p’ depends only on Tr,,(F') and then evaluating it at
the Op/pE-points. Using the presentation and this isomorphism, one gets an obvious map
Cm : H(G(F), L,) — H(G(F'),I],), when the fields F' and F’ are m-close (also see [LemO1]
for GL,,), which was shown in [Ganl5] to be an isomorphism of rings. Hence we obtain a
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bijection
{Iso. classes of irr. ad. representations (I, V) of G(F) with TI'™ # 0}
s {Iso. classes of irr. ad. representations (I', V') of G(F') with II''m # 0}.

When one wants to prove the Kazhdan isomorphism or its variant for general connected
reductive groups, one is naturally led to consider parahoric subgroups, study the reduction
of the underlying parahoric group schemes mod p%, and prove that they are determined by
truncated data. That is the goal of the present article. Our proof is different from J.K.Yu’s
approach of proving (1.2) for the Iwahori group scheme of a split p-adic group. We will use
the construction of the parahoric group scheme via the Artin-Weil theorem (see [Lan96]).
Let us summarize the main results of this paper.

First, given a split connected reductive group over Z, one can unambiguously work with this
group over an arbitrary field after base change. More generally, given a connected reductive
group G over F, we first need to make sense of what it means to give a group G’ over F’
where F’ is suitably close to F'. Let us first explain how this is done for quasi-split groups.
Let (R, A) be a based root datum and let (G, Ty, Bo, {ta }aeca) be a pinned, split, connected,
reductive Z-group with based root datum (R, A). We know that the F-isomorphism classes
of quasi-split groups G that are F-forms of G are parametrized by the pointed cohomology
set HY(Pp, Aut(R,A)) (see Theorem 3.2). Let Eys(F,Go)m be the set of F-isomorphism
classes of quasi-split groups G, that split (and become isomorphic to Gy) over an atmost
m-ramified extension of F'. It is easy to see that this is parametrized by the cohomology set
HYTp/I#, Aut(R,A)). Using the Deligne isomorphism, we prove that there is a bijection
Eys(F,Go)m — Eqs(F', G)m, Gyq — Gy, provided F and F' are m-close. Moreover, with the
cocycles chosen compatibly, this will yield data (G, T}, By) over F' (where T is a maximal F-
torus and By is an F-Borel containing Ty ), and correspondingly (G, T, By,) over F', together
with an isomorphism X, (7T;) — X.(T};) that is Del,,-equivariant (see Lemma 3.4). Tt is a
simple observation that the maximal F-split subtorus S, of T} is a maximal F-split torus in
Gy (see Lemma 4.1). We prove that there is a simplicial isomorphism between the apartments
Ap 2 A(Sy, F) — A(Sg, F') if the fields I and F" are m-close (see Proposition 4.4 for precise
statement). Let F be a facet in A(Sy, F') and F' = A,,(F). Then F' is a facet in A(S, F”).
We prove that the parahoric group schemes Pr xp, Op/pf and Pr xo,, O /pf, are
isomorphic provided F and F’ are I-close for [ >> m (see Theorem 4.5 and Proposition 4.10
for precise statements). To prove this theorem, we prove an analogous statement for the root
subgroup schemes if the fields F' and F” are sufficiently close, invoke the result of Chai-Yu (see
[CYO01]) that the reduction of the (Ift) Néron models of the corresponding tori are isomorphic
if the fields are sufficiently close, and use the Artin-Weil theorem on obtaining group schemes
as solutions to birational group laws.

To move to the general case, we recall that any connected reductive group is an inner form
of a quasi-split group, and the F-isomorphism classes of inner forms of G, is parametrized
by the cohomology set H'(Gal(F,,/F ),ng(Fun)) (where F,, is the maximal unramified
extension of F' contained in Fy). With Gfl corresponding to G as above, we prove in Lemma
5.1 that

HY(Gal(Fun/F), G (Fun)) = H'(Gal(F,, /F"), Gy (F,,))
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as pointed sets if the fields F' and F’ are m-close using the work of Kottwitz (see [Kot14]).
Using the work of Debacker-Reeder [DR09] it is further possible to refine the above and
obtain an isomorphism at the level of cocycles (see Section 5.1). All the above yields data
(G,S,A) where G is a connected reductive group over F' that is an inner form of G, a
maximal F,-split F-torus S that contains a maximal F-split torus A of GG, and similarly
(G',S’, A") over F’, together with a Gal(l?;; /F)-equivariant simplicial isomorphism A, . :
A(S, Fun) = A(S', F".) (see Corollary 6.1). Here F,, denotes the completion of F,. Let F,

—

be a Gal(Fy,/F)-invariant facet in A(S, f\un) and let F, = Ay, «(Fx). We prove that there is

—

a Gal(Fy,/F)-equivariant isomorphism

- . ~ - TLL_\ - — TLL-\
P+ Pz, X0 o O [P = Py %o O /P

provided F' and F’ are [-close (see Proposition 6.2). With F, := (f*)Gal(m/F) and F, =

(ﬁi)Gal(F unl F /), the above descends to an isomorphism of group schemes

Pm : Pr. Xog DF/]JZ} — P.H XD o DF’/F’?"

As a corollary, we obtain that
Pr.(Or/pF) = Pr(OF /pp)
as groups provided the fields F' and F’ are [-close.
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2. SOME REVIEW

Unless otherwise stated, F' will denote a non-archimedean local field, that is, a complete
discretely valued field with perfect residue field. Let Op denote its ring of integers, pp its
maximal ideal, w = wp an additive valuation on F' normalized so that w(F) = Z, and 7 = p
a uniformizer. Fix a separable closure Fy of F' and let I'r = Gal(F/F).

2.1. Deligne’s theory. Let m > 1. Let Ir be the inertia group of F' and I} be its m-
th higher ramification subgroup with upper numbering (cf. Chapter IV of [Ser79]). Let
us summarize the results of Deligne [Del84] that will be used later in this article. Deligne
considered the triplet Tr,,,(F) = (Or/pF, pr/pT", €), where ¢ is the natural projection of
pr/patt on pr/p, and proved that I'p /I is canonically determined by Try, (F). Hence an

isomorphism of triplets 1y, : Tr, (F) — Tr,, () gives rise to an isomorphism
Tp/Im 29 pp/rm (2.1)

that is unique up to inner automorphisms (see Equation 3.5.1 of [Del84]). More precisely,
given an integer f > 0, let ext(F)? denote the category of finite separable extensions E/F
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satisfying the following condition: The normal closure E; of F in Fj satisfies Gal(E /F)/ = 1.
Deligne proved that an isomorphism ), : Tr,,(F) — Tr,(F’) induces an equivalence of
categories ext(F)™ — ext(F’')™. Here is a partial description of the map Del,, (see Section
1.3 of [Del84]). Let L be a finite totally ramified Galois extension of F satisfying I(L/F)™ =1
(here I(L/F) is the inertia group of L/F). Then L = F(«) where « is a root of an Eisenstein
polynomial

P(x)=z"+ wz a;x’

for a; € Op. Let a; € Ops be such that a; mod p™ — a; mod p"™. So a} is well-defined
mod p™. Then the corresponding extension L'/F’ can be obtained as L' = F'(«/) where o/
is a root of the polynomial

P(x)=a2" + 7 Z alxt

where 7 mod p% — 7' mod p,. The assumption that I(L/F)™ = 1 ensures that the
extension L’ does not depend on the choice of @}, up to a unique isomorphism.

2.2. The main theorem of Chai-Yu. Let T be a torus over F, and let K/F be a Galois
extension such that 7' is split over K. Let I'y)p = Gal(K/F) and let A = X, (T), the co-
character group of T'. Then T is determined by the I'-module A upto a canonical isomorphism.
Let F’ denote another non-archimedean local field, and we will denote the analogous objects
over I’ with a superscript /. We introduce the following series of congruence notation.
o (Op,OK) =y, (Or,Ok) (level m):
This means that 1, is an isomorphism O /"0 — O/ /7™ Ok and induces an iso-
morphism Op/7"Op — Op /7O . We denote this induced isomorphism also by .
Having chosen the uniformizers, this also induces an isomorphism Tr,,(F) — Tr,,(F’),
which we still denote by ¥y,.
o (DF,DK,FK/F) Zhm,y (DFHDKHPK’/F’) (level m):
This means (Or,Ok) =y, (Or,Ox)(level m), v is an isomorphism I'g/p — g /pr,
and 9, is I'g/p-equivariant relative to 7.
[ ] (DF, DK, FK/F? A) Eilfm,%)\ (DF/, DK/, PK’/F’7 A/) (level m):
This means (Op, Ok, T /r) =a,p (OF, Ok, Tgr/pr) (level m) and A is an isomorphism
A — A’ which is T'g /p-equivariant relative to 7.

We say that “X is determined by (Op /7" OF, Ok /T O, Tk /p, A)” to mean that if
(DF,DK,FK/F,A) =7\ (DFI,DK/,PK//F/,A/) (level m)

then there is a canonical T'g,p-equivariant isomorphism X — X’ determined by (¢m, 7, A).
Let TV® denote the Néron-Raynaud model of T' considered in [CY01]. This is a smooth
model of T' with connected generic fiber such that 7VE(9 o ) is the maximal bounded

subgroup of T(E;), where 1?’1; is the completion of the maximal unramified extension F,,
of F' contained in F. This model is of finite type over Op.

Theorem 2.1 (Theorem 8.5 of [CYO01]). Let m > 1. There exists | > m such that the model

TNE x5, Op/pR is determined by (Dp/wlDF,DK/wlDK,I‘K/F,A).
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The parameters that [ depends on are also explicitly determined in Theorem 8.5 of [CY01].
Let 7 denote the neutral component of 7N%. This is a smooth model over O with connected
generic and special fibers, and is of finite type over Op. Its Oz—-points is the Iwahori

subgroup of T(f\un)
Lemma 2.2. Let T, 1> m as above. Then the model
T X0, Or/pE is determined by (DF/TI'IDF,DK/T(JDK,PK/F,A).

Proof. This lemma follows from Lemma 8.5 of [CY01] and the observation that the formation
of 7 commutes with any base change on Spec(Op), that is,

(TR X0, Op/pE)° =T xo, Or/pE. O

When the connected reductive group is a torus 7', the model 7 is its Iwahori (or parahoric)
group scheme. We will study congruences of parahoric group schemes attached to facets in
the Bruhat-Tits building of a connected reductive group G over F. To this end, let us recall
some results from Bruhat-Tits theory and the construction of parahoric group schemes (using
Artin-Weil theorem, following [Lan96]), that will used later in this article.

Given a connected reductive group G over F, let G denote the derived subgroup of G,
and G its adjoint group. Let B(G, F) denote the reduced Bruhat-Tits building of G over F,
that is, the building of G4 over F. The building is obtained by gluing together apartments
A(S, F) where S runs over the maximal F-split tori in G. The apartment A(S, F') is an affine
space under X, (5%") ®z R where S%" = S N G, Let F be a facet in B(G, F) and let Pr
denote the parahoric subgroup of G(F) attached to F. Bruhat-Tits show that there exists a
smooth affine O p-group scheme Pr with generic fiber G such that Pr(Op) = Pr. We recall
the construction of Pr, following Landvogt ([Lan96]). The parahoric group scheme is first
constructed over }/71; (note that G o is quasi-split), and the model over F' is obtained using
étale descent.

2.3. Structure of quasi-split groups. Let G denote a quasi-split connected reductive
group over F. Let S be a maximal F-split torus in G and let T' (resp. N) be the centralizer
(resp. normalizer) of S in G. Let B be an F-Borel subgroup of G with 7' C B. Note that T’
is a maximal F-torus in G. Further G and T split over Fy and the Galois group I'r acts on
the group of characters X*(T') of T, preserves the root system ®(G,T) of T in G, and also
the base A of ®(G,T) associated to the Borel subgroup B. Let K C F, denote the smallest
sub-extension of Fy splitting 7' (and hence G). Let ®(G, S) denote the set of roots of S in G.

2.3.1. Root subgroups U,,a € ®(G, S). The elements of (G, S) are restrictions of elements
of ®(G,T) to S, and the restrictions to S of the elements of A form a basis A of ®(G, S).
Moreover, the elements of A that have the same restriction to S form a single Galois orbit
for the action of Ty on A. For « € (G, T), let U, be the corresponding root subgroup of
Gk. The group I'/p permutes U, and y(ﬁa) = ﬁﬁ/(a). Let ¥, be the stabilizer of U, and
let L, be the corresponding field of invariants. We say that L, is the field of definition of
a. Note that U, is defined over Lo by Galois descent. Let {Z : Ga,La — Uy | € ®(G,T)}

denote a Chevalley-Steinberg splitting of G. It has the following properties.
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(a) If the restriction a of & € ®(G,T') to S is an indivisible element of ®(G, S), then Z, is an
Lg-isomorphism of G, to U, and we have To(a) =7 O Tq © y~1 for each v € Gal(K/F).

(b) If the restriction a of & € ®(G,T') to S is divisible, then there exists two distinct roots
B,6" € ®(G,T) of restriction a/2 to S such that o = 3+ 3'; we have Lg = Ly, Lg is
a quadratic separable extension of L, and for each v € Gal(K/F) there exists e = £1
such that 7 0 Zo(u) 0yt = Ty(a)(eu); if v € Gal(K/Ly), we have € = —1 if and only if
7 induces the unique non-trivial automorphism of Lg.

Now we describe all possible structures for the root subgroups U,,a € ®(G,S). We may

and do assume that a € A. Let A, be the orbit of Lg/p in A. Let 7 : G* = (U,,U_g) be

the universal cover of the semisimple group generated by U, and U_,. The classification of

Dynkin diagrams gives two possible cases:

Case I. The group GY% is isomorphic to a product of the groups SLj indexed by A, and
are permuted transitively by Gal(K/F'), the field of definition of the factor of index « is
Lo and G* = Resy, pSLy. Then U, = ResLa/Fﬁa for o« € Ay. It To : Ly — ﬁa, then
Tq = Resy, /pTq is a F-isomorphism of Resy,, /rG, to Uy; the pair (La, z,4) is called a pinning
of U,. Via x,, we obtain an isomorphism of L, with U,(F'), which we also denote by x,. If
() seA is an Chevalley-Steinberg splitting of G, then we have for each u € Lq,

za(w) = ] Zs(up) (2.2)
BEA

In the above, 8 = v(a) for some v € I'g/r and ug := y(u). The subgroups U_, and the
splitting z_, are obtained using U_,, and Z_, analogously.
Case II. The group G is isomorphic to a product of the groups SL3 indexed by the set
I consisting of pairs of two elements {o, @} of A, such that o + @ is a root. We have
Lo = La, Lq is a quadratic extension of L, 4. The simple factor G of index {a, @} is defined
over L,.ga, split over L,, and is isomorphic over L,i5 to the special unitary group of the
Hermitian form h : (z_1,20,21) — 7(x_1)21 + 7(20)w0 + 7(x1)x_1 Over L3. Here T is the
unique non-trivial element of Gal(L,/Lq+a). We denote this simple factor as SUs, and then
G* = ReSLOhL@/F SUg.

Let Ho(La, Lata) == {(u,v) € Lo X Ly | v+ 7(v) = ur(u)} denote the L,4s-group with
group law (u,v) - (u,v) = (u+u,v+0+7(u)u). Then ¢ : (u,v) = ZTo(u)Tota(—v)Ta(T(u)) is
an L, a-group isomorphism of Hy(Ly, La+a) with the subgroup U= (7@(7@4@(7@ of G. Then
U, = ResLa+a/FU and z, = Resy, . /k( is an F-isomorphism of groups H(La, Lata) =
Resy, ., ./rHo(Las Lata) with U,. Further, for (u,v) € Ly X La,

a(u,v) = [ [ Zs(up)Z 5, 5(—v8)T5(7(up))
In the above, for each 8, we choose v € Gal(K/F) such that 8 = v(a); then 3 = y(a),
Tg=70Ta0y ', Tg=70T507" ", Tgyg="7°Tata0 Vs ug = v(u),vs =7(v).
Note that the root subgroup Us,(K') associated to the root 2a consists of elements z,(0,v)
where v € LY := {v € L, | v + 7(v) = 0} and the map v — 7,(0,v) is an F-vector space
isomorphism of L% with Uy, (K).

2.3.2. On the splitting extension of the root. Let a € ®"°Y(G,S) with 2a is not a root. We
fix a pinning (L, x4) of U, where a € A, as in (I) above. The subset of endomorphisms of
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the F-vector space U, of the form pg, (t) : q(u) — z4(tu) for t € L, does not depend on the
choice of (L, x4) (see Section 4.1.8 of [BT84]). This is denoted by L, and is called the field
attached of the root a. It is isomorphic to L, via the map ¢ — py, (t). Its inverse gives an
embedding of L, — K. A similar definition is obtained when 2a is a root in Section 4.1.14
of [BT84].

2.3.3. Valuations. Let w : F — R* be as in Section 2.1, and we denote its extension to K
also as w. The notion of valuation of root datum was defined in [BT72]. For a € ®(G,T),
and put

¢a(fo¢(u)) = W(U),U e K*.

Then ¢ = (#a)aca(a,r) defines a valuation of the root datum (T, (ﬁa)ae¢(G7T)) in the group
G(K) (recall that G is split). It is shown in [BT84] that ¢ descends to (T, (ﬁa)aeq>(G7S)) and
defines a valuation on it. We explicitly define ¢, : U, (F)\{1} — R from ¢. For a € ®(G, S),
let A (resp. B) be the set of a € ®(G,T) whose restriction to S is a (resp. 2a). For
u € Uy(F'), there exist unique @, such that u = [] .45 for an arbitrary ordering of
AU B and we put

¢a(u) = inf <OICI€1£ (Z;a(aoz)7 (;Ielg %Qza(ﬂ@c)) :

This number is independent of the choice of ordering of AUB. Then ¢ = (¢4 )aca(c,s) defines
a valuation of root datum on (7, (Us)aca(q,s)) (see Section 4.2.2 of [BT84]).

2.4. Parahoric group schemes; quasi-split descent. In this section, we assume that F’
is also strictly Henselian, that is its residue field is separably closed.

2.4.1. Affine root system and the associated Weyl groups. The apartment A(S, F') can also be
thought of as the set of valuations that are equipollent to ¢ = (¢a).ca(q,s), Where ¢ as above.
This is an affine space under X, (S%") ®7 R and N(F) acts on it by affine transformations
(see Section 6.2.2 of [BT72]). Let us denote the point of A(S, F') corresponding to ¢ as xo.
For a € ®(G,S), let Ty = ¢o(Ua(F)\{1}) and

fa = {¢a(u) | u € Ua(F)\{1}7 gba(u) = sup ¢a(UU2a(F))}'

Here we have used the convention that Us, = 1 if 2a is not a root. Let
(G, 8) ={: A5, F) 5> R | () =a(- —x0) +l,a € (G, S), L eT,}

denote the set of affine roots of S in G. Choosing x allows us to identify A(S,F) with
X, (S%7) ®z R. With this identification, the vanishing hyperplanes coming from ®(G, S)%f
makes A(S, F) into a (poly)simplicial complex. The group generated by reflections through
the hyperplanes coming from ®(G,S)% is the affine Weyl group denoted by Wef. The
extended affine Weyl group is defined as W¢ := N(F)/T(F'); where T(F); is the kernel
of the Kottwitz homomorphism k7 : T(F) — X*(T'F) = X,.(T);, (see [HR08]). With
W :=W(G,S), the group W¢ hence fits into an exact sequence

1= X (1) > W= W — 1.
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2.4.2. The associated root subgroup schemes. Let us recall the filtrations on root subgroups
and the associated root subgroup schemes from Section 4.3 of [BT84]. For a € ®(G,5), let
¢a 1 Ug(F) = RU {00} be as above. For k € R, Let Uy, = {u € Uy(F) | ¢pa(u) > k}. Next,
let us describe the associated root subgroup schemes.

Case I. Let a € ®"°4(G, S) such that 2a ¢ ®(G,S). For k € Ty, let Loy = {u € Ly | w(u) >
k}. Then L, is a free O p-module of finite type. Let L, be the canonical smooth O p-group
scheme associated to this module (More precisely, given a free Op-module M of finite type,
the functor taking any Op-algebra R to the additive group R ® M is representable by a
smooth O p-group scheme M whose affine algebra is identified with the symmetric algebra
of the dual of M). Let U, be the image under z, of L, and let U, be the Op-group
scheme obtained by transport of structure using z,. Then U, has generic fiber U, and
Uy 1:(OF) = U, . The definition is extended to k € R\{0} in Section 4.3.2 of [BT84].

Case II. Let a € (G, S) with 2a € ®(G, S). The root subgroup U, = ResIL,Q“HO(La,Lga)
via x,. In order to describe the root subgroup schemes of the filtration U, j, we use an
alternate description of Hy(Lg, Lag). Recall that Lg is the set of trace 0 elements of L,. Let
L} denote the set of trace 1 elements in L, and let

(La)maz = {1 € Lg | w(A) = sup{w () | = € Lg}}.
Note that (Ly)L,.. # 0 and when the residue field of L, is of characteristic # 2, 1/2 € (L,)2

max max*

Let A € (Lq)},,, and let Hy := L, x LY equipped with the action

(u,v) - (u,v) = (u+u,v+0— Aut(u) + 7(N)7(u)u). (2.3)

Then Hy is an algebraic Log-group and jy : (u,v) — (u,v — A7(u)u) is an La,-group isomor-
phism of Hy(Lg, La,) onto Hé‘. Let H* = Resl{iz“Hé‘.
Let v = —Sw(A). For k € I'y, let I = 2k + i, and

Loji~y i ={u € Ly |w(u) > k+~} and Lgl ={uec L |w) >1}.

Up to isomorphism, there exists a unique smooth affine O p-group scheme ’Hg of finite type
with generic fibre H A and such that ’HQ(D F) = Lg jyy X Lgl and a group law, which induces
the group law (2.3) on the generic fibre (See Section 4.3.5 of [BT84]). In more detail, let
L4 4+~ and .Cgl be the canonical Oy, -group schemes associated to Lg j4, and Lgl. Let
7‘-[87,,C = Lkt X Egl. The map Ly x Ly — LY, (u,u') — Aur (@) — 7(A)7(u)u can be extended
uniquely to a morphism Lg 4y X Lo jyy — 5271. Hence the group law can be extended to

’Hfik. Let ”Hg = Resf;LZ“ Hé\,k' By transport of structure using x, o Resfﬁ“j)fl, we obtain
the O p-group scheme U, ;. These definitions are extended to k,l € R\{0} in Section 4.3.8 of
[BTS4].

Using the isomorphism v — 2,(0,v) from LY — Us,, we obtain from the scheme £9 (for
k € w(L2)\0), an O p-scheme whose generic fiber is Us, and denote it as Us, k. (see Section
4.3.7 of [BT84] for further details).

2.4.3. Construction of parahoric group schemes over F'. In this section, we recall the con-
struction of parahoric group schemes, following [Lan96]. Given =z € A(S,F), let f, :
®(G, S) — R be the function fz(a) = a(z — x¢), where ¢ is the unique point arising from
quasi-split descent as in Section 2.4.1. Let Uyy := U, s, (a)- Let Uy, be the smooth affine
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group scheme over O with generic fiber U, and with U, ,(Or) = U, » (as in Section 2.4.2).
For ¥ = &7(G,S) and ¥ = & (G, S), Proposition 3.3.2 of [BT84] gives a unique smooth
affine O p-group scheme Uy , of finite type with generic fiber Uy and the property that for
every good ordering of ¥"°? (See Section 3.1.2 of [BT84]), the F-isomorphism [,y Us — Us
can be extended to an O p-isomorphism || acw Uax = Up 4.

The parahoric subgroup P, is generated by 7(Op) and the U, , for a € ®(G,S) (with T
is as in Section 2.2). One of the main results of [BT84] is that there is a unique smooth affine
O p-group scheme P, with generic fiber G and with P, (Op) = P,. We recall the construction
of P, from [Lan96]. The idea is to put an O p-birational group law on Ugp+ , X T X Up- ,
and invoke Artin-Weil theorem (see Chapters 5 and 6 of [BLR90]) to construct P,. Let
us first introduce some notation. Let Uf = Up+(c,s),, and let X, = U, TUS. Since its
generic fiber X, xo, F = U TUT is an open neighborhood of the 1l-section of G, there
exists a unique F-birational group law on the generic fiber of A,. We want to extend this
to X,. Since U-TU™" and UTTU™ are both open neighborhoods of the 1-section of G,
there exist f € FI[U TU"] and f' € FIUTTU™] such that F[U TU"|; = F[UTTU ]p.
Without loss of generality, we may assume that f € Op[U " TUT\7Op[U-TU™] and f’ €
OpUTTU \mOp[UTTU™]. Proposition 5.16 of [Lan96] shows that inside F[U-TU |y =
FIUTTU ], we have OpU, TUS]; = Op[USTUL |p. So we will identify (U, TUS ) =
(UFTU; )¢ in the following. By Proposition 5.8 of [Lan96], we can identify TU; and U T
and hence also TUS U, and U TU, . In X, x X, = U, x (T x U x U, ) x TU, we consider
the open subscheme

U x (US X T <UD ) x TUS =U; x Uy x T xUS)p x TUS
CU; xU; x T xUF x TUS
= Uy xU)x (T xT)x U xU)

mult3

U x T xUf

So we obtain a morphism U, x (U x T xUy )y x TUS — X,. Since X, has irreducible fibers
over Op and since f ¢ mOp[U, TUS], we see that (U, TU;) ; is O p-dense in X, (that is, each
of its fibers is Zariski dense in the corresponding fiber of X, - see Section 2.5 of [BLR90]), and
hence Uy x (U x T x Uy )5 x TUF is Op-dense in Uy x (T x Uy x Uy ) x TUF = Xy x Xy
Hence we obtain an O p-rational map m : X, x X, — X,. By Proposition 5.16 of [Lan96], m
is an O p-birational group law on X,. Glue together the schemes G and &, along X, x¢o,. F
and denote it as ). As in Proposition 5.17 of [Lan96], the parahoric group scheme P, with
group law m, together with an open immersion ), — P, such that the restriction of m to )V,
is m, is obtained by applying Theorem 5.1 of [BLR90] to the scheme ),. The generic fiber
of P, is G. Let F be a facet in A(S, F'). Then for z,y € F, P, = P,. So we write Pz for the
parahoric subgroup attached to the facet F and denote the underlying group scheme as Pr.

2.5. Parahoric group schemes; Etale descent. Let F be a non-archimedean local field
and fu\n be the completion of the maximal unramified extension F,,(C Fy) of F. Let G
be a connected reductive group over F. By a theorem of Steinberg (recalled as Theorem
5.2), we know that Gp,, is quasi-split. Let A be a maximal F-split torus in G. By Section
5 of [BT84], there is an F-torus S that contains A and is maximal F),-split. Note that
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X, (A) = X, (8)CGal(Fun/F) " Tet A(A, F) denote the apartment of G' with respect to A. Let
Fi be a facet in A(A, F'). We fix an algebraic closure &p of the residue field kp and identify
the Galois groups Gal(}/ﬂ;/F) with Gal(kp/kr). Let o denote the Frobenius element of
Gal(F,,/F) under this identification. Then we know that there is a o-stable facet F, in
A(S,F,,) such that FZ = F, (see Chapter 5 of [BT84]). Since F, is stable under the
action of o, the parahoric group scheme Pi, is also stable under the action of o. In this
case, the Dfu\n—group scheme Pz admits a unique descent to an O p-group scheme with

generic fiber G (see Example B, Section 6.2, [BLR90]). The affine ring of this group scheme

_ Gal(Fun/F)
is (DEZ[PJ%*])
A(AF).

. This is the parahoric group scheme attached to the facet F, of

3. QUASI-SPLIT FORMS OVER CLOSE LOCAL FIELDS

Let Gg be a split connected reductive group defined over Z with root datum (R, A). For
an extension K/F, let Go g = Go xz K.

Let E(F,Gp) be the of F-isomorphism classes of connected reductive F-algebraic groups
G with G, isomorphic to G r,. This is in natural bijection with the Galois cohomology set
HY(Tp, Aut(Go r,)). We denote this map

E(F,Go) — HYTr, Aut(Go r,)), [G] — sq- (3.1)

Lemma 3.1. Let Ir be the inertia group of F' and I3 denote the m-th higher ramification
subgroup with upper numbering. Let E(F,Gq),, denote the set of F-isomorphism classes of
F-forms G of Go,r such that there exists an atmost m-ramified finite extension L C Fy (i.e.
Gal(L/F)™ = 1) with G xp L =2 Gy Xz L. The bijection (3.1) induces a bijection between
E(F,Go)m and the cohomology set HY (T g /I, (Autg, (Go r,))F).

Proof. Let Q := (F,)'¥. Then for every finite extension F' C L C F,, L «— € if and only if
Gal(L/F)™ = 1 (see section 3.5 of [Del84]). Further we know that H*(Aut(Q/F), Auta(Goq))
classifies isomorphism classes of F-forms [G] with G xp Q = Gy xp 2. Now simply note
that Aut(Q/F) = T'p/I% and Auto(Goq) = (Autr, (Go.r,))'F . O

3.1. Quasi-split forms. Let (Go,To, Bo, {ta},ci) be a pinned, split, connected, reductive
Z-group with based root datum (R,A) where {uq} wcA is a splitting as in Section 3.2.2 of
[BT84]. Then Out(Gy) can be identified with the constant Z-group scheme associated to the
group Aut(R,A). Consider the exact sequence

1 — Inn(Go(Fy)) — Aut(Go.r,) — Aut(R,A) — 1.

Let H = H(Go,To, Bo, {ta}4c i) be the subgroup of Aut(Go r,) consisting of all a such that
a(Bo) = By, a(Tp) = Tp and {aouy | @ € A} = {u | @ € A}. Then H — Aut(Gor,) —
Aut(R,A) is an isomorphism and Aut(Go r,) = H x Inn(Go(Fs)). Hence the natural map
HY(Tp,Aut(Gor,)) — H (I'r, Aut(R, A)) has a section given by

¢: H'(Tr, Aut(R,A)) = H'(Tp, H) — H'(Tr, Aut(Go,r,))-

We now recall the following well-known theorem (see [Con], Section 7.2).
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Theorem 3.2. Let [G] € E(F,Gy). Then s lies in the image of ¢ - HY(I'p, Aut(R, A)) —
HY(T g, Aut(Gor,)) if and only if G is quasi-split over F, that is, it has a Borel subgroup
defined over F.

Let E4s(F,Go) = {[G] € E(F,Go) | s¢ € Im(q)} and Eqs(F,Go)m = Egs(F,Go) N
E(F,Gg)m. Since G is F-split, the action of I'r on (G, By, Tp) is trivial. Hence Z'(I'r, Aut(R, A)) =
Hom(I'p, Aut(R, A)).

Lemma 3.3. We have the following:
(a) The class [G] € Eus(F, Go)m if and only if sg lies in the image of

q: H'(Dp /TP, Aut(R, A)F) = H(Dp/If, Aut(Gor,)'F)

(b) The isomorphism 1y, : Ty, (F) = Tr, (F') induces an isomorphism

Q : HY(Tp /I, Aut(R,A)) = HY (T p /I, Aut(R, A))

and
Q6 ZN TR/ 12, Aut(R,A)) = ZYTp /15, Aut(R, A))
(¢) The isomorphism ¢y, induces a bijection Eqs(F, Go)m — Eqs(F', Go)m, |G] — [G'], where

sar = ¢ 0 Qm(sa).
Proof. This is clear from Lemma 3.1 and Theorem 3.2. g

As noted in Lemma 3.3, Z'(Gal(Q/F), Aut(R,A)) = Hom(Gal(Q/F), Aut(R,A)) since
Gy is split. Let us fix s € Z'(Gal(Q/F), Aut(R,A)) = Z'(Gal(Q/F), H). Let (G,¢) be a
pair of be a quasi-split connected reductive group over F and ¢ : Gg xz Q2 — G xg  an
Q-isomorphism such that the Galois action on G(Fj) is given by s. We may and do assume
that there is a finite Galois atmost m-ramified extension K of F' over which ¢ is defined, that
is, that s € Z'(Gal(K/F), Aut(R, A)).

More precisely, with xr denoting the Galois action on G(K), we have

v *r ¢(x) = o(s(7)(7 - x))

for v € Gal(K/F) and x € Go(K). Then ¢(Tp) = T is a maximal torus of G defined
over F' and ¢(By) = B is a Borel subgroup of G containing 7" and defined over F. Let
s € ZY(Gal(K'/F"), Aut(R,A)) as in Lemma 3.3. Here K’/F’ is determined by K/F via
Del,,. Let (G',¢’) be a pair of quasi-split connected reductive group over F’ and ¢’ : Gy Xz
K' — G' xp K' such that v/ xp ¢/'(2) = ¢(s'(7/)(y - 2')), where 4/ = Del,,(y). Then
¢ (To) = T' and ¢'(By) = B’ are defined over F'. Note that X, (T) = X, (Tp) = X, (T") and
X*(T) = X*(Ty) = X*(T") via ¢ and ¢'.

Recall the notation of Chai-Yu: (Or, Ok, ['x/r) =gy (OF, Ok, T /pr) (level m) from
Section 2.2.

We write

(DF,DK,FK/F,H) = 7,08, (DFI,D/K/,PK//F/,HI) (level m)

to mean (Or, O, Tk /r) =a,s (Or, D% Tkrypr) (level m), H and H' arise from the same
Z-pinned group (Go, Bo, To, {ta} i), and the F-quasi-split data (G, B,T) with cocycle s
corresponds to the F’-quasi-split data (G', B’,T") with cocycle s’ via Qf, as in Lemma 3.3
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(b) (but applied to K and K’ respectively). To abbreviate notation we will write congruence
data D,, to mean

m : (979K7PK/F7H) Ed}m,%ﬂfn (DFlag,[{’arK’/F’7H,) (level m)

Lemma 3.4. The congruence data D,,, induces isomorphisms X* (TGN F) o2 x+()Gal(&@'/F')
X, (T)CMYE) o X (TGN ED - X (T gaiayry = X (T gaier /ey, and Xo(T)gayoyry =
X(T") Garr /77

Proof. We know that v *p (é(x)) = ¢(s(y)(y - x)) where s(y) = ¢~ o v(¢) takes values
in H = H(Go, Ty, Bo, {ta},cx)- We similarly have *p/. This action induces the action on
X.(T) as follows:

Vxp (@o ) =do(s(y)(N)
where vy € Gal(Q/F) and A € X, (Tp), where we now view s(v) as an element of Aut(R, A)).
By definition s(y)(\) = s'(7')(\) where 7/ = Del,,,(y). Hence v s (¢ o A) = ¢' o §'(7')(A )
Now, X, (T)% @/ F) = {po ]| s(7)(\) = A}. The lemma is now clear.

4. CONGRUENCES OF PARAHORIC GROUP SCHEMES; QUASI-SPLIT DESCENT

4.1. Apartment over close local fields. In this section, we additionally assume that F' is
strictly Henselian. We begin with the following lemma.

Lemma 4.1. Let T as above and let S be the maximal split subtorus of T. Then S is mazimal
F-split and Zg(S) =T.

Proof. Let S C S with S maximal F-split. Since G is quasi-split over F, T = Zg(S ) is a
maximal torus in G and we can assume that 7' C B with B defined over F. Then B and B
are G(F)-conjugate, which implies that 7' and T are G(F)-conjugate. But conjugation by an
element of G(F') will preserve the split and anisotropic components of 7', which implies that
S and S are G(F)-conjugate, which forces S = S to be maximal F-split. It is now clear that
Zg(S)=T. O

Remark 4.2. The torus S%" := S N G%" is a mazimal F-split torus of G contained in
T =T NG,

4.1.1. Compatibility of Chevalley-Steinberg systems. Recall that we have fixed a Z-pinning
{ua}aca of Go. This, via the Galois action given by the cocycles s and s', gives rise to a
Steinberg splitting {zs }aca of G and a Steinberg splitting {2/, }aca’ of G’ respectively. Let

(G, T) = ®(G',T') (since both are isomorphic to ®(Go,Tp)). This isomorphism is
Del,,-equivariant. Note that with v € Gal(Q2/F) and 4" = Del,,(v), we have that z.) =
7o xy o0y ! and x;,(a,) =v'oa!, 0y~ where o/ = ®,,(). The {z4}aca and {2/, }arens
each extend to Chevalley-Steinberg systems on G and G’ respectively and continue to have

the compatibility with Del,, in the sense described above.
We define

ep i ) CF/Q2 wp(2) if char(F) = 0 and residue char(F) = 2
00 otherwise.
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We prove the following refinement of Lemma 4.3.3 of [BT84] when the residue characteristic
of F' is 2, using the additional hypothesis that the extension K/F splitting G is atmost
m-ramified.

Lemma 4.3. Let m > 1 and let F' be of residue characteristic 2 with ep > m. Let G, B,T as
above, where G splits over K with Gal(K/F)™ = 1. Assume that a,2a € ®(G,S). Consider
the separable quadratic extension L,/Lo, inside K. Let e, = €L, /F> €20 = €Ly /F- There
exists t € Lo with L, = Lag[t] and the coefficients A, B € Lo, of the equation t> 4+ At + B = 0
satisfied by t have the following properties.

(a) w(B) =0 or B is a uniformizer of La,.

(b) w(B) <w(A) <%+ é
In particular A # 0.

Proof. By lemma 4.3.3 (ii) of [BT84], (a) holds, and A = 0 or w(B) < w(A4) < w(2) or
0 <w(B) < w(A4) =w(2). Since Gal(K/F)™ = Gal(K/F)y,,,.(m) = 1 where ¢i;/p denotes
the inverse of the Herbrand function (See Chapter 4 of [Ser79]), we have

Gal(K/Lgg)¥ 2a/F™ = Gal(K/La,) ) = Gal(K/Ly,) N Gal(K/F) = 1.

Yi/r(m Vi F(m)

This implies that Gal(Lq/Lag)¥*2a/7(™) = 1. Using the equivalence of (ii) and (iv) of Lemma
A.6.1 of [Del84], we see that

w(r(t) — 1)

It is easy to see from the definition that vy, /p(m) < m - ez,. Hence

mmpw<%+é

Now, w(A) = w(7(t) +t) > min(w(7(t) — t),w(2t)), and w(2t) = w(2) + w(t) = ep + é
Since ep > m > m/2, we see that

< wLZa/F(m) + 1 _ wLZa/F(m) + 1
2e9q4 B €a .

(4.1)

w(A) = min(w(7(t) — t),w(2t)) =w(r(t) — t) < % + é (4.2)

and in particular, A # 0.
Note that when the characteristic of F' is 2, the claim that A # 0 simply follows from the
fact that the extension L,/Ls, is separable. O

Proposition 4.4. Let G, T and B as in the preceding paragraph. Let m > 1 and let F, F’
be such that ep,epr > m. The congruence data D,, induces a simplicial isomorphism A, :
A(S,F) — A(S', F"), where (G', B',T") corresponds to the triple (G, B,T) as above and S
(resp. S') is the maximal split subtorus of T (resp. T') which is mazimal F-split (resp.
F'-split) by Lemma 4.1. Furthermore, with W€ as in Section 2.4.1, we also have a group
isomorphism W€ = We'.

Proof. The reduced apartment A(S, F) is an affine space under X, (S%") @z R. Using Lemma
3.4, we see that D,, induces a unique bijection A,, : A(S, F) — A(S’, F') such that o —
z( (where zo,z{, are as in Section 2.4.1 arising from Chevalley-Steinberg systems chosen
compatibly as in Section 4.1.1).
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It remains to observe that A,, is a simplicial isomorphism. Recall that the elements of
®(G, S) are restrictions to S of the elements of ®(G,T') and two elements of (G, T') restrict
to the same element of ®(G, S) if and only if they lie in the same Gal(K/F')-orbit. Further,
with A denoting a base of ®(G,T), the elements a|g,a € A form a base A of ®(G, S). Let
¢, : (G, T) = ®(G',T") (since both are isomorphic to ®(Gy,Tp)). This isomorphism is
Del,,-equivariant. Hence the obvious map ®(G,S) — ®(G",S’), als = P, (a)|ss, which we
also denote as ®,,, is an isomorphism of the relative root systems (In more detail, since S and
S’ have the same rank, we have a isomorphism of R-vector spaces X*(S)®zR — X*(S")®zR.
Further, we have a bijection between A — A’; this is because suppose @,,(a)|s: = @, (8)|s7,
then there is 7' € Gal(Q'/F’) with 7' - ®,,,(«) = D,,,(8). Then n -« = 3 where ' = Del,,,(n).
Finally note that <(I)m(04)‘gr, @m(ﬂ)‘5’> = <(I)m(04), P, (8)) = <a7/8> = <a’5’7/8‘5>)’

The vanishing hyperplanes with respect to the affine roots ®*f (G, S) gives the simplicial
structure on A(S, F'). Recall that

(G, F)={: AS,F) - R | () =a(- —x0) +1,a € (G, S), | € T,}.

For any a € ®(G, S), let @’ = ®,,(a). Let Ly C K’ denote splitting extension of the root a’
obtained by Del,,. Since F is strictly Henselian, the extensions L,/F and L, /F’ are totally
ramified. To prove that the bijection ®,, extends to a bijection % : (G, F) — &/ (G, F')
making A, a simplicial isomorphism, we simply have to observe that for each a € (G, 5),
I', = T'w. By Section 4.3.4 of [BT84], we have the following:

Case I. Suppose a € 4G, S),2a ¢ ®(G,S). Then ', =T, = éZ.
Case II. Suppose a,2a € (G, S).
(a) Suppose L,/Ls, is ramified and the residue characteristic of F is not 2. Then

1 ~ 1 1
I'n=—Zand 'y, = — + —7Z.
€a €a €2q
(b) Suppose L,/Ls, is ramified and the residue characteristic of F' is 2. By Lemma 4.3,
A # 0. Then

~ 1 1 ~ 1
I'n=—+—Zand I'y, = —Z.
2e, eq €2q

Since €, = €4,6€2 = €94, and the valuations w and ' are normalized so that w(F) =
W' (F') =Z, we have ', =T'ys for all a € ®(G, S). O

4.2. Congruences of parahoric group schemes; Strictly Henselian case. In this sec-
tion, we additionally assume that F' is strictly Henselian.

Theorem 4.5. Let m > 1 and let F and F’ be such that ep,epr > 2m. Let | be as in
Lemma 2.2 and let Dy and G,S,T,B as in the beginning of this section. Let F € A(S,F)
and F' = A (F) as in Lemma 4.4. Let Px be the parahoric group scheme over O attached
to F by Bruhat-Tits, and let P be the group scheme attached to F' over Op:. Then the
congruence data D induces an isomorphism of group schemes

Pm : Pr XOp DF/pTI? — Pr XOpr DFl/pT}?L/ le;ml DF/]J?L

In particular, Pr(Op/v'E) = Pr (O /p) as groups.
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To prove this theorem, we will study the reduction of root subgroup schemes mod p'%
and prove that they are determined by congruence data, use the result of Chai-Yu that the
reduction of the Néron model of the torus in determined by congruence data, study the
reduction of O p-birational group laws in Section 2.4.3, and invoke the Artin-Weil theorem
to obtain the corresponding result for parahoric group schemes in Section 4.2.1.

The following lemma is easy.

Lemma 4.6. Let M be a free Op-module of finite type and let A = SymDF(MV) be the
symmetric algebra of MV, where MY := Homgp . (M,OF). Then

A®o OF /P = Symy, jpu (M ©0 O p /pF) = Symy .y (Homg .y (M@0, OF /5, Or /PF)).

Lemma 4.7. Let m > 1, let F' and F' be such that ep,ep > 2m and let D,, as before. Let
a € ®(G,S) and k € R. Let Uy, be the Op-group scheme in Section 2.4.2. Let o' = ®p,(a) €
®(G',S") and let U., , be the Opr-group scheme in Section 2.4.2. Then the congruence data
D, induces an isombrphz’sm of group schemes

Uk X0 OF/PF Z Uk X0, OF [P X o1 OF /pF.

In particular,
Ua 1s(OF /D) = U 1 (O [P).

Proof. We will stick to the notation in Section 2.4.2.
Case I. Suppose a € ®"°4(G, S),2a ¢ ®(G,S). The affine ring representing U, j is isomor-
phic to Symy, le. Note that L, = pgz/ °l. Since pr, is a free O p-module of rank equal
to [Lq : F, it is clear that the data D,, induces an isomorphism of Ly ®o, Or/p% and
Lok ®0,, OF /v and we are done by the previous lemma.
Case II. Suppose a,2a € ®(G,S). Since F is strictly Henselian, the extension L,/Lo, is
totally ramified. Let L, = Lo,(t), where t? + At + B = 0 with A, B satisfying Lemma 4.3.3
of [BT84]. When the
e residue characteristic of F is not 2, we take A = 1/2 (See Lemma 4.3.3 (ii) of [BT84]),
e residue characteristic of F' is 2, we take A = tA~! (using Lemma 4.3.3 (ii) of [BT84] and

Lemma 4.3).
Then the affine ring representing the scheme ’H())‘ is Symg Lo Ll\; fty @O0, Symg . (L
Symg, ((Laktry ¥ Lg’l)v), where | = 2k + é We describe LSJ.
(a) If the residue characteristic of F'is not 2, then using that w(2) = 0 in Lemma 4.3.3 of

[BT84], we see that A =0. Then LY = {x € L, | 7(z) + v =0} = {yt | y € La,} and

Loy ={yt |y € Laa, w(yt) 2 1} = {yt | y € Laa,w(y) = 2k}.
(b) If the residue characteristic of F' is 2, then
(i) if char(F) = 2, then LY = Ly, and Lgl ={y € Lag | w(y) > 1}.
(ii) if char(F) = 0, then LI = {y(1 — 2tA™1) | y € La,}. By Lemma 4.3, we have

o) =

1
w2tA™ ) =ep + — —w(A) > ep — % >m

€a
since ep > 2m. Hence 1 —2tA™! € 14 p'®, and Lgl = {y(1 -2tA7Y) |y €
L2a7w(y) 2 l}
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Let Ly C Q' be obtained from L, via the Deligne isomorphism Del,,. Then L, is the
splitting extension of the root @’ (and similarly we obtain Lo, ). We may and do assume that
Ly = Loy (), where t? + A't' + B’ = 0, with A/, B satisfying
e w(A) =uw'(A") and A mod p7> — my A" mod pmeza

® W(B) =w ( ) and B mod pm62a Ym B’ mod pmega‘

Then ¢ mod p7'* —= Ym

isomorphisms

t’ mod pme“ It is now easy to check that the map 1, induces

~ 70
La 4y ®DL2 DLza/pme2a L a’ k+y ®DL/ i L’ /pmeza

Ly ®op, OL, /e = Ly, Doy, O /Pme?a-

In the above, we have used that when the residue characteristic of F' is 2, 1 — 2tA™! =1
mod p7'e.
affine rings mod p7,
reducing the map

Consequently, D,, induces an isomorphism of the reduction of the respective

M€ To see that this is an isomorphism of group schemes, we observe that

§tLagk X Loy X Laj X LY — Loy x Ly
((z,9), (2", 9) = (x+ 2",y +y = Aar(2’) + A7 ()

mod pyi** is Yp-equivariant. Finally H = Resg?“ H and the result now follows from
[BLRQO], Page 192.

The lemma for Uy, . follows using that
Ly @0y, OLy, /Pl = Loy ®0, O /PmeQ"
and [BLR90], Page 192. O
The following corollary is an obvious consequence of the previous lemma.

Corollary 4.8. With assumptions of Lemma 4.7, and with F' = A,,(F) where F is a facet
in A(S,F), let Uy 5 (Tesp. Uy Fr) be the smooth root subgroup scheme over Op (resp. Opr)
as in Section 2.4.53. The congruence data D,, induces an isomorphism

Ua, 7 X5 OF [PEF = Ua 5 X0, Op [P X o1 Op [PF-
In particular, Uy, 7(OF /PF) = Uy 7/ (Op [9) as groups.

4.2.1. Proof of Theorem 4.5. For a scheme X defined over a local ring R with maximal ideal
m, we will denote X (™) := X x g R/m"™. Let [ be as in Lemma 2.2. We want to prove that D,
induces an isomorphism of Or/p7-group schemes Pé_-m) = 73(;") X =t Or/pE. Let Xz, Xp

be as in Section 2.4.3. Let m(™ be the Op /p’-birational group law on X ](_-m)

n(™ on X ](_f,n) Note that via D, we also have that

and similarly

(DF,DK,FK/F,A) Ewem)\ (DF/,DK/,FK//F/,A,) (level l)
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as in the notation of Chai-Yu of Section 2.2, where A = X, (T'), A" = X, (T"); so the result of
Lemma 2.2 holds. We know by Lemmas 2.2 and 4.8 that

e = 0 O o (4.3)

as Op/pp-schemes. Further, by these lemmas, we also have that the Op/pj-birational

m)

group laws n(™ Xyt Op/pi and m(™ on X } are equivalent. Since Vr is the O p-scheme

obtained by gluing G and X along Xr X o, F, we have that y}m) is isomorphic to X }m) as

)

Op /pi-schemes. Now, P}m) with group law m(™), and P« vt OF /P with group law

a(m) x e Orp/p', are both smooth, separated O /p- group schemes that are faithfully flat
and of finite type. Recall that the restriction of m to )z is m, and similarly for n. Hence
the group laws m(™ and a(™ x vl Or/p have the same restriction to y}m’. Following the
the proof of uniqueness of Artin-Weil theorem (see Proposition 3, Section 5.1 of [BLR9IO0]),
we obtain that the group schemes P(Fm) and P x bl Op/pi are isomorphic. g

4.3. Congruences of parahoric group schemes; Descending from G~ to Gr. In

this section, F' denotes a non-archimedean local field and f\un denotes the completion of the
maximal unramified extension Fy, of F. Let A be a maximal F-split torus in G, S maximal
Fun-split F-torus that contains A. Let T = Zg(S). Note that X, (S) = X, (T)G(%/Fun) and
X*(A) —_ X*(T)Gal(Q/F)'

Lemma 4.9. The simplicial isomorphism
A 2 A(S, Fun) — A(S', F,)
of Lemma 4.4 is Del,,-equivariant.
Proof. This is clear from the proof of Proposition 4.4, Section 4.1.1, and Lemma 3.4. O

Let o € Gal( un/F) be as in Section 2.5. Let F be a facet in X, (A). Then F corresponds
to a o-stable facet F in X, (S). Note that Del,, induces isomorphisms

Gal(Fun/F) = Gal(F,/F)/Ip = Gal(F./F") /Iy = Gal(F,, /F").
Let o/ = Del,, (o) under this isomorphism. Let F/ = A,,(F) and F' = 7
Proposition 4.10. The isomorphism
m: Pr X0 Op= /P = Pp X9 Op e
has the property that o’ o p,, = pm o 0.

Proof. Recall that the cocycle sg has been chosen to take values in Aut(H) and sg — s via
Lemma 3.3. Further, 7 is defined over O and 7}3 — =T X9, Oz From this it is clear that
o' oPm = pmoo on T fo\ o /p/\n In addltlon using the fact that Chevalley-Steinberg
systems on G and G’ have been chosen compatibly (see Section 4.1.1), it is easy to see that
o' 0 Dy = Pm 0 0 ON Uz % O Y] . / p%;. This completes the proof of the proposition. [
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5. INNER FORMS OF QUASI-SPLIT GROUPS OVER CLOSE LOCAL FIELDS

Let F be a non-archimedean local field and let G' be a connected reductive group over F'.
Then there is a quasi-split group G, defined over F' such that G is an inner form of G,. In
particular, the F-isomorphism class of G is determined by an element in H'(I'p, ng(Fs)).
Moreover if [G] € E(F,Go)m then [G,] € E(F,Go)m and [G] is determined by an el-
ement of H'(Aut(Q/F),G4(Q)) (Recall that Q = (F,)'#). Let sg, be the element of
HY(Cp /I, Aut(R, A)'F) that determines (Gq, Bq,T,), up to F-isomorphisms. Let G be
the derived subgroup of G, and let ng, G denote the corresponding adjoint and simply
connected groups. Then the groups Gfller, ng, G7¢ are quasi-split (if Sy is a maximal F-split
torus in G, whose centralizer T}, is a maximal torus, then S, N Gge’" is a maximal F-split
torus of Gfller and ZGger(Sq N Gg”) =T, N Gfller is a maximal torus of Gfller, similarly for
ng and G;°) and are in fact forms of Gder) G&4 and G§¢ respectively (to see this note that
Gler xp Q22 (G xp V%" and Z(Gq) xp Q= Z(Gy xr Q)). Using Proposition 13.1 (1) of
[Kot14] and the fact that ng has trivial center, we have a canonical bijection

ke,  H (Aut(Q/F), GA4(Q)) — (X*(T;d)/X*(T;C))Aut(Q/F)'

Let E;(F,Gg)m denote the F-isomorphism classes of inner forms of G4 that split over an at

most m-ramified extension of F. Let (Gy, By, Ty) correspond to the cocycle ¢’ 0 Q,,(s¢,) and

let E;(F',G})m be the corresponding object over F'.

Lemma 5.1. The congruence data D,, induces an isomorphism

T (X0 /X (T59)) = (X xarry))

Aut(Q/F) Aut(Q//F")

In particular, Dy, induces a bijection Ei(F,Gy)m — Ei(F',G)m, [G] = [G'] where sgr =

/155 0 Jm o kg, (5a)-

Proof. Note that X, (T;) = X.(To) = X.(T,) as Z-modules and the Galois action on X, (T;)
is determined by the cocycle sg, (and similarly for X, (7; ;d),X*(T 7°)). Now the lemma is
obvious by Lemma 3.3. g

To proceed, we need to prove a version of Lemma 5.1 at the level of cocycles. To do this,
we will use some results from Section 2 of [DR09].

Steinberg’s vanishing theorem. Let G be a connected, reductive F-group. Steinberg’s
vanishing theorem asserts that

Theorem 5.2 (Theorem 56, [Ste65]). H'(Gal(Fy/Fyu,),G(Fs)) = 1.

As a corollary of this theorem, we obtain that the natural surjection from Gal(Fy/F) —
Gal(F,;/F) induces an isomorphism

HY(Gal(F,,/F),G(Fu,)) = HY(Gal(F,/F),G(F})).
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5.1. Congruence data for inner forms; a comparison of cocycles. Let A, be a max-
imal F-split torus in G and let S; be a maximal F,,-split F-torus in G, that contains A,.
Let T, = Zg,(Sy). Then Ty is a maximal torus in Gy r,, with maximal F,,-split torus S.
Let C, be an o-stable alcove in A(Sy, Fyyp).

Let Pc, be the Iwahori subgroup of ng(Fun) attached to C;. Let Q%sz c W =

X.(T, ;d) 1 X W consist of elements which preserve the alcove C,. Here Ir is the inertia
subgroup of F' and W = W (G F,.., 9, F.,)- Then
0 = (XT3 X)) (5.1)
by Lemma 15 of [HROS]. Let P, be the normalizer in G§¢ of Fe,. Let N&! = Ngaa(S?) (Fun )N
P¢, - Then Q‘é‘i is the image of Ng‘; in Wed and Q“C‘i = Pe/Pe,.
The following lemma is proved in Sections 2.3 and 2.4 of [DR09]. Although the authors

assume that G g, is split in the beginning of Section 2.3 of [DR09], this assumption is not
needed in their proof of the following lemma. They use that when Gy r,, is split, Q“C‘é =

X (T /X (T3¢) in Corollary 2.4.2 and Corollary 2.4.3; one should instead use (5.1) when
Gy, F,, is not necessarily split.

Lemma 5.3 (Corollary 2.4.3, [DR09]). We have isomorphisms
HY(Gal(Fyn/F),Q8) = H (Gal(Fup /F), N&') = H' (Gal(Fun /F), G2 (Fun)).-

Let ¢ be a cocycle in Z'(Gal(Fy, /F), Q‘gfl) By Lemma 2.1.2 of [DR09], since Q%sz is finite,

we have
ZM(Gal(Fun /F), Q) = 0.

Let G be the inner form of G, determined by c. Let ¢(o) = w,. Write w, = (A, w) with
A € Xu(T9, and w € W. Let K C F, denote the finite atmost m-ramified extension of
Fy, over which G, . splits. Let t = Nm(\(7g)) where Nm : T¢HNK) — T34 Fun) and
A — X under the usual surjection X (Teh) = Xo(Tf%);. Let @ € Ne,(Sq)(Fun) be the
representative of w chosen using the Chevalley-Steinberg system we fixed in Section 4.1.1.

Let mq = tw. Since w, stabilizes Cy, it follows that mq P, m, ! = Pc,. Hence m, € qu.
Therefore ¢(o) = my, € ZH(Gal(Fyn/F), Ngff). Denoting

G(Fun) — Gq(Fun)ag* — 9,
the new action of o on an element g, € G(Fy,), which we denote by o, is given by
0w gu = (c(0)(0 - g))-

(Here o - g denotes the action of ¢ on g € Gg¢(Fupn)). Note that c(o) € G‘;d(Fun) =
Inn(Gy)(Fun). The maximal F,-split torus S, of G, gives a maximal F,,-split, Fy,,-torus
S in G. Let X, (S) = X.(S), 7 — 7. For 7, € X\(5), 04 - 7o = (wy(0 - T))s. Since Sy is
defined over F, o -7 € X,(95,). Since w, € Q‘é‘fl, we see that X, () is stable under the action
of o, and hence S is defined over F.

Lemma 5.4. Let A be the F-split torus of G determined by the Z-module X, (S)%*. Then A
18 a mazximal F-split torus in G.
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Proof. Consider the reduced apartment A(Sq,l?;;). We view this as an apartment in the
reduced building of G(}/Q;) and denote it as A(S,E;). The action o, on z, € A(S,m)
given by o, -z, = (wy(0 - z))«. Let C, denote the alcove in A(S,E;) corresponding to C,.
Then o, - Cx = (wy(o - Cy))«. Since o - Cy = C; and since w, € Q‘é{i, we see that C, is a
o«-stable alcove in .A(S,f\un). In particular, A(S,f\m) is o4-stable. By Proposition 5.1.14
of [BT84], C7 is an alcove in the affine space A(A, F'). Since A(A, F') contains a facet of
maximal possible dimension, we see that A is maximal F-split in G. O

Let (G, Ty, By, S;) correspond to (G, Ty, By, Sy) via congruence data Dy, as in Section 4.
By Lemma 3.4, we have
d ~ (ad
Let w, € Q‘(‘ff be the image of w, under this isomorphism. This isomorphism gives rise to a
q
bijection of pointed sets

3, Zl(Gal(Fun/F)7Q%i) — Zl(Gal(F;n/F/),Qaci%
c—dc (5.2)

where d(¢') = wyr. Let my = t'w’ where w,, = (N, w') € X*(ng)IF, x W'. Here t' =
Nm(N (mh.)) where Nm : T;d/(K’) — Tq“d/(F;n) and X' — X under the usual surjection
X*(Tq“d/) — X*(T;d’) I, and A — X under the isomorphism X, (Tod) = X*(Tq“d/). Also o'
is the representative of w chosen using the Chevalley-Steinberg system fixed in Section 4.1.1.
Let ¢ € ZY(Gal(F),,/F"), Ngf,f/) be the cocycle with & (0”) = m,.

Let G’ be the inner form of G, determined by ¢’ (or @). Let S’ be the maximal F,-split,
Fun-torus of G’ corresponding to S, but with the action of ¢’ given by the cocycle ¢’. More
precisely, for ¢, € G'(F),,),

0 9o = (@) (" g))s
where ¢’ = Del,, () as before, and ¢’ - ¢’ denotes the action of ¢’ on G} (F,,).

As in Lemma 5.4, we see that S’ is an F’-torus that is maximal F), -split and whose split

component A’ is a maximal F’-split torus in G’.

Corollary 5.5. With G — G’ as above, the F-rank of G is equal to the F'-rank of G'.
Proof. This is because rank(S) = rank(S’) and the isomorphism X,(S) — X.(5') is 0.-
equivariant. Hence rank(A) = rank(A’) by Lemma 5.4. O

6. CONGRUENCES OF PARAHORIC GROUP SCHEMES; ETALE DESCENT

The following lemma is easy.

Lemma 6.1. The o-equivariant isomorphism Ay, : A(Sq,l*{';n) — A(S;,RE) induces a 04~
equivariant isomorphism A, . = A(S, m) — A(Y, EE)

Now let F, be o,-invariant facet in A(S,E\n) and let .7:1 = Am*(]:"*) Let F, = .7:";’* and
FL=F.
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Proposition 6.2. Let m > 1, F, F’' non-archimedean local fields with ep,epr > 2m. Letl as
in Theorem 4.5, let Dy be the congruence data of level l, and let (GY,T,, By, Sy) correspond to

(Gq, Ty, By, Sq) via Dy. Let pp, : Pz X9 /\/p/\ — Pz XDA /p/\ denote the o-
equivariant isomorphism of Theorem 4.5 and Pmposztzon 4.10. Let c —> d ma Jm (see (5.2)).
The isomorphism py, induces a o.-equivariant isomorphism pm . @ Pz X 00 Fun /p/\ —
7)]:‘4 XDP:;\ /pF’ :

un

Proof. We begin by understanding the action of o, on an element of Pz more explicitly.
Recall that

Ps = (UE(©D =), T(O 5 ) Uz (O5) )

Let g € Pz. Then o, - g. = (mg(o - g)my').. Let by € ®7°4(G,,S,) such that 2by is not
aroot. Let y € Uy 7. Fix fBo|s, = bo, fix the pinning (Lg,, zy,) and write y = x,(uo) for
ug € Lg, (As explained in Section 2.3.2, Ly, = Lg, < K). Let & denote a lift of o to I'r and
let 3 =60y, b=0-by. Then we obtain a pinning (Lg,xp) from the pinning (Lg,, zp,) via
¢ and we have o - xp,(up) = x(F - up); this follows using properties of Chevalley-Steinberg
system recalled in Section 2.3.1 (a), (b). Let u =& - up. Then u € Lg. We need to compute
wry(u)w L. We will first compute S,23(u)s,* for a € A. Note that

Sq = H Sa (6.1)

and that Lg, ., = L. Now for a1, € @(Gq,Tq), we have 5,23, (2)s all = xsal(ﬁl)(dal,&z)
for all z € K, with d,, g, = £1. Using the properties of Chevalley-Steinberg system recalled
in Section 2.3.1 (a), (b), we have

dal,ﬂl = d’y(al),“/(ﬁﬂ V v € Gal(K/Fyy,). (6.2)
With 3 as above, note that 3|s, = b. Let

db:Hda,B

aclA,

This notation is justified since (6.2) implies that the definition of d,j does not depend on the
choice of 3. Using the definition of z;, in (2.2), a simple calculation yields that s,z(u)s, =
T, (5)(dapu). Since we chose our Chevalley-Steinberg systems compatibly (see Section 4.1.1),
we evidently have d,;, = dg p for all a € A, b € ®(Gy, S,). Iterating this process, we see that
waxy(u)w™ = Top-b(du put) Where dyy, p = 1 and dy, p = dyyr iy

Suppose by € ®(Gy,S;) such that 2by is a root. Let 50760’5‘(1 = bg. Fix the pinning
(L, L50+ﬁo,xbo) and write y = , (uo, v0), with ug,vg € Lg, (Recall that Ly, = Lg, C K).
Let B =600, =6-Pyand b = o -by. We then obtain a pinning (Lp, Lgyp,xp) via &
and o - xp, (Up, Vo) = Zg.py (G - ug, G - vg) Where & as before. Let u = & - ug,v = 6 - vg. Then

u,v € Lg. We need to compute 5,25(u,v)3, ! where s, is as in (6.1). Let
da,b = H da,ﬁy > da,2b = H da,ﬁ+3
aEAa aEAa

Again, the definitions of d,, and d, 2, do not depend on the choice of 3 by (6.2).
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Then a simple calculation yields

~1

§axb(u, v)sa = Ts,(b) (da,bu, da,2b’U)'

Proceeding as in the previous case, we have wxp(u, V)0~ = @y.p(dy put, dy 2pv)) Where

dw7b, dw,2b = +1 and dw,b~: dw’,b’ and dw,2b = dw’,2b’-

Recall that ¢ = Nm(A(mx)) € T¢%(Fun). Then for each v € Gal(K/Fyy), v+t =t. Let
c € "Gy, S,) with 2¢ not a root. Let x € ®(G,.T,) with x|s, = ¢. Note that x factors
through T;d. Fixing the pinning (L,,x.) we have that x : T — Gy, is defined over L, and
x(t) € LY. A simple calculation yields tx.(u)t™' = z.(x(t)u) for each u € Ly. If ¢,2c are
roots, then with x, X such that x|s, = X|s, = ¢ and fixing the pinning (L, Ly, c), it
follows that tz.(u,v)t™1 = z.(x(t)u, (x + X)(t)v). Hence, if 2by is not a root then

Ox - (:Ebo (uo))s = (iﬂw-b(dw,bX(t)u))*

where x|s, = w - b. If 2bg is a root, then

Ox - ($b0 (u07 'UO))* = ($w-b(dw,bX(t)uv dw72b(X + )Z)(t)’[)))*

where x, x' € ®(Gy, T;) are such that x, X|s, = w-b. It is easy to calculate oy - (22, (0, vp))«
using the observations above. For x € T4(O7~),

0y -2y = (w(o - )w™t),.

Combining these observations with the fact that p,, is o-equivariant (see Lemma 4.10), it
follows that the map py, « has the property that py, . o 0. = 0}, 0 pp, « (in this verification, we
choose ¢’ to correspond to & via Del,,). O

Corollary 6.3. The isomorphism pp, « induces an isomorphism of group schemes
Pyt Pr. X0 Or/PF — Pry X0, Op /p5r X1 Op/pE.
In particular Pr, (Or/p%) and Pr (Op: /p'f) are isomorphic as groups.

Proof. This follows from Proposition 6.2 and étale descent (Example B, Section 6.2, [BLR90]).
O
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