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Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
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We assume a physical situation where gravity with torsion is neglected for an electrodynamically
self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that
under this circumstance no solution exists for the system of field equations. Despite such a situation
might look artificial nevertheless it represents the instance that is commonly taken as the basis for
all computations of quantum electrodynamics.

I. INTRODUCTION

Quantum electrodynamics (QED) is one of the most
successful models ever developed in physics, although the
need of renormalizability, ultra-violet divergences and the
non-convergence of perturbative series make it clear that
a proper systematization is needed. While it is possible
to think that for such a predictive set of rules most of the
problems may be solved in terms of rigorous mathemati-
cal treatments, results like the Haag theorem [1, 2] seem
to inexorably undermine the essence of field quantization.

In this paper however, we are not going to consider the
protocols of field quantization at all. In fact, we shall be
focusing on a purely classical theory of electrodynamics,
but we will see there are still consistency problems under
the assumptions and hypotheses that are usually made.

These assumptions and hypotheses consist in neglect-
ing torsion with gravity and in postulating that it is al-
ways possible to find a system of reference where a single
fermion can be taken at rest and with spin aligned along
the third axis: as a matter of fact, all this appears to be
very reasonable, but despite of this, precise mathematical
implementations of these ideas will lead toward a system
of field equations that can be proven to have no solution.

II. GEOMETRY OF DIRAC SPINOR FIELDS

We begin by recalling that γ
a are matrices belonging

to the Clifford algebra, from which [γa,γb]=4σab defines
the set of generators while 2iσab=εabcdπσ

cd defines the
parity-odd π matrix1 in a covariant and implicit manner.

As it is well known, Dirac spinor fields can be classified
in terms of the so-called Lounesto classification according
to two classes: singular spinor fields are those subject to
the conditions iψπψ≡0 and ψψ≡0 while regular spinor
fields are all those for which the two above conditions do
not identically hold [3–5]. For regular spinor fields, it is

1 This matrix is what is usually indicated as gamma with an index

five, but since in the space-time this index has no meaning we

prefer to use a notation with no index at all.

always possible to perform what is known to be the polar
decomposition of the Dirac spinor field given in the form

ψ=φ
√

2
γ+1e

−iαe−
i

2
βπ





(

γ+1
2 I−γ~v·~σ2

)

ξ
(

γ+1
2 I+γ~v·~σ2

)

ξ



 (1)

up to the ψ′=πψ transformation, with γ=1/
√
1−v2 the

relativistic factor, while ξ such that ξ†ξ=1 is any generic
2-component spinor, and the real α a phase parameter.

The bi-linear spinor fields are the di-pole moment

Mab=2iψσabψ=2φ2(ujskεjkab cosβ+u[asb] sinβ) (2)

the axial-vector and vector

Sa=ψγa
πψ=2φ2sa (3)

Ua=ψγaψ=2φ2ua (4)

and the pseudo-scalar and scalar

Θ= iψπψ=2φ2 sinβ (5)

Φ=ψψ=2φ2 cosβ (6)

where φ and β are the module and the Yvon-Takabayashi
angle: one can easily prove that the directions are

sa= 1
γ+1

(

2γ(γ+1)(~v·~ς)
2(γ + 1)~ς+2γ2(~v ·~ς)~v

)

(7)

ua= 1
γ+1

(

1
2 (γ+1)2 + 1

2γ
2(~v ·~v)

γ(γ+1)~v

)

(8)

such that conditions uau
a=−sasa=1 and uas

a=0 hold,
with ξ†~σξ=2~ς as the spin and ~v as the velocity, and with
the module and YT angle as the only two true degrees of
freedom that the spinor field can have in general.

Calling Ωa
bπ the spin connection, it is possible to define

Ωµ = 1
2Ω

ab
µσab+iqAµI (9)

in terms of the spin connection and the gauge potential
of charge q and called spinorial connection. Remark that
for the moment everything is in the torsionless case.

With the spinorial covariant derivative of (1) we get

∇µψ=[∇µ lnφI− i
2∇µβπ +

+i(qAµ−∇µα)I+
1
2 (Ωijµ−∂µθij)σij ]ψ (10)
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from which

∇µsν =(∂θ−Ω)ρνµs
ρ (11)

∇µuν=(∂θ−Ω)ρνµu
ρ (12)

where α is the phase parameter and θij encode the three
rapidities expressed through the velocity ~v as well as the
three rotations expressed as coefficients of the semi-spinor
ξ such that ξ†ξ=1 in the most general circumstance.

For the dynamics, we assume the action given by

L = 1
4 (∂W )2− 1

2M
2W 2+R+ 1

4F
2 −

−iψγµ
∇µψ+XS

µWµ+mΦ (13)

with (∂W )µν the curl ofWµ being the torsion axial vector
while R is the Ricci scalar and Fµν is the Faraday tensor,
whereX is the strength of the interaction between torsion
and the spin of spinor fields while M and m are the mass
of torsion and the spinor field itself, respectively. Having
defined the connection in the torsionless case it may seem
we have restricted generality, but in reality we can still be
in the most general situation even though the connection
is torsionless so long as torsion is later included in the
form of some supplementary massive axial vector field.

Varying the above Lagrangian functional with respect
to the spinor field gives the Dirac spinor field equations

iγµ
∇µψ−XWµγ

µ
πψ−mψ=0 (14)

and it is possible to demonstrate that with the polar form
of the spinor there is a corresponding polar decomposi-
tion of the spinor field equations into the equivalent

1
2εµανι(∂θ−Ω)ανι−2(∇α−qA)ιu[ιsµ] +

+2(∇β/2−XW )µ+2sµm cosβ=0 (15)

(∂θ−Ω) a
µa −2(∇α−qA)ρuνsαεµρνα +

+2sµm sinβ+∇µ lnφ
2=0 (16)

as field equations specifying all first-order derivatives of
the module and the YT angle: the polar decomposition of
the spinor field equations is essentially the way in which
the four complex spinor field equations can be converted
into two real vector field equations, which therefore turn
out to be much easier to manipulate [6, 7].

The geometric field equations are given by

∇σF
σµ=2qφ2uµ (17)

alongside to

Rρσ− 1
2Rg

ρσ= 1
2 [M

2(W ρW σ−1
2W

αWαg
ρσ) +

+ 1
4 (∂W )2gρσ−(∂W )σα(∂W )ρα +

+ 1
4F

2gρσ−F ραF σ
α −

−φ2[(XW−∇β
2 )

σsρ+(XW−∇β
2 )

ρsσ +

+(qA−∇α)σuρ+(qA−∇α)ρuσ −
− 1

4 (Ω−∂θ) σ
ij ερijksk− 1

4 (Ω−∂θ) ρ
ij ε

σijksk]] (18)

with

∇α(∂W )αµ+M2Wµ=2Xφ2sµ (19)

as the field equations coupling electrodynamics, gravity
and torsion to the currents, the energy and the spin [8].

III. TORSION-ELECTRODYNAMICS FOR

SPINOR FIELDS

So far everything is in its most general case.
Nevertheless, this very general theoretical situation is

intractable in practice: the problem is the presence of the
gravitational field, for the reason that follows.

Considering the spinor field equations in the polar form
given by (15, 16) it is clear that of the three irreducible
parts of the spin connection, only the completely anti-
symmetric part and the trace part enter in the dynamics
of the spinor field: this means that we can not even as a
matter of principle write the gravitational information in
terms of the spinorial degrees of freedom. Therefore, we
must solve Einstein equations (18) exactly for the spin
connection, and this is an extremely difficult enterprise.

Some simpler situation can be encountered when grav-
ity is neglected. Neglecting gravity would amount to have
the constraint ∂θ−Ω≡0 and as a consequence a first ad-
vantage is that (11, 12) reduce to ∇µsα=∇µuα=0 in all
remaining equations: then (17, 19) are always

∇σF
σµ=2qφ2uµ (20)

and

∇α(∂W )αµ+M2Wµ=2Xφ2sµ (21)

but (15, 16) become

(12∇β−XW )µ−(P−qA)ιu[ιsµ]+sµm cosβ=0 (22)

∇µ lnφ−(P−qA)ρuνsαεµρνα+sµm sinβ=0 (23)

having called ∇α=P for the sake of simplicity [9].
We remark that now both torsion and gauge potential

are fully present in these field equations: on the one hand,
we can invert (22) in order to make torsion explicit as

XWµ=
1
2∇µβ−(P−qA)ιu[ιsµ]+sµm cosβ (24)

while on the other hand, combining (22, 23) gives

(P − qA)ν =m cosβuν+s[νuµ](12∇β−XW )µ +

+ενρσµsρuσ∇µ lnφ (25)

showing that both torsion and gauge potential can in fact
be written in terms of the spinorial degrees of freedom.

Then we can have torsion and gauge potentials substi-
tuted in terms of (24, 25) into the torsional and electro-
dynamic field equations. Nevertheless, in (24) we observe
the presence of the gauge potential while in (25) we see
the presence of torsion, and as a consequence we cannot
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perform both substitutions at once removing both torsion
and gauge potentials in both equations simultaneously.

In [10] we studied the case where electrodynamics was
absent to appreciate the effects of torsion, while here we
neglect torsion to study electrodynamics for spinors.

IV. ELECTRODYNAMICS WITH SPINORS

So as we have anticipated, here we will proceed to as-
sume that no torsion is allowed in the field equations.

In the case of no torsion the spinor field equations are

1
2∇µβ−(P−qA)ιu[ιsµ]+sµm cosβ=0 (26)

∇µ lnφ−(P−qA)ρuνsαεµρνα+sµm sinβ=0 (27)

developing the expression

(P − qA)ν =m cosβuν+s[νuµ]∇µβ/2 +

+ενρσµsρuσ∇µ lnφ (28)

which we plan to substitute into

∇σF
σµ=2qφ2uµ (29)

in order to look for exact solutions.
When the expression of the gauge potential is inserted

into the electrodynamic field equations we obtain

2m cosβu[ν∇α]β∇αβ+2m sinβu[ν∇α]∇αβ +

+uνs·∇∇2β−sνu·∇∇2β +

+sρuσε
µρσν∇µ∇2 ln |2qφ|2= |2qφ|2uν (30)

while inserting it back into the spinor field equations gives

uµu·∇ lnφ−sµs·∇ lnφ+sµm sinβ=0 (31)

∇µβ−uµu·∇β+sµs·∇β=0 (32)

as field equations in terms of the spinor field alone.
In the scalar product with u and s we obtain that (32)

does not produce any relation while (31) gives that

s·∇ lnφ−m sinβ=0 (33)

u·∇ lnφ=0 (34)

whereas (30) gives

∇2(u·∇β)−2m cosβs·∇βu·∇β −
−2m sinβs·∇(u·∇β)=0 (35)

∇2(s·∇β)−2m cosβ|s·∇β|2 −
−2m sinβs·∇(s·∇β)= |2qφ|2 (36)

where in the last ones we used (32) to simplify: plugging
them back into the original field equations gives that (31)
is verified while (30) simplifies down to the form

sρuσε
µρσν∇µ∇2 ln |2qφ|2=0 (37)

which are divergenceless as it is to be expected from the
fact that the conservation of the electric charge is already
granted by the validity of the spinor field equations.

Altogether, the entire system of field equations consists
of the following set of constraints

∇µβ−uµu·∇β+sµs·∇β=0 (38)

u·∇ ln |2qφ|2=0 (39)

∇2(u·∇β)−2m cosβs·∇βu·∇β −
−2m sinβs·∇(u·∇β)=0 (40)

sρuσε
µρσν∇µ∇2 ln |2qφ|2=0 (41)

with the field equations

s·∇ ln |2qφ|2−2m sinβ=0 (42)

∇2(s·∇β)−2m cosβ|s·∇β|2 −
−2m sinβs·∇(s·∇β)−|2qφ|2=0 (43)

and considering that when two vector equations are taken
in scalar product with s and u they develop no constraint,
then these amount to 8 expressions as it should be in
order to determine 4 derivatives for the 2 physical fields
given by the module and the Yvon-Takabayashi angle.

These are the field equations we will consider.

V. SPECIAL FRAMES

In our development of the electrodynamics of one single
spinor field we have simply implemented the assumptions
of negligible gravity and no torsion, and now is the time
to implement also the hypotheses of working in the frame
that is at rest and with spin aligned along the third of the
axes: the rest-frame is the one where the velocity of the
spinor field is zero so that (8) loses its spatial component
and (7) loses its time component; then the spin-eigenstate
is the one for which the spin is aligned along the third of
the axes so that (7) has only its third component.

These two hypotheses are thus u0=1 and s3=1 as the
only non-zero components of the velocity vector and the
spin axial vector, and in this case we obtain the form

∇1β=∇2β=0 (44)

∇0 ln |2qφ|2=0 (45)

∇2(∇0β)−2m cosβs·∇β∇0β −
−2m sinβs·∇(∇0β)=0 (46)

∇2∇1 ln |2qφ|2=∇2∇2 ln |2qφ|2=0 (47)

∇3 ln |2qφ|2−2m sinβ=0 (48)

∇2(∇3β)−2m cosβs·∇β∇3β −
−2m sinβs·∇(∇3β)−|2qφ|2=0 (49)

which is a form that is now perfectly suited to be written
in a specific system of coordinates such as the Cartesian.

In coordinates of Cartesian type, they will immediately
give that β=β(t, z) and φ=φ(x, y, z) with the remaining
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field equations being given according to the expressions

∂x∇2 ln |2qφ|2=∂y∇2 ln |2qφ|2=0 (50)

∂t(∇2β+2m∂z cosβ)=0 (51)

∂z(∇2β+2m∂z cosβ)−|2qφ|2=0 (52)

∂z ln |2qφ|2−2m sinβ=0 (53)

from which more information can be extracted: we have
that from (51) it is ∇2β+2m∂z cosβ = F (z) and thus
from (52, 53) it is |2qφ|2=F ′ and 2m sinβ=(lnF ′)′ with
the consequence that φ=φ(z) and β=β(z) in general, so
the remaining equations are given according to the form

(−β′+2m cosβ)′′= |2qφ|2 (54)

(ln |2qφ|2)′=2m sinβ (55)

which should now be solved exactly.
Plugging the first into the second gives an equation in

which only the YT angle is present, and thus we may use
the first of the above equations

(−β′+2m cosβ)′′= |2qφ|2 (56)

to obtain the module once the YT angle is known, while
their combination given by the expression

(−β′+2m cosβ)′′′ =2m sinβ(−β′+2m cosβ)′′ (57)

will be used to obtain the YT angle in general.
Calling 2mz=w and β/2=arctanG would allow us to

simplify this equation down to the easier rational form

(

1− 2G′ −G2

1 +G2

)′′′

=
2G

1 +G2

(

1− 2G′ −G2

1 +G2

)′′

(58)

and by computing the derivatives we can see that stan-
dard QED solutions verifying the constraint

G(7−9G2)(1−G′)=0 (59)

are admissible. However, they would give either

G=a (60)

or

G=w+a (61)

and that is respectively either

β=2 arctana (62)

or

β=2 arctan(2mz+a) (63)

where a is a generic integration constant, but by inserting
these special solutions for the YT angle into the equation
for the module we get the final constraint

qφ=0 (64)

eventually implying that there is either no spinorial field
or that there is no mutual interaction between the spinor
and its own electrodynamic field in standard QED.

Quite clearly, the consequence of this is that either, on
the one hand, we have only the electrodynamic field with
a free propagation, or, on the other hand, we have both
the electrodynamic field and the spinor field but they can
have no interaction in any way whatsoever.

VI. COMMENTS

Summarizing our results, we proved how under the as-
sumptions XW =0 and ∂θ−Ω=0 choosing the rest-frame
and spin-eigenstate of the third axis gives qφ=0 identi-
cally: reading the underlying mathematics, we may state
that in absence of torsion-gravity it is always possible to
find a system of reference in which an electrodynamically
self-interacting spinor field can not exist at all in QED.

In order to avoid such a conclusion one is compelled to
reconsider the hypothesis that either for a particle in its
rest-frame one cannot choose a spin-eigenstate or that a
particle cannot be in a rest-frame, or the assumption for
which either we cannot neglect gravity or we cannot have
a vanishing torsion. No matter where we look, all appear
to be quite reasonable restrictions, but still, together they
give field equations with no QED-like solutions and thus
at least one of them must clearly be logically wrong.

What we believe to be a possible answer is that despite
being always possible to boost into the rest-frame and in
it rotate into the spin-eigenstate, nevertheless these local
transformations come at the cost of non-zero components
in the spin connection: for example, if the matter distri-
bution was to display a spin precession, then it may be
that in the rotating frame following the precession some
non-inertial acceleration arises for which the spin connec-
tion is no longer zero, despite still having no curvature.

What this implies is that even in absence of gravity we
should have ∂θ−Ω 6=0 and because such a quantity does
transform covariantly for a local change of frame then it
is non-zero in every possible frame of reference.

Because non-inertial effects are those removable via a
choice of frame then they cannot be encoded in an object
that cannot ever vanish: we know of no non-gravitational
physical field that can be contained in such an object.

In absence of this non-inertial yet never-vanishing ef-
fect, we might be confident that ∂θ−Ω 6=0 if and only if
gravity is present, and therefore the contradiction we got
was due to our neglecting the gravitational field.

If gravity really is negligible in this case, then the way
out may be given by the torsional interaction.

VII. CONCLUSION

In this paper, we have considered the spinor field that
is usually described in electrodynamics, and that is with
neither gravity nor torsion and within the rest-frame and
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spin-eigenstate: in terms of a mathematical analysis, we
have proven that the system of the field equations cannot
possess any solution. We have discussed how this might
require revising the idea of rest-frame or spin-eigenstate,
albeit it is more reasonable to assume that problems are
due to neglecting the torsion or the gravitational field.

The renormalization of general quantum field theories
in a gravitational background with torsion requires the
interaction of torsion to be non-minimal with scalar and
spinor fields: and in particular, spinor fields and torsion
interact in a non-minimal way. This is required for quan-
tum field theories to be consistent, since the interactions
between second-quantized fields yields divergences, and
consequently renormalization procedures must be set in.

The renormalization protocols in quantum field theo-

ries are well defined only when curvature and torsion are
taken together in the same framework. Within the set-up
of second-quantization this has been established, and for
the present article we aimed to straightforward reasoning
that could encompass also first-quantized fields as well.

Here we have argued that torsion and curvature should
be considered already in first-quantized formalism.
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