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Abstract. In this paper we show the Birch and Swinnerton-Dyer conjecture for a
certain elliptic curve over Q

(

4
√
5
)

is equivalent to the same conjecture for a certain
pair of hyperelliptic curves of genus 2 over Q. We numerically verify the conjecture
for these hyperelliptic curves. Moreover, we explain the methods used to find this
example, which turned out to be a bit more subtle than expected.
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1 Introduction

The Birch and Swinnerton-Dyer conjecture ([BiSw65]) has been generalised by Tate
([Tate66]) to abelian varieties of higher dimension and over general number fields.

Conjecture 1 (BSD, [Gro82, Conj. 2.10, p. 224]). Let A/K be an abelian variety
of dimension d and algebraic rank r over a number field K of discriminant ∆. Let
L(s) be its L-function, A∨ its dual, R its regulator, X its Tate-Shafarevich group
and Ω the product of its real and complex periods. For each prime p of OK , let cp
be the Tamagawa number of A at p. Then X is finite, L(s) admits an analytic
continuation to C having a zero of order r at s = 1, and

lim
s→1

(s− 1)−rL(s) =
Ω · R · |X| ·∏

p
cp

|A(K)tors| · |A∨(K)tors| · |∆|d/2 .

In 1989, Kolyvagin ([Koly89, Koly91]) proved equality of the analytic and algebraic
rank for modular elliptic curves over Q of analytic rank at most 1. After the proof
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of the modularity theorem ([BCDT01]), this part of the conjecture is now known
for all elliptic curves over Q of analytic rank at most 1.

For elliptic curves with complex multiplication more is known. In 1991, Rubin
([Rub91]) proved the correctness of the p-part of BSD for elliptic curves over an
imaginary quadratic field K with complex multiplication by K, analytic rank equal
to 0, and p coprime to |O∗

K |.

Originally, the Birch and Swinnerton-Dyer conjecture has been conceived based on
numerical calculations with elliptic curves. In [vBom17], the author numerically
verified the conjecture for hundreds of hyperelliptic curves of genus 2 and 3 over
Q, extending the work of Flynn, Leprévost, Schaefer, Stein, Stoll and Wetherell
([FLSSSW]), who numerically verified BSD for 32 modular hyperelliptic curves of
genus 2 over Q, using modularity.

This verification consists of two parts. First, we check that analytic rank (established
numerically) and the algebraic rank are equal. Then we numerically compute all
terms in the BSD formula except for |X| (to more than 20 digits precision), and
by rearranging the formula we deduce a predicted value for |X|. This will a priori
be some real number, but if the BSD conjecture is true then it should in fact be
the square of a positive integer, cf. earlier results of Poonen and Stoll ([PoSt99]).
So if our conjectural value of |X| is indeed the square of a positive integer to high
precision, then this provides strong numerical evidence for the conjecture.

After finishing this verification, a natural question that arose was if the numerical
verification for genus 2 curves over Q, could provide us with examples of elliptic
curves E over quadratic number fields for which BSD numerically seems to hold.
The Weil restriction of E to Q is an abelian variety of dimension 2 over Q and might
have the chance of being the Jacobian of a genus 2 curve over Q. As the Jacobi
locus is dense in the moduli space, one might expect this to happen very often. This
was not the case. While trying many examples, all seemed to fail.

However, this Weil restriction becomes a product of two elliptic curves, after base
change. The product of two elliptic curves, taken with the associated product polar-
isation, does not lie in the Jacobi locus. The best we could hope for is the existence
of another polarisation, which makes it isomorphic (as polarised abelian variety) to
the Jacobian of a curve of genus 2. This is actually only possible in a few special
cases. By trying other polarisations in these special cases, we found an example of
an elliptic curve over Q(

√
5), whose Weil restriction is isogenous to the Jacobian of

a curve of genus 2 over Q. However, the isogeny was only defined over Q( 8
√
5, i).

We applied some reduction steps to reduce the size of this field and arrive at the
following theorem

Theorem 2. Let E over Q
(

4
√
5
)

be the elliptic curve given by

y2 = x3 +
4
√
5 · x2 −

(

5 + 3
√
5
)

· x+ 4
√
5
(

5 +
√
5
)

.
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Let H and H ′ over Q be the hyperelliptic curves given by y2 = x5 − x3 + 1
5
· x, and

y2 = x5−5 ·x3+5 ·x, respectively. Then the generalised Birch and Swinnerton-Dyer
conjecture holds for E over Q

(

4
√
5
)

if and only if it holds for the Jacobians JacH
and JacH ′ over Q.

Finally, because of this reduction of the size of the field, we were able to numerically
verify the BSD conjecture for the mentioned hyperelliptic curves.

We could also phrase the problem we solved as a moduli problem. For fixed N , we
consider the space M of quintuples (E1, E2, A, φ, ρ), where E1 and E2 are elliptic
curves, (A, φ) is a principally polarised abelian surface, and ρ : E1 × E2 → A is
an isogeny of degree N . If ι : M → M is the involution that swaps E1 and E2,
then our problem is the finding of rational points of M/ι, for which (A,ϕ) is not a
product of elliptic curves.

This moduli problem (or variations thereof) has been studied extensively by others.
This started with Hayashida and Nishi in [HaNi65]. More recently, there is work
of Rodriguez-Villegas ([Rodr00]), Lange ([Lan06]), and Kani ([Kani14], [Kani16]).
However, as far as we are aware, none of these results gives a way to control the size
of the field of definition for the isogeny ρ, which is needed for our verification of the
BSD conjecture.

The organisation of this article is as follows. In the first section, the final results
will be shown, the equivalence of BSD for a certain elliptic curve over a quartic field
and BSD for a certain pair of hyperelliptic curves of genus 2 over Q. In the second
section, the methods used to find this example will be demonstrated. First we study
which elliptic curves could have to potential to become isogenous to the Jacobian of
a genus 2 curve after Weil restriction. Then we explain how the required isogenies,
which are very easy to find analytically, were algebraised. Finally, we describe
some steps that had to be taken to reduce the size of the number field over which
these maps are defined, which was actually necessary to be able to complete the
verification.

The author wishes to thank his supervisors David Holmes and Fabian Pazuki, and
Maarten Derickx for useful discussions that led to improvements of this article.

2 Verification for an elliptic curve over Q
(

4
√
5
)

Throughout this section, let E be the elliptic curve over Q
(

4
√
5
)

given by the Weier-
straß equation

y2 = x3 +
4
√
5 · x2 −

(

5 + 3
√
5
)

· x+ 4
√
5
(

5 +
√
5
)

.
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Even though it has j-invariant 282880
√
5 + 632000, it is not the base change of an

elliptic curve over Q(
√
5 ), which can be verified using the isomorphism criteria from

[Silv09, Sect. III.1, p. 42–51]. The curve E geometrically has complex multiplication
by Z[

√
−5].

Let H be the hyperelliptic curve of genus 2 over Q given by the Weierstraß equation
y2 = x5 − x3 + 1

5
· x. Let H ′ : y2 = x5 − 5 · x3 + 5 · x over Q be the quadratic twist of

H over Q(
√
5 ).

The following propositions will be used to prove Theorem 2.

Proposition 3. Let K = Q
(

4
√
5
)

and

ϕ : HK → E : (x : y : 1) 7→ (ϕx : ϕy : 1) , with

ϕx =

√
5 · x2 − 4

√
5 · x+ 1

x
, ϕy =

− 4
√
5
3 · xy +

√
5 · y

x2

Then the map ψ : HQ(
√
5 ) → W := ResK

Q(
√
5 )
E naturally induced by ϕ induces an

isogeny ν : JacHQ(
√
5 ) →W over Q(

√
5 ).

Proof. For the Weil restriction we have

WK = E × E ′,

where E ′ over K is the pull-back of E under the automorphism σ : 4
√
5 7→ − 4

√
5 of

K over Q(
√
5 ). Using this identification, after base change, the map ψ becomes

ψK : HK
(ϕ,ϕσ)−→ E ×E ′.

Suppose that the map νK induced by ψK is not an isogeny. Then the image of νK
in E ×E ′ is an elliptic curve F over K and we have the following diagram.

E

HK
≥2

//

ϕ,2

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ϕσ ,2

**❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚ F //

1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

1

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖ E ×E ′

CC✝✝✝✝✝✝✝✝✝✝✝✝✝✝

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽

E ′

As the morphisms ϕ and ϕσ are of degree 2, and the morphism HK → F = ν(HK)
is of degree at least 2, the two morphisms F → E and F → E ′ are of degree 1 and
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defined over K. Hence, E and E ′ must be isomorphic over K. Even though E and
E ′ are isomorphic over Q

(

i, 4
√
5
)

, it is easily verified that they are not isomorphic
over K. Therefore, νK must be an isogeny and hence also ν is an isogeny.

Remark 4. The map ϕ : HK → E is the quotient of HK by the automorphism

HK → HK : x 7→ 1√
5 · x

, y 7→ −y
4
√
5
3 · x3

.

In fact, the geometric automorphism group of H is the dihedral group D4 of order
8, and the Jacobian of any curve of genus 2 over Q whose automorphism group is
non-abelian, is isogenous to the square of an elliptic curve, over a finite extension of
Q, cf. [CGLR99, Lem. 2.4, p. 42]. Remark that this result does not give control on
the degree of the field extension needed to define the isogeny.

Now let us generalise the notion of quadratic twists of elliptic curves to abelian
varieties over number fields.

Definition 5. Let A be an abelian variety over a number field K, and let K ⊂ L
be an extension of degree 2. Then the L-quadratic twist of A over L is the twist
of A corresponding to the cocycle Gal(L/K) → AutL(A) mapping the non-trivial
element σ ∈ Gal(L/K) to the automorphism −1: A→ A.

Proposition 6. Let A and B be abelian varieties over a number field K, let K ⊂ L
be a finite extension of number fields and let C be an abelian variety over L. Then

(1) BSD holds for A× B over K if and only if it holds for A and B over K;

(2) if A and B are isogenous over K, then BSD holds for A over K if and only if
it holds for B over K;

(3) BSD holds for the Weil restriction ResLK C over K if and only if it holds for
C over L;

(4) if L/K is quadratic, BSD holds for the base change AL over L if and only if
it holds for A over K and its L-quadratic twist A′ over K.

Proof. For (1) and (2), see [Tate66, p. 422]. For (3), see [Mil72]. In the case L/K
is a quadratic extension, ResLK AL is isogenous over K to A×A′, where A′/K is the
L-quadratic twist of A, cf. [Kida95, Thm., p. 53]. Now (4) follows from (1), (2) and
(3).

Proof (Theorem 2). By Proposition 6 part (4), BSD holds for JacH and JacH ′ over
Q if and only if it holds for JacHQ(

√
5 ) over Q(

√
5 ). The latter is isogenous over

Q(
√
5 ) to Res

Q( 4
√
5 )

Q(
√
5 )
E by Proposition 3. Hence, by parts (2) and (3) of Proposition 6,

BSD holds for JacHQ(
√
5 ) over Q(

√
5 ) if and only if it holds for E over Q

(

4
√
5
)

.
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Using the methods in [vBom17], we can numerically verify that the Birch and
Swinnerton-Dyer conjecture holds for JacH and JacH ′ in the following sense. We
numerically verified that the analytic and algebraic rank agree, and we computed
all terms except for |X|, with more than 20 digits precision. Then we used the
conjectural formula to predict the order of X. This predicted order, |Xan|, appears
to equal 1 in both cases. This gives strong evidence for the conjecture, especially
since 1 is the square of an integer, which is to be expected according to [PoSt99].

In fact, we found the following values for the BSD-invariants:

JacH JacH ′

r 1 1
lims→1(s− 1)−rL(s) 4.54183774632835249986 4.54183774632835249986

R 4.70213971014416647713 0.94042794202883329543
Ω 1.93181743899697988452 9.65908719498489942260
cp c2 = 1, c5 = 2 c2 = 1, c5 = 2

|Jtors| 2 2
Xan 1.00000000000000000000 1.00000000000000000000

Remark 7. The values of these invariants suggest that JacH and JacH ′ are isoge-
nous; they all seem to differ by an integer multiple. Since, the numerical verification
succeeded for both curved, the author did not try to actually find an isogeny.

3 Methodology

In this section, I will try to answer the question how you find an elliptic curve E
over a number field K, with L ⊂ K of degree 2, such that its Weil restriction to L
is isogenous to the Jacobian of a hyperelliptic curve of genus 2 defined over Q as
abelian varieties (without fixed polarisation).

3.1 Which elliptic curves?

The product of two elliptic curves over a number field, E and E ′, taken with the
associated product polarisation, does not lie in the Jacobi locus in the moduli space
of polarised abelian varieties, cf. [Weil57, Satz 2, p. 37]. However, in some cases it
might happen that the abelian variety has another polarisation which makes it into
the Jacobian of a smooth curve of genus 2. Heuristically, most polarised abelian
varieties lie in the Jacobi locus, but also most polarised abelian varieties have only
one polarisation, up to multiplication by an integer. So, heuristically it is not so
clear whether such E and E ′ actually exist. Hence, we should be looking for elliptic
curves E and E ′, such that E × E ′ contains a smooth curve of genus 2.
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The work of Hayashida and Nishi, [HaNi65], contains sufficient conditions on E and
E ′ for this situation to arise. In particular, [HaNi65, Thm., §4, p. 14] states: if E and
E ′ have complex multiplication by the principal order of the imaginary quadratic
field Q(

√
−m) and m is not 1, 3, 7 or 15, then E × E ′ contains a smooth curve of

genus 2.

3.2 Reconstruction of the hyperelliptic curve

Assume that E over K geometrically has complex multiplication by O−m = Z[αm],
where

αm =

{√
−m if m 6≡ 3 mod 4;

1
2
(
√
−m+ 1) if m ≡ 3 mod 4.

Now consider the complexification EC and fix an embedding of O−m in C. Then
EC

∼= C/Λ, where Λ is a lattice of the form Z ·1+Z · β
γ
with β and γ 6= 0 generating,

as Z-module, an ideal of O−m. Moreover, EC has a Hermitian form, whose imaginary
part, without loss of generality, gives the standard antisymmetric form

(

0 1
−1 0

)

on Γ, with respect to the basis just given.

The idea is now to consider the complex lattice Z ( 1
0 ) + Z ( 0

1 ) + Z ( αm

0 ) + Z ( 0
αm

)
inside C2. We try to put other antisymmetric forms on the lattice, and for each
such a form, we choose a basis, such that the antisymmetric form with respect to
this basis is of the standard form









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









.

After this, we apply a transformation in GL2(C) to obtain a basis that is of the form
( 1
0 ) , (

0
1 ) , (

v1
v2 ) , (

w1

w2
), cf. [Sch89, §5]. If the antisymmetric form satisfies the Riemann

relations, cf. [Lang82, Lem. 1.1 & 1.2, Chap. VII, §1, p. 132], then the matrix

M =

(

v1 w1

v2 w2

)

will be symmetric and its imaginary part will be positive definite, i.e. M has the
potential to be the small period matrix of a hyperelliptic curve H of genus 2.

One can then evaluate the theta functions in M and use these to reconstruct the
Igusa invariants of H . These Igusa invariants can only be computed numerically,
up to a certain precision, but we expect them to be rational. If the precision is
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high enough, we can guess the rational values for the Igusa invariants. Then we can
use Mestre’s algorithm ([Mes91]) to construct a hyperelliptic curve with these Igusa
invariants. This part of the reconstruction procedure is explained in more detail in
[Weng03].

3.3 Constructing algebraic maps

Now we are in the situation that we found an elliptic curve E over K and a hyper-
elliptic curve H over Q, such that the base change of E × E and J := Jac(H) to
C numerically seem to be isogenous. If such an isogeny exists, we know by GAGA
that it is algebraisable and defined over a finite extension of K. The only problem
that remains is to find such an algebraic isogeny explicitly.

It is possible to numerically construct an analytic isogeny τ : HC → JC → EC ×EC.
We consider two composite maps

τ1, τ2 : HC
// EC ×EC //

// EC

and try to ‘guess’ them. We assume that the map τ1 : HC → EC is of the shape

(x, y) 7→
∑N

i=0

∑1
j=0 ai,jx

iyj

∑M
i=0

∑1
j=0 bi,jx

iyj
,

for certain ai,j , bi,j ∈ C and N,M ∈ Z≥0. We pick R := 2N + 2M complex-
valued points Pk := (αk, βk) ∈ HC(C) for k = 1, . . . , R and numerically compute
Qk := τ1(Pk). Each such point gives rise to a linear equation

N
∑

i=0

1
∑

j=0

ai,jα
i
kβ

j
k −Qk ·

M
∑

i=0

1
∑

j=0

bi,jα
i
kβ

j
k = 0

in the coefficients ai,j and bi,j . Or, to phrase it in other words, the vector of coeffi-
cients (a0,0, . . . , aN,1, b0,0, . . . , bM,1) is in the kernel of the matrix

A =







α0
1β

0
1 · · · αN

1 β
1
1 −Q1α

0
1β

0
1 · · · −Q1α

M
1 β

0
1

...
. . .

...
...

. . .
...

α0
Rβ

0
R · · · αN

Rβ
1
R −QRα

0
Rβ

0
R · · · −QRα

M
R β

1
R






.

We can compute this kernel numerically and choose N and M such that the kernel
is 1-dimensional. In this way, we can be sure to find a basis vector, which is a C-
multiple of a vector with algebraic entries, instead of obtaining a random C-linear
combination of two or more.

We compute a generator for the kernel and rescale it to make one of the non-zero
entries equal to 1. Then we use LLL to guess algebraic relations for the other entries.

In this way, we found a solution (a0,0, . . . , bM,1) ∈ Q
R
and, if M and N were chosen

appropriately, it can be verified algebraically that these functions indeed define a
morphism ϕ : HL → EL, where L = K(a0,0, . . . , bM,1), whose base change to C is τ1.
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3.4 Smaller fields

A priori, the field L might be way too big for a feasible numerical verification of
BSD. For example, in our specific case, a priori the curve H and E were defined
over Q and Q(

√
5 ), respectively, but the maps ϕ and ψ were only defined over

L = Q( 8
√
5, i) and ϕ : H → E : (x : y : 1) 7→ (ϕx : ϕy : 1) was given by

ϕx =

1
2
i 4
√
5 · x4 − x3 − 1

2
i
(

4
5

4
√
5
3 − 4

√
5
)

· x2 + 1
5

√
5 · x+ 1

10
i 4
√
5

x3 + 2i
5

4
√
5
3 · x2 − 1

5

√
5 · x

,

ϕy =

1
4
ε 8
√
5
3 · x4y + δ 8

√
5 · x3y − 1

4
ε
(

4
5

8
√
5
7
+ 8

√
5
3
)

· x2y − δ
5

8
√
5
5 · xy + 1

20
ε 8
√
5
3 · y

x5 + 3i
5

4
√
5
3 · x4 − 3

5

√
5 · x3 − 1

5
i 4
√
5 · x2

,

where ε = 1− i and δ = 1 + i. Of course this still proves that JacHL and EL × EL

are isogenous.

However, it is not feasible yet to numerically verify BSD for HL. The situation is
not as good as in Proposition 6 part (4). In the isogeny decomposition of the Weil
restriction ResL

Q(
√
5)
Jac(HL), there will not only be twists of JacH occuring, but

also higher dimensional factors, see also [DiNa03]. Even if we are lucky, and all
these factors are Jacobians of hyperelliptic curves over Q, these curves will be of
genus greater than 3. Numerical verification of BSD for such curves might take too
much time.

In order to reduce the size of L and reduce to the case of a quadratic extensions of
field, we performed some twists, for example on E by ε 8

√
5 and on H by −1. We

then repeated the procedure in the previous paragraph and even managed to find a
map of smaller degree over the smaller field Q( 4

√
5).

Having found the appropriate map defined over Q( 4
√
5), we were able to get the

result in Proposition 3 in order to finally prove Theorem 2.

References

[BLP16] Y. Bilu, F. Luca, A. Pizarro-Madariaga, Rational products of singular
moduli. J. Number Theory 158 (2016), 397–410.

[BiSw65] B. J. Birch, H.P. F. Swinnerton-Dyer. Notes on elliptic curves. II. J. Reine
Angew. Math. 218 (1965), 79–108.

[BCDT01] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of
elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no.
4, 843–939.

9



[vBom17] R. van Bommel, Numerical verification of the Birch and Swinnerton-Dyer
conjecture for hyperelliptic curves of higher genus over Q up to squares. ArXiv
e-prints (2017), https://arxiv.org/abs/1711.10409.
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