
ar
X

iv
:1

80
5.

05
89

3v
1 

 [
m

at
h.

C
O

] 
 1

2 
M

ay
 2

01
8

A q-SUMMATION AND THE ORTHOGONALITY

RELATIONS FOR THE q-HAHN POLYNOMIALS AND THE

BIG q-JACOBI POLYNOMIALS

ZHI-GUO LIU

Abstract. Using a general q-summation formula, we derive a generat-
ing function for the q-Hahn polynomials, which is used to give a complete
proof of the orthogonality relation for the q-Hahn polynomials. A new
proof of the orthogonality relation for the big q-Jacobi polynomials is
also given. A simple evaluation of the Nassrallah-Rahman integral is
derived by using this summation formula. A new q-beta integral for-
mula is established, which includes the Nassrallah-Rahman integral as a
special case. The q-summation formula also allows us to recover several
strange q-series identities.

1. Introduction

Throughout this paper we assume that q is a complex number such that
|q| < 1. For any complex number a, the q-shifted factorials (a; q)n are
defined by

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1− aqk), n = 1, 2, . . . , or ∞.

For convenience, we also adopt the following compact notation for the mul-
tiple q-shifted factorial:

(a1, a2, ..., am; q)n = (a1; q)n(a2; q)n...(am; q)n.

The basic hypergeometric series or q-hypergeometric series rφs(·) are de-
fined as

rφs

(

a1, a2, ..., ar
b1, b2, ..., bs

; q, z

)

=

∞
∑

n=0

(a1, a2, ..., ar; q)n
(q, b1, b2, ..., bs; q)n

(

(−1)nqn(n−1)/2
)1+s−r

zn.

For any function f(x), the q-derivative of f(x) with respect to x, is defined
as

Dq,x{f(x)} =
f(x)− f(qx)

x
,
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and we further defineD0
q,x{f} = f, and for n ≥ 1, Dn

q,x{f} = Dq,x{Dn−1
q,x {f}}.

Using some basic properties of the q-derivative, we [13] proved the follow-
ing q-expansion formula.

Theorem 1.1. (Liu) If f(a) is an analytic function of a near a = 0, then,
we have

f(a) =
∞
∑

n=0

(1− αq2n)(αq/a; q)na
n

(q, a; q)n

[

Dn
q,x{f(x)(x; q)n−1}

]

x=αq
.

This theorem tells us that if f(a) is analytic at a = 0, then, it can be
expanded uniquely in terms of (αq/a; q)na

n/(a; q)n. Thus, if f(a) has two
series expansions in terms of (αq/a; q)na

n/(a; q)n, then, the corresponding
coefficients of these two series must be equal. This allows us to derive some
combinatorial identities by using the method of equating the coefficients.

Using Theorem 1.1, we [18] established the following expansion theorem.

Theorem 1.2. (Liu) If f(x) is an analytic function near x = 0, then, under
suitable convergence conditions, we have

(αq, αab/q; q)∞
(αa, αb; q)∞

f(αa)

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n

n
∑

k=0

(q−n, αqn; q)kq
k

(q, αb; q)k
f(αqk+1).

By choosing f(x) =
∏m

j=1
(bjx/q;q)∞
(cjx/q;q)∞

in Theorem 1.2, we [19] obtained the

following general q-summation formula.

Theorem 1.3. (Liu) If max{|αa|, |αb|, |αb1 |, |αac1/q|, · · · |αbm|, |αacm/q|} <
1, then, we have

(αq, αab/q; q)∞
(αa, αb; q)∞

m
∏

j=1

(αabj/q, αcj ; q)∞
(αacj/q, αbj ; q)∞

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
m+2φm+1

(

q−n, αqn, αc1, · · · , αcm
αb, αb1, · · · , αbm

; q, q

)

.

This summation formula implies many nontrivial results in q-series as
special cases. For example, by setting b1 = c and c1 = bc/q in Theorem 1.3
and then using the q-Pfaff-Saalschütz summation formula, we can obtain
Rogers’ 6φ5 summation formula, which is a q-analogue of Dougall’s 5F4

summation formula.

Theorem 1.4. For |αabc/q2| < 1, we have

6φ5

(

α, q
√
α,−q√α, q/a, q/b, q/c√
α,−√

α,αa, αb, αc
; q,

αabc

q2

)

=
(αq, αab/q, αac/q, αbc/q; q)∞

(αa, αb, αc, αabc/q2 ; q)∞
.

In [19], Theorem 1.3 has been used to derive several important results in
number theory, such as a general formula for sums of any number of squares.
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It is obvious that [18, Theorem 1.2] is the case m = 2 of Theorem 1.3,
which has been used to give a surprising proof of the orthogonality relation
for the Askey-Wilson polynomials.

In this paper we continue to discuss some amazing application of Theo-
rem 1.3. In particular, this theorem is used to provide new proofs of the
orthogonality relations for the q-Hahn polynomials and the q-big Jacobi
polynomials, and can also be used to recover some strange q-series identi-
ties.

This paper is organized as follows. In Section 2, we will use Theorem 1.1
to prove the following expansion theorem for the two-variable analytic func-
tions. This expansion theorem implies that if a function f(a, b) can be
expanded in terms of

(αq/a; q)n(αq/b; q)ma
nbm

(q, a; q)n(q, b; q)m
,

then, this expansion is unique. This fact enables us to use the method of
equating the coefficients to derive some identities.

Theorem 1.5. If f(a, b) is a two-variable analytic function at (0, 0) ∈ C
2,

then, there exists a unique sequence {cn,m} independent of a and b such that

f(a, b) =

∞
∑

n=0

∞
∑

m=0

cn,m
(1− αq2n)(1− βq2m)(αq/a; q)n(αq/b; q)ma

nbm

(q, a; q)n(q, b; q)m
.

In Section 3, we use Theorem 1.3 to give a complete proof of the orthog-
onality relation for the q-Hahn polynomials.

A new proof of the orthogonality relation for the big q-Jacobi polynomials
is derived in Section 4. In Section 5, Theorem 1.3 is used to give a new deriva-
tion of the Nassrallah-Rahman integral. Another proof of the Nassrallah-
Rahman integral is given in Section 6. The principal result in Section 7 is
the following q-beta integral formula, which includes the Nassrallah-Rahman
integral formula as a special case.

Theorem 1.6. Suppose that qα = a2bcds and max{|a|, |b|, |c|, |d|, |s|} < 1.
Then we have the q-beta integral formula

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d, s)
3φ2

(

aeiθ, aeiθ, αuv/q

αu, αv
; q, bcds

)

dθ

=
2π(abcd, abcs, abds, acds; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds, qα; q)∞

×
∞
∑

n=0

(1− αq2n)(α, q/u, q/v, ab, ac, ad, as; q)n
(1− α)(q, αu, αv, abcd, abcs, abds, acds; q)n

(−α2uv/a2)nqn(n−1)/2.

In Section 8, we use Theorem 1.3 to recover some strange q-series identi-
ties.
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2. the proof of Theorem 1.5

To prove Theorem 1.5, we need the following formula of F. H. Jackson
[10], which writes the nth q-derivative of f(x) in terms of f(qkx) for k =
0, 1, 2, . . . , n.

Lemma 2.1. (Jackson)For any function f(x), we have the identity

Dn
q,x{f(x)} = x−n

n
∑

k=0

(q−n; q)k
(q; q)k

qkf(qkx).

Now we begin to prove Theorem 1.5 using Theorem 1.1 and Lemma 2.1.

Proof. Since f(a, b) is analytic at (a, b) = (0, 0), f(a, b) is analytic at a = 0,
regarding b as constant. From Theorem 1.1, we have that

(2.1) f(a, b) =

∞
∑

n=0

(1− αq2n)(αq/a; q)na
n

(q, a; q)n

[

Dn
q,x{f(x, b)(x; q)n−1}

]

x=αq
.

Appealing to the Jackson formula in Lemma 2.1, we easily deduce that
[

Dn
q,x{f(x, b)(x; q)n−1}

]

x=αq

= (qα)−n
n
∑

k=0

(q−n; q)k
(q; q)k

qk(qk+1α; q)n−1f(q
k+1α, b).

Since f(a, b) is analytic at (a, b) = (0, 0), we know that, for each k ∈
{0, 1, 2, . . . , n}, f(qk+1α, b) is analytic at b = 0. It follows that the left-
hand side of the above equation is also an analytic function of b near b = 0.
Using Theorem 1.1 again, we find that

(2.2)
[

Dn
q,x{f(x, b)(x; q)n−1}

]

x=αq

=
∞
∑

m=0

(1− βq2m)(qβ/b; q)mb
m

(q, b; q)m

[

Dm
q,yDn

q,x{f(x, y)(x; q)n−1(y; q)m−1}
]

(x=αq,y=βq)
.

Letting cn,m =
[

Dm
q,yDn

q,x{f(x, y)(x; q)n−1(y; q)m−1}
]

(x=αq,y=βq)
, it is obvi-

ous that cm,n are uniquely determined by f(x, y). Combining (2.1) with
(2.2), we complete the proof of Theorem 1.5.

3. the orthogonality relation for the q-Hahn polynomials

The q-Hahn polynomials are defined as (see, for example [11])

(3.1) Hn(a, b, c, d; z) =
(ac, ad; q)n

an
3φ2

(

q−n, abcdqn−1, az

ac, ad
; q, q

)

.

For simplicity, in this section we denote Hn(a, b, c, d; z) := Hn(z) and

(3.2) An(a, b) =
(1− abcdq2n−1)(abcdq−1; q)na

n

(1− abcdq−1)(q, ac, ad; q)n
.

Using Theorems 1.3, we can obtain the following generating function of
Hn(z).
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Proposition 3.1. For max{|ac|, |ad|, |asz|, |abcds|} < 1, we have
∞
∑

n=0

sn(s−1; q)n
(abcds; q)n

An(a, b)Hn(z) =
(abcd, acs, ads, az; q)∞
(abcds, ac, ad, asz; q)∞

.

Proof. Taking m = 1 in Theorems 1.3 and then setting a = qs and b = t,
we deduce that

(qα, αst, αsb1, αc1; q)∞
(qαs, αt, αsc1, αb1; q)∞

=

∞
∑

n=0

(1− αq2n)(α, s−1; q)ns
n

(1− α)(q, qαs; q)n
3φ2

(

q−n, αqn, αc1
αt, αb1

; q, q

)

.

Replacing (t, b1, c1) by (ac/α, ad/α, az/α) in the above equation, we obtain

(qα, acs, ads, az; q)∞
(qαs, ac, asz, ad; q)∞

=

∞
∑

n=0

(1− αq2n)(α, s−1; q)ns
n

(1− α)(q, qαs; q)n
3φ2

(

q−n, αqn, az

ac, ad
; q, q

)

.

Putting α = abcdq−1 in the above equation and noticing the definition of
An(a) and Hn(z), we complete the proof of Proposition 3.1.

It is well-known that Hn(a, b, c, d; z) is symmetric in a and b (see, for
example [11, Eq. (2. 18)], [14, Theorem 2]). Thus, by interchanging a
and b in Proposition 3.1 and replacing s by r, we can obtain the following
proposition.

Proposition 3.2. For max{|bc|, |bd|, |brz|, |abcdr|} < 1, we have
∞
∑

m=0

rm(r−1; q)m
(abcdr; q)m

Am(b, a)Hm(z) =
(abcd, bcr, bdr, bz; q)∞
(abcdr, bc, bd, brz; q)∞

.

Proposition 3.3. For max{|qαs|, |qαr|} < 1, we have
∞
∑

n=0

(1− αq2n)(α, s−1, r−1; q)n(−αrs)nqn(n+1)/2

(1− α)(q, qαs, qαr; q)n
=

(qα, qαrs; q)∞
(qαs, qαr; q)∞

.

Proof. Setting c = 0 in the Rogers 6φ5 summation in Theorem 1.4 and then
replacing (a, b) by (qs, qr), we complete the proof of the proposition.

Askey and Roy [6, Eq. (2. 8)] used the Ramanujan 1ψ1 summation to
obtain the following interesting integral formula.

Proposition 3.4. For max{|a|, |b|, |c|, |d|} < 1 and cdρ 6= 0, we have

1

2π

∫ π

−π

(ρeiθ/d, qde−iθ/ρ, ρce−iθ, qeiθ/cρ; q)∞
(aeiθ, beiθ, ce−iθ, de−iθ; q)∞

dθ

=
(abcd, ρ, q/ρ, cρ/d, qd/cρ; q)∞

(q, ac, ad, bc, bd; q)∞
.
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Using the above four propositions we can derive the orthogonality relation
for the q-Hahn polynomials.

For brevity, we now introduce L0, Ln and K(θ) as follows

L0 =
(abcd, ρ, q/ρ, cρ/d, qd/cρ; q)∞

(q, ac, ad, bc, bd; q)∞
,

Ln =
(1− abcdq−1)(q, ac, ad, bc, bd; q)nq

n(n−1)(−cd)n
(1− abcdq2n−1)(abcdq−1; q)n

L0,(3.3)

K(θ) =
(ρeiθ/d, qde−iθ/ρ, ρce−iθ, qeiθ/cρ; q)∞

(aeiθ, beiθ, ce−iθ, de−iθ; q)∞
.

The orthogonality relation for the q-Hahn polynomials can be stated in the
following theorem. Kalnins and Miller [11, Eq. (2. 8)] proved the m 6= n
case of the theorem, and also obtained a recurrence relation to evaluate the
m = n case. The value in this case is given below, and it is what Kalnins
and Miller could have stated using their recurrence relation.

Theorem 3.5. Let Hn(z) be the q-Hahn polynomials and Ln,K(θ) be de-
fined by (3.3) . Then we have the orthogonality relation

1

2π

∫ π

−π
K(θ)Hn(e

iθ)Hm(eiθ)dθ = Lnδm,n.

Proof. Replacing a by as and b by br in the Askey-Roy integral, we easily
find that

(3.4)
1

2π

∫ π

−π
K(θ)

(aeiθ, beiθ; q)

(aseiθ, breiθ; q)∞
dθ =

(abcdrs, ρ, q/ρ, cρ/d, qd/cρ; q)∞
(q, acs, ads, bcr, bdr; q)∞

.

Letting z = eiθ in Propositions 3.1 and 3.2 and then multiplying the two
resulting equations together, we obtain

∞
∑

n,m=0

(s−1; q)n(r
−1; q)ms

nrm

(abcds; q)n(abcdr; q)m
An(a, b)Am(b, a)Hn(e

iθ)Hm(eiθ)

=
(abcd, abcd, acs, ads, bcr, bdr, aeiθ , beiθ; q)∞
(abcds, abcdr, ad, ac, bc, bd, aseiθ , breiθ; q)∞

.

Substituting the above equation into (3.4), we easily obtain the series ex-
pansion

∞
∑

n,m=0

(s−1; q)n(r
−1; q)mAn(a, b)Am(b, a)snrm

(abcds; q)n(abcdr; q)m

1

2π

∫ π

−π
K(θ)Hn(e

iθ)Hm(eiθ)dθ

= A0
(abcd, abcdrs; q)∞
(abcds, abcdr; q)∞

.

Now we will use another method to expand the right-hand side member of
the above equation in terms of

(s−1; q)n(r
−1; q)ms

nrm

(abcds; q)n(abcdr; q)m
.
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In fact, by taking α = abcd/q in Proposition 3.3, we immediately find
that

∞
∑

n=0

(1− abcdq2n−1)(abcdq−1, s−1, r−1; q)n(−abcdrs)nqn(n−1)/2

(1− abcdq−1)(q, abcds, abcdr; q)n

=
(abcd, abcdrs; q)∞
(abcds, abcdr; q)∞

.

Combining the above two equations, we are led to the series identity

∞
∑

n,m=0

(s−1; q)n(r
−1; q)mAn(a, b)Am(b, a)snrm

(abcds; q)n(abcdr; q)m

1

2π

∫ π

−π
K(θ)Hn(e

iθ)Hm(eiθ)dθ

= A0

∞
∑

n=0

(1− abcdq2n−1)(abcdq−1, s−1, r−1; q)n(−abcdrs)nqn(n−1)/2

(1− abcdq−1)(q, abcds, abcdr; q)n
.

Using Theorem 1.5, we can in the above equation equate the coefficients of

(s−1; q)n(r
−1; q)ms

nrm

(abcds; q)n(abcdr; q)m

to arrive at the integral formula in Theorem 3.5. This completes the proof
of the theorem.

4. the orthogonality relation for the Big q-Jacobi
polynomials

We begin this section with the following transformation formula for q-
series.

Proposition 4.1. For λ = qα2/bcd and |qα/cd| < 1, we have

3φ2

(

c, d, αq/ab

αq/a, αq/b
; q,

qα

cd

)

=
(qα/c, qα/d, qλ/a; q)∞
(αq/a, qα/cd, qλ; q)∞

×
∞
∑

n=0

(1− λq2n)(λ, a, λb/α, λc/α, λd/α, q)n
(1− λ)(q, qλ/a, qα/b, qα/c, qα/d; q)n

(

−qα
a

)n
qn(n−1)/2.

Proof. Recall Watson’s q-analogue of Whipple’s theorem (see, for example
[9, p. 43, Eq. (2.5.1)], [20, Proposition 10.3])

8φ7

(

α, qα1/2,−qα1/2, a, b, c, d, q−n

α1/2,−α1/2, qα/a, qα/b, qα/c, qα/d, αqn+1
; q,

α2q2+n

abcd

)

=
(qα, qα/cd; q)n
(qα/c, qα/d; q)n

4φ3

(

q−n, c, d, qα/ab

qα/a, qα/b, cdq−n/α
; q, q

)

.
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Setting λ = qα2/bcd and using the transformation formula [9, p. 49,
Eq.(2.10.3)], we have that

8φ7

(

α, qα1/2,−qα1/2, a, b, c, d, q−n

α1/2,−α1/2, qα/a, qα/b, qα/c, qα/d, αqn+1
; q,

α2q2+n

abcd

)

=
(qα, qλ/a; q)n
(qα/a, qλ; q)n

8φ7

(

λ, qλ1/2,−qλ1/2, λb/α, λc/α, λd/α, a, q−n

λ1/2,−λ1/2, qλ/a, qα/b, qα/c, qα/d, λqn+1
; q,

αq1+n

a

)

.

Combining these two equations, we are led to the q-transformation formula

4φ3

(

q−n, c, d, qα/ab

qα/a, qα/b, cdq−n/α
; q, q

)

=
(qα/c, qα/d, qλ/a; q)n
(αq/a, qα/cd, qλ; q)n

× 8φ7

(

λ, qλ1/2,−qλ1/2, λb/α, λc/α, λd/α, a, q−n

λ1/2,−λ1/2, qλ/a, qα/b, qα/c, qα/d, λqn+1
; q,

αq1+n

a

)

.

Letting n → ∞ in the both sides of the above equation, we complete the
proof of Proposition 4.1.

Proposition 4.2. If there are no zero factors in the denominator of the
integral and λ = rhuv/q, then, we have
∫ v

u

(qx/u, qx/v, hx; q)∞
(rx, sx, tx; q)∞

dqx =
(1− q)v(q, u/v, qv/u, hu, hv, rsuv, rtuv; q)∞

(rhuv, ru, rv, su, sv, tu, tv; q)∞

×
∞
∑

n=0

(1− λq2n)(λ, ru, rv, h/s, h/t; q)n
(1− λ)(q, hu, hv, rsuv, rtuv; q)n

(−stuv)nqn(n−1)/2.

Proof. In [16, Theorem 9], we have proved the q-integral formula
∫ v

u

(qx/u, qx/v, hx; q)∞dqx

(rx, sx, tx; q)∞
=

(1− q)v(q, u/v, qv/u, hv, stuv; q)∞
(rv, su, sv, tu, tv; q)∞

× 3φ2

(

h/r, sv, tv

stuv, hv
; q, ru

)

.

If we replace (α, a, b, c, d) by (rstuv2/q, rv, rstuv/h, sv, tv) in Proposition 4.1,
then, we have qλ = ruvh and

3φ2

(

h/r, sv, tv

stuv, hv
; q, ru

)

=
(rsuv, rtuv, hu; q)∞
(stuv, rhuv, ru; q)∞

×
∞
∑

n=0

(1− λq2n)(λ, ru, rv, h/s, h/t; q)n
(1− λ)(q, hu, hv, rsuv, rtuv; q)n

(−stuv)nqn(n−1)/2.

Combining the above two equations, we complete the proof of Proposi-
tion 4.2.

The big q-Jacobi polynomials are defined as (see, for example [12, p. 438])

(4.1) Pn(a, b, c;x) = 3φ2

(

q−n, abqn+1, x

qa, qc
; q, q

)

.
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For simplicity, in this section we use Pn(x) to denote the big q-Jacobi polyno-
mials. Using Theorems 1.3, we can obtain the following generating function
of the big q-Jacobi polynomials.

Proposition 4.3. For max{|qa|, |qb|, |tx|, |qabt|} < 1, we have

(qab, qat, qct, x; q)∞
(q2abt, qa, qc, tx; q)∞

=

∞
∑

n=0

(1− abq2n+1)(qab, 1/t; q)nt
n

(q, q2abt; q)n
Pn(x).

Proof. Setting c1 = λα−1eiθ, c2 = λα−1e−iθ and b = 0 in Theorems 1.3, we
deduce that

(αq, αab1/q, αab2/q; q)∞
(αa, αb1, αb2; q)∞

∞
∏

n=0

(1− 2λqn cos θ + λ2q2n)

(1− 2λaqn−1 cos θ + λ2a2q2n−2)

=
∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
4φ3

(

q−n, αqn, λeiθ, λe−iθ

0, αb1, αb2
; q, q

)

.

Taking cos θ = x/(2λ) in the above equation, letting λ → 0, and replacing
a by qt, we find that

(αq, αtb1, αtb2, x; q)∞
(qαt, αb1, αb2, tx; q)∞

=
∞
∑

n=0

(1− αq2n)(α, 1/t; q)nt
n

(1− α)(q, qαt; q)n
3φ2

(

q−n, αqn, x

αb1, αb2
; q, q

)

.

Replacing αb1 = qa, αb2 = qc and α = qab in the above equation, we
complete the proof of Proposition 4.3.

If the q-integral of the function f(x) from a to b is defined as
∫ b

a
f(x)dqx = (1− q)

∞
∑

n=0

[bf(bqn)− af(aqn)]qn,

then, the orthogonality relation for the big q-Jacobi polynomials can be
stated in the following theorem (see, for example [9, p. 182], [12, p. 438]).

Theorem 4.4. The orthogonality relation for the big q-Jacobi polynomials
is
∫ aq

cq

(x/a, x/c; q)∞
(x, bx/c; q)∞

Pm(x)Pn(x)dqx = aq(1− q)
(q, abq2, a/c, qc/a; q)∞
(aq, bq, cq, abq/c; q)∞

× (1− abq)(q, qb, abq/c; q)n
(1− abq2n+1)(aq, abq, cq; q)n

(−acq2)nqn(n−1)/2δmn.

Proof. Replacing t by s in Proposition 4.3, we immediately deduce that

(qab, qas, qcs, x; q)∞
(q2abs, qa, qc, sx; q)∞

=

∞
∑

m=0

(1− abq2m+1)(qab, 1/s; q)ms
m

(q, q2abs; q)m
Pm(x).
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If we multiply this equation with the equation in Proposition 4.3 together,
we obtain

∞
∑

m,n=0

(1− abq2m+1)(1− abq2n+1)(qab; q)m(qab; q)n(1/s; q)m(1/t; q)ns
mtn

(q; q)m(q; q)n(q2abs; q)m(q2abt; q)n

× Pm(x)Pn(x)

=
(qab, x; q)2

∞
(qas, qcs, qat, qct; q)∞

(qa, qc; q)2
∞
(q2abs, q2abt, sx, tx; q)∞

.

Multiplying the above equation by (x/a, x/c; q)∞/(x, bx/c; q)∞ and then
taking the q-integral over [cq, aq], we find that

∞
∑

m,n=0

(1− abq2m+1)(1− abq2n+1)(qab; q)m(qab; q)n(1/s; q)m(1/t; q)ns
mtn

(q; q)m(q; q)n(q2abs; q)m(q2abt; q)n

×
∫ aq

cq

(x/a, x/c; q)∞
(x, bx/c; q)∞

Pm(x)Pn(x)dqx

=
(qab; q)2

∞
(qas, qcs, qat, qct; q)∞

(qa, qc; q)2
∞
(q2abs, q2abt; q)∞

∫ aq

cq

(x/a, x/c, x; q)∞dqx

(bx/c, sx, tx; q)∞
.

Setting (h, r, u, v) = (1, b/c, qc, qa) in Proposition 4.2 and simplifying, we
obtain
∫ aq

cq

(x/a, x/c, x; q)∞dqx

(bx/c, sx, tx; q)∞
=
aq(1− q)(q, c/a, qa/c, qa, qc, absq2 , abtq2; q)∞

(abq2, qb, abq/c, aqs, aqt, cqs, cqt; q)∞
∞
∑

n=0

(1− abq2n+1)(abq, bq, abq/c, 1/s, 1/t; q)n
(1− abq)(q, aq, cq, absq2, abtq2; q)n

(−acstq2)nqn(n−1)/2.

Combining the above equations, we deduce that

∞
∑

m,n=0

(1− abq2m+1)(1− abq2n+1)(qab; q)m(qab; q)n(1/s; q)m(1/t; q)ns
mtn

(q; q)m(q; q)n(q2abs; q)m(q2abt; q)n

×
∫ aq

cq

(x/a, x/c; q)∞
(x, bx/c; q)∞

Pm(x)Pn(x)dqx

=
aq(1− q)(q, qab, c/a, qa/c; q)∞

(qa, qb, qc, qab/c; q)∞

×
∞
∑

n=0

(1− abq2n+1)(abq, bq, abq/c, 1/s, 1/t; q)n
(q, aq, cq, absq2, abtq2; q)n

(−acstq2)nqn(n−1)/2.

Using Theorem 1.5, we can obtain the orthogonality relation for the big
q-Jacobi polynomials by equating the coefficients of

(1/s; q)m(1/t; q)ns
mtn

(q2abs; q)m(q2abt; q)n

in the above equation. This completes the proof of Theorem 4.4.
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5. on the Nassrallah-Rahman integral

Analogous to the hypergeometric case, we call the q-hypergeometric series

r+1φr

(

a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)

well-poised if the parameters satisfy the relations qa1 = a2b1 = a3b2 = · · · =
ar+1br; very-well-poised if, in addition, a2 = q

√
a1, a3 = −q√a1.

For simplicity, we sometimes use r+1Wr(a1; a4, a5, . . . , ar+1; q, z) to denote

r+1φr

(

a1, q
√
a1,−q

√
a1, a4, . . . , ar+1√

a1,−
√
a1, qa1/a4, . . . , qa1/ar+1

; q, z

)

Definition 5.1. For x = cos θ, we define the notation h(x; a) and h(x; a1, a2, . . . , am)
as follows

h(x; a) = (aeiθ, ae−iθ; q)∞ =

∞
∏

k=0

(1− 2qkax+ q2ka2)

h(x; a1, a2, . . . , am) = h(x; a1)h(x; a2) · · · h(x; am).

The following important integral evaluation is due to Askey and Wilson,
which can be used to obtain an elegant proof of the orthogonality relation
for these Askey-Wilson polynomials.

Theorem 5.2. (Askey–Wilson) With h(x; a) being defined in Definition 5.1
and max{|a|, |b|, |c|, |d|} < 1, we have

(5.1) I(a, b, c, d) :=

∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c, d)
=

2π(abcd; q)∞
(q, ab, ac, ad, bc, bd, cd; q)∞

.

For x = cos θ, the Askey-Wilson polynomials pn(a, b, c, d; cos θ) are defined
as [5], [9, p. 188]

(ab, ac, ad)na
−n

4φ3

(

q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

)

.(5.2)

Using Theorem 1.3, we can obtain the following generating function for the
Askey-Wilson polynomials.

Proposition 5.3. For max{|abcds|, |ab|, |ac|, |ad|, |saeiθ |, |sae−iθ|} < 1, we
have

(abcd, abs, acs, ads, aeiθ , ae−iθ; q)∞
(abcds, ab, ac, ad, saeiθ , sae−iθ; q)∞

=

∞
∑

n=0

(1− abcdq2n−1)(abcdq−1, s−1; q)n(sa)
n

(1− abcdq−1)(q, ab, ac, ad, abcds; q)n
pn(a, b, c, d; cos θ).
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Proof. Taking m = 2 in Theorem 1.3 and then setting a = qs and b = t, we
conclude that

(qα, αst, αb1s, αb2s, αc1, αc2; q)∞
(qαs, αt, αc1s, αc2s, αb1, αb2; q)∞

=

∞
∑

n=0

(1− αq2n)(α, s−1; q)ns
n

(1− α)(q, qαs; q)n
4φ3

(

q−n, αqn, αc1, αc2
αt, αb1, αb2

; q, q

)

.

Replacing (αt, αb1, αb2, αc1, αc2) by (ab, ac, ad, ae
iθ , ae−iθ) in the above equa-

tion and then taking α = abcdq−1, we complete the proof of the theorem.

Nassrallah and Rahman [21] used the integral representation of the sum of
two non-terminating 3φ2 series and the Askey-Wilson integral to find the fol-
lowing q-beta integral formula. In this section, we will use Proposition 5.3 to
give a new proof of the Nassrallah-Rahman integral formula [9, Eq. (6.3.7)].

Theorem 5.4. (Nassrallah-Rahman) For max{|a|, |b|, |c|, |d|, |s|} < 1, we
have

∫ π

0

h(cos 2θ; 1)h(cos θ; r)dθ

h(cos θ; a, b, c, d, s)

=
2π(r/s, rs, abcs, bcds, acds, abds; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds, abcds2 ; q)∞

× 8W7(abcds
2/q; as, bs, cs, ds, abcds/r; q, r/s).

Proof. Replacing a by r in Proposition 5.3, we immediately have

(rbcd, rbs, rcs, rds; q)∞h(cos θ; r)

(rbcds, rb, rc, rd; q)∞h(cos θ; rs)

=

∞
∑

n=0

(1− rbcdq2n−1)(rbcdq−1, s−1; q)n(rs)
n

(1− rbcdq−1)(q, rb, rc, rd, rbcds; q)n
pn(r, b, c, d; cos θ).

It is well-know that the Askey-Wilson polynomials pn(r, b, c, d; cos θ) is sym-
metric in r, b, c and d (see, for example [17, Corollary 4]). Thus, we have

(rbcd, rbs, rcs, rds; q)∞h(cos θ; r)

(rbcds, rb, rc, rd; q)∞h(cos θ; rs)

=

∞
∑

n=0

(1− rbcdq2n−1)(rbcdq−1, s−1; q)n(rs)
n

(1− rbcdq−1)(q, rb, rc, rd, rbcds; q)n
pn(d, b, c, r; cos θ)

=
∞
∑

n=0

(1− rbcdq2n−1)(bd, cd, rbcdq−1, s−1; q)n(rs/d)
n

(1− rbcdq−1)(q, rb, rc, rbcds; q)n

× 4φ3

(

q−n, rbcdqn−1, deiθ, de−iθ

bd, cd, rd
; q, q

)

.
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Multiplying the above equation by h(cos 2θ; 1)/h(cos θ; a, b, c, d), and then
taking the definite integral over 0 ≤ θ ≤ π, we find that

(rbcd, rbs, rcs, rds; q)∞
(rbcds, rb, rc, rd; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; r)dθ

h(cos θ; a, b, c, d, sr)

=

∞
∑

n=0

(1− rbcdq2n−1)(bd, cd, rbcdq−1, s−1; q)n(rs/d)
n

(1− rbcdq−1)(q, rb, rc, rbcds; q)n

×
n
∑

k=0

(q−n, rbcdqn−1; q)kq
k

(q, bd, cd, rd)k

∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c, dqk)
.

With the help of the Askey-Wilson integral in Theorem 5.2, we find that
∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c, dqk)
=

2π(ad, bd, cd; q)k(abcd; q)∞
(abcd; q)k(q, ab, ac, ad, bc, bd, cd; q)∞

.

It follows that
n
∑

k=0

(q−n, rbcdqn−1; q)kq
k

(q, bd, cd, rd)k

∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c, dqk)

=
2π(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
3φ2

(

q−n, rbcdqn−1, ad

abcd, rd
; q, q

)

We can apply the q-Pfaff-Saalschütz formula to sum the 3φ2 series on the
right hand side of the above equation to obtain

3φ2

(

q−n, rbcdqn−1, ad

abcd, rd
; q, q

)

=
(bc, r/a; q)n(ad)

n

(rd, abcd; q)n
.

Combining the above equations, we finally conclude that
∫ π

0

h(cos 2θ; 1)h(cos θ; r)dθ

h(cos θ; a, b, c, d, sr)

=
2π(abcd, rbcds, rb, rc, rd; q)∞

(q, ab, ac, ad, bc, bd, cd, rbcd, rbs, rcs, rds; q)∞

× 8W7(rbcdq
−1; bc, bd, cd, s−1, r/a; q, ars).

Replacing s by s/r in the above equation and then interchanging a and d,
we deduce that

∫ π

0

h(cos 2θ; 1)h(cos θ; r)dθ

h(cos θ; a, b, c, d, s)

=
2π(abcd, abcs, ra, rb, rc; q)∞

(q, ab, ac, ad, bc, bd, cd, rabc, as, bs, cs; q)∞
(5.3)

× 8W7(rabcq
−1; r/s, ab, ac, bc, r/d; q, ds).

Applying the transformation formula for 8φ7 in [9, III. 24] to the right-hand
of the above equation, we complete the proof of Theorem 5.4.
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Taking r = 0 in (5.3), we immediately find, for max{|a|, |b|, |c|, |d|, |s|} <
1, that

∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c, d, s)
(5.4)

=
2π(abcd, abcs; q)∞

(q, ab, ac, ad, bc, bd, cd, as, bs, cs; q)∞
3φ2

(

ab, ac, bc

abcd, abcs
; q, ds

)

.

6. another proof of the Nassrallah-Rahman integral formula

The Al-Salam and Verma q-integral formula [1, Eq. (1.3)] can be stated
in the following proposition.

Proposition 6.1. If there are no zero factors in the denominator of the
integral, then, we have
∫ s

d

(qx/d, qx/s, abcdsx; q)∞
(ax, bx, cx; q)∞

dqx =
(1− q)s(q, d/s, qs/d, abds, acds, bcds; q)

(ad, as, bd, bs, cd, cs; q)∞
.

The following q-integral formula is a special case of [9, Eq. (2.10.19)].
Now we will use Theorem 5.4 to give a derivation of this q-integral formula.

Theorem 6.2. If there are no zero factors in the denominator of the integral
and |r/s| < 1, then, we have

∫ s

d

(abcx, qx/d, qx/s, rx; q)∞dqx

(ax, bx, cx, rx/ds; q)∞

=
(1− q)s(q, d/s, qs/d, rs, abcs, acds, abds, bcds; q)∞

(r/d, ad, bd, cd, as, bs, cs, abcds2 ; q)∞

× 8W7(abcds
2/q; as, bs, cs, ds, abcds/r; q, r/s).

Proof. Letting d = x in the Askey-Wilson integral in Theorem 5.2 and then
multiplying both sides of the resulting equation by (qx/d, qx/s, drsx; q)∞/(rx; q)∞,
we obtain
∫ π

0

h(cos 2θ; 1)(qx/d, qx/s, drsx; q)∞dθ

h(cos θ; a, b, c, x)(rx; q)∞
=

2π(abcx, qx/d, qx/s, drsx; q)∞
(q, ab, ac, bc, ax, bx, cx, rx; q)∞

.

Taking the q-integral over d ≤ x ≤ s in the both side of the above equation,
we obtain

∫ π

0

h(cos 2θ; 1)dθ

h(cos θ; a, b, c)

∫ s

d

(qx/d, qx/s, drsx; q)∞dqx

(xeiθ, xe−iθ, rx; q)∞

=
2π

(q, ab, ac, bc; q)∞

∫ s

d

(abcx, qx/d, qx/s, drsx; q)∞dqx

(ax, bx, cx, rx; q)∞
.

Using the Al-Salam and Verma q-integral formula, we immediately find that
∫ s

d

(qx/d, qx/s, drsx; q)∞dqx

(xeiθ, xe−iθ, rx; q)∞
=

(1− q)s(q, d/s, qs/d, ds; q)∞h(cos θ; drs)

(rd, rs; q)∞h(cos θ; d, s)
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Combining the above two equations, we arrive at
∫ s

d

(abcx, qx/d, qx/s, drsx; q)∞dqx

(ax, bx, cx, rx; q)∞

=
(1− q)s(q, q, ab, ac, bc, d/s, qs/d, ds; q)∞

2π(rd, rs; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; drs)dθ

h(cos θ; a, b, c, d, s)
.

Replacing r by r/ds in the above equation, we find that

(6.1)

∫ s

d

(abcx, qx/d, qx/s, rx; q)∞dqx

(ax, bx, cx, rx/ds; q)∞

=
(1− q)s(q, q, ab, ac, bc, d/s, qs/d, ds; q)∞

2π(r/d, r/s; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; r)dθ

h(cos θ; a, b, c, d, s)
.

Applying Theorem 5.4 to the above equation, we complete the proof of
Theorem 6.2.

Next we will use (6.1) to give another proof of the Nassrallah-Rahman
integral formula.

Proof. If we choose r = abcds in (6.1), we immediately deduce that
∫ s

d

(abcdsx, qx/d, qx/s; q)∞dqx

(ax, bx, cx; q)∞

=
(1− q)s(q, q, ab, ac, bc, d/s, qs/d, ds; q)∞

2π(abcs, abcd; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; abcds)dθ

h(cos θ; a, b, c, d, s)
.

Applying the Al-Salam and Verma q-integral formula to the left-hand of
the above equation and simplifying, we find, for max{|a|, |b|, |c|, |d|, |s|} < 1,
that [9, Eq. (6.4.1)]

∫ π

0

h(cos 2θ; 1)h(cos θ; abcds)dθ

h(cos θ; a, b, c, d, s)
(6.2)

=
2π(abcd, abcs, abds, acds, bcds; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds; q)∞
.

Using T (θ) to denote the integrand of the above integral and the value of
this integral by I, then, we have

∫ π

0
T (θ)dθ = I.

Replacing s by sqn in the above equation and simplifying, we easily obtain
∫ π

0

T (θ)(seiθ, se−iθ; q)n
(abcdseiθ, abcdse−iθ; q)n

dθ =
(as, bs, cs, ds; q)n

(abcs, abds, acds, bcds; q)n
I.

If we multiply both sides of the above equation by the following factor:

(1− abcds2q2n−1)(abcds2/q, abcds/r; q)n(r/s)
n

(1− abcds2/q)(q, rs, r/s; q)n
,
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and then summing the resulting the equation over, 0 ≤ n ≤ ∞, we find that
∫ π

0
T (θ)6W5(abcds

2/q; abcds/r, seiθ , se−iθ; q, r/s)dθ

= 8W7(abcds
2/q; as, bs, cs, ds, abcds/r; q, r/s)I.

Using the q-Dougall summation, we immediately find that

6W5(abcds
2/q; abcds/r, seiθ , se−iθ; q, r/s) =

(abcds2, abcd; q)∞h(cos θ; r)

(rs, r/s; q)∞h(cos θ; abcds)
.

Combining the above two equations, we complete the proof of the theorem.

7. A new q-beta integral formula

We first recall the following well-known q-formula (see, for example [9, p.
62], [18, Theorem 1.8]).

Proposition 7.1. For |αxy/q| < 1, we have the q-transformation formula

(αq, αxy/q; q)∞
(αx, αy; q)∞

3φ2

(

q/x, q/y, αuv/q

αu, αv
; q,

αxy

q

)

=

∞
∑

n=0

(1− αq2n)(α, q/x, q/y, q/u, q/v; q)n(−α2xyuv/q2)nqn(n−1)/2

(1− α)(q, αx, αy, αu, αv; q)n
.

Now we begin to prove Theorem 1.6 by using the above proposition and
the q-beta integral formula in (6.2).

Proof. Setting x = (q/a)eiθ , y = (q/a)e−iθ and α = a2bcds/q in Proposi-
tion 7.1, we obtain

(qα, bcds; q)∞
h(cos θ; abcds)

3φ2

(

aeiθ, aeiθ, αuv/q

αu, αv
; q, bcds

)

=

∞
∑

n=0

(1− αq2n)(α, aeiθ , aeiθ, q/u, q/v; q)n(−α2uv/a2)nqn(n−1)/2

(1− α)(q, abcdseiθ , abcdseiθ, αu, αv; q)n
.

If we multiply both sides of the above equation by the factor

h(cos 2θ; 1)h(cos θ; abcds)

h(cos θ; a, b, c, d, s)
,

and then take the definite integral over 0 ≤ θ ≤ π in the resulting equation,
we deduce that
∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d, s)
3φ2

(

aeiθ, aeiθ, αuv/q

αu, αv
; q, bcds

)

dθ

=
1

(qα, bcds; q)∞

∞
∑

n=0

(1− αq2n)(α, q/u, q/v; q)n
(1− α)(q, αu, αv; q)n

(

−α2uv/a2
)n
qn(n−1)/2

×
∫ π

0

h(cos 2θ; 1)h(cos θ; abcdsqn)dθ

h(cos θ; aqn, b, c, d, s)
.
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If a is replace by aqn in (6.2), then, we immediately conclude that

∫ π

0

h(cos 2θ; 1)h(cos θ; abcdsqn)dθ

h(cos θ; aqn, b, c, d, s)

=
2π(abcd, abcs, abds, acds, bcds; q)∞(ab, ac, ad, as; q)n

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds; q)∞(abcd, abcs, abds, acds; q)n
.

Combining the above two equations, we complete the proof of Theorem 1.6.

When s = 0, it is obvious that Theorem 1.6 immediately becomes the
Askey-Wilson integral.

When u = q, the series in the right-hand side of the equation in Theo-
rem 1.6 immediately reduces to 1, and the 3φ2 series becomes a 2φ1 series
which can be summed by the q-Gauss summation formula,

3φ2

(

aeiθ, aeiθ

qα
; q, bcds

)

=
h(cos θ; abcds)

(qα, bcds; q)∞
.

Hence, in this case, the integral formula in Theorem 1.6 becomes the q-
integral formula (6.2).

Letting v → ∞ in Theorem 1.6 and by a direct computation, we easily
deduce that

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d, s)
2φ1

(

aeiθ, aeiθ

αu
; q,

αu

a2

)

dθ

=
2π(abcd, abcs, abds, acds; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds, qα; q)∞

× 8W7(α; q/u, ab, ac, ad, as; q, αuv/a
2).

The 2φ1 series in the above equation can be summed by the q-Gauss sum-
mation,

2φ1

(

aeiθ, aeiθ

αu
; q,

αu

a2

)

=
h(cos θ;αu/a)

(αu, αu/a2; q)∞
.

Combining the above two equations, we are led to the q-beta integral formula

∫ π

0

h(cos 2θ; 1)h(cos θ;αu/a)

h(cos θ; a, b, c, d, s)
dθ

=
2π(abcd, abcs, abds, acds, αu, αu/a2 ; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds, qα; q)∞

× 8W7(α; q/u, ab, ac, ad, as; q, αuv/a
2 ).
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Setting u = qr/abcds in the above equation and noting that qα = a2bcds,
we find that for max{|a|, |b|, |c|, |d|, |s|} < 1,

∫ π

0

h(cos 2θ; 1)h(cos θ; r)

h(cos θ; a, b, c, d, s)
dθ

=
2π(abcd, abcs, abds, acds, ar, r/a; q)∞

(q, ab, ac, ad, as, bc, bd, bs, cd, cs, ds, a2bcds; q)∞

× 8W7(a
2bcds/q; abcds/r, ab, ac, ad, as; q, r/a),

which is the same as the integral formula in Theorem 5.4 if we interchanging
a and s.

8. Strange evaluations of basic hypergeometric series

Theorem 1.3 can be used to provide new proofs of some strange q-series
identity. We begin by proving the following strange q-series identity due to
Andrews [3, Eq. (4.5)] (see also, [8, Eq. (4.26)] and [7, Eq. (4.5d)]).

Proposition 8.1. (Andrews) We have the summation formula

5φ4

(

q−n, αqn, α1/3q1/3, α1/3q2/3, α1/3q

α1/2q,−α1/2q, α1/2q1/2,−α1/2q1/2
; q, q

)

=
(1− α)(1 − α1/3q2n/3)(q; q)n(α

1/3; q1/3)n(qα)
n/3

(1− α1/3)(1 − αq2n)(α; q)n(q1/3; q1/3)n
.

Proof. Let ω be the primitive cube root of unity given by ω = exp(2πi/3).
Then we have

(1− x)(1 − xω)(1− xω2) = 1− x3.

If we replace (q, α, a, b, c) by (q1/3, α1/3, a1/3, a1/3ω, a1/3ω2) in Theorem 1.4
and then use the above identity in the resulting equation, we find that

(αa2/q; q)∞(α1/3q1/3; q1/3)∞

(αa; q)∞(α1/3a/q2/3; q1/3)∞
(8.1)

=

∞
∑

n=0

(1− α1/3q2n/3)(α1/3; q1/3)n(q/a; q)n(a/q)
n(qα)n/3

(1− α1/3)(αa; q)n(q1/3; q1/3)n
.

On the other hand, takingm = 3 in Theorem 1.3, and then letting (αb, αb1, αb2, αb3) =

(α1/2q,−α1/2q, α1/2q1/2,−α1/2q1/2) and (αc1, αc2, αc3) = (α1/3q1/3, α1/3q2/3, α1/3q),
we are led to derive the identity

(αa2/q; q)∞(α1/3q1/3; q1/3)∞

(αa; q)∞(α1/3a/q2/3; q1/3)∞

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
5φ4

(

q−n, αqn, α1/3q1/3, α1/3q2/3, α1/3q

α1/2q,−α1/2q, α1/2q1/2,−α1/2q1/2
; q, q

)

,
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Combining the above two equations, we conclude that
∞
∑

n=0

(1− α1/3q2n/3)(α1/3; q1/3)n(q/a; q)n(a/q)
n(qα)n/3

(1− α1/3)(αa; q)n(q1/3; q1/3)n

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
5φ4

(

q−n, αqn, α1/3q1/3, α1/3q2/3, α1/3q

α1/2q,−α1/2q, α1/2q1/2,−α1/2q1/2
; q, q

)

.

Appealing to Theorem 1.1, we can equate the coefficients of an(q/a; q)n/(αa; q)n
on both sides of the above equation to complete the proof of Proposition
8.1.

Replacing α by α3 and q by q3 in (8.1) and then setting α = 1 and
a = −q3, we deduce that (see, for example, [4, Eq. (13)])

(8.2) φ(−q)φ(−q3) = (q; q)∞(q3; q3)∞
(−q; q)∞(−q3; q3)∞

= 1 + 2
∞
∑

n=1

(−1)n
qn(1 + qn)

1 + q3n
.

Proposition 8.2. (Andrews) We have the summation formula

5φ4

(

q−n, αqn, α1/3, α1/3e2πi/3, α1/3e4πi/3√
α,−√

α,
√
qα,−√

qα
; q, q

)

=

{

0 if n 6≡ 0 (mod 3)
(α;q3)l(q;q)3lα

l

(α;q)3l(q3;q3)l
, if n = 3l .

This identity was first proved by Andrews [3, Eq. (4.7)]. For other proofs,
see [7, Eq. (4.4d)] and [8, Eq. (4.32)].

Proof. If we first replace q by q3 in Theorem 1.4 and then setting b = qa
and c = q2a in the resulting equation, we obtain

∞
∑

n=0

(1− αq6n)(q/a; q)3n(α; q
3)nα

n(a/q)3n

(αa; q)3n(q3; q3)n
=

(αa2/q2; q)∞(α; q3)∞
(αa, q)∞(αa3/q3; q3)∞

.

Using the same argument that we used to prove Proposition 8.1, from The-
orem 1.3 we can deduce that

(αa2/q2; q)∞(α; q3)∞
(αa, q)∞(αa3/q3; q3)∞

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(q, αa; q)n
5φ4

(

q−n, αqn, α1/3, α1/3e2πi/3, α1/3e4πi/3√
α,−√

α,
√
qα,−√

qα
; q, q

)

.

Combining the above two equations, we arrive at the q-identity
∞
∑

n=0

(1− αq6n)(q/a; q)3n(α; q
3)nα

n(a/q)3n

(αa; q)3n(q3; q3)n

=

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
5φ4

(

q−n, αqn, α1/3, α1/3e2πi/3, α1/3e4πi/3√
α,−√

α,
√
qα,−√

qα
; q, q

)

.
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Using Theorem 1.1, we compare the coefficients of an(q/a; q)n/(αa; q)n to
complete the proof of Proposition 8.2.

The q-Watson formula due to Andrews [2] can be sated in the following
proposition.

Proposition 8.3. (Andrews)We have the q-formula

4φ3

(

q−n, αqn,
√
λ,−

√
λ√

qα,−√
qα, λ

; q, q

)

=







0 if n is odd
(q,αq/λ;q2)n/2λ

n/2

(qα,qλ;q2)n/2
, if n is even.

Proof. Replacing q by q2 in Theorem 1.4 and then setting b = aq and c =
qλ/α, we find that

(αq, λa/q; q)∞(λ, αa2/q; q2)∞
(αa, λ; q)∞(qα, λa2/q; q2)∞

=

∞
∑

n=0

(1− αq4n)(α, q/a; q)2n(q, qα/λ; q
2)n(a/q)

2nλn

(1− α)(q, αa; q)2n(qα, qλ; q2)n

Taking m = 2 and (αc1, αc2, αb1, αb2, αb) = (
√
λ,−

√
λ,

√
qα,−√

qα, λ) in
Theorem 1.3, we find that the left-hand side member of the above equation
also equals

∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
4φ3

(

q−n, αqn,
√
λ,−

√
λ√

qα,−√
qα, λ

; q, q

)

.

Thus we have
∞
∑

n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, αa; q)n
4φ3

(

q−n, αqn,
√
λ,−

√
λ√

qα,−√
qα, λ

; q, q

)

=

∞
∑

n=0

(1− αq4n)(α, q/a; q)2n(q, qα/λ; q
2)n(a/q)

2nλn

(1− α)(q, αa; q)2n(qα, qλ; q2)n
.

Using Theorem 1.1, we can equate the coefficients of an(q/a; q)n/(αa; q)n on
both sides of the above equation, to complete the proof of Proposition 8.3.

Verma and Jain [22, Eq. (5.4)] proved the following series summation
formula.

Proposition 8.4. (Verma and Jain ) We have the summation formula

4φ3

(

q−2n, α2q2n, λ, qλ

qα, q2α, λ2
; q2, q2

)

=
λn(−q, qα/λ; q)n(1− α)

(α,−λ; q)n(1− αq2n)
.

Proof. Replacing α by −α and then (a, b, c) by (
√
a,−√

a, λ/α) in Theorem
1.4, we deduce that

(λ2a/q2; q2)∞(−α,αa/q; q)∞
(α2a; q2)∞(−λ, λa/q2; q)∞

=

∞
∑

n=0

(1 + αq2n)(q2/a; q2)n(qα/λ,−α; q)n(λa/q2)n
(α2a; q2)n(q,−λ; q)n

.
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Taking m = 2 in Theorem 1.3, then replacing q by q2 and α by α2, and
finally replacing (α2c1, α

2c2, α
2b, α2b1, α

2b2) by (λ, qλ, λ2, qα, q2α) we find
that

(λ2a/q2; q2)∞(−α,αa/q; q)∞
(α2a; q2)∞(−λ, λa/q2; q)∞

=

∞
∑

n=0

(1− α2q4n)(α2, q2/a; q2)n(a/q
2)n

(1− α)(q2, α2a; q2)n
4φ3

(

q−2n, α2q2n, λ, qλ

qα, q2α, λ2
; q2, q2

)

.

Equating the coefficients of an(q2/a; q2)n/(α
2a; q2)n on the right-hand side

of the above two equations, we complete the proof of Proposition 8.4.
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