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Abstract

The evolution of the black hole horizon can be effectively captured by
a fictitious membrane fluid living on the stretched horizon. We show that
the dynamics of this boundary matter arises from the invariance of the bulk
action under local symmetries in the presence of the inner boundary. If
general covariance is broken in a semi-classical treatment of a quantum field
near a black hole horizon, we argue that it can be restored by the inclusion
of a quantum flux into the membrane conservation equation which is exactly
equal to the Hawking flux.

Black hole event horizon divides the space-time into two causally disconnected
regions. This causal separation is an advantage as it allows us to practice low
energy physics without worrying about the nature of space-time near the central
singularity. This is reminiscent of the Wilsonian decoupling of UV from IR in
a well-behaved quantum field theory. The unobserved UV degrees of freedom
leave their marks in the renormalization group flow of the couplings. We hope
for similar signatures of the unobserved information inside the black holes as an
effective quantity for the outside observer. A novel description of such an approach
is the construction of the membrane paradigm [1, 2]. Suppose we live in a universe
which has an inner boundary, akin to the black hole event horizon. Unlike the
asymptotic boundary, the inner boundary is not a real boundary of the space-time.
Some observers can venture into the inside from outside. Nevertheless, the outside
physics is causally independent of the inside. Then, we should be able to derive a
classical equation of motion without imposing any special boundary condition at
the inner boundary. For example, consider the action of a Maxwell field sourced
by a charged scalar field,

S =

∫

M

d4x
√
−g

[

− 1

4
FµνF

µν −m2φ∗φ+ (Dµφ)
∗(Dµφ)

]

, (1)
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where Dµφ = ∇µφ − ieAµφ is the gauge covariant derivative of the field φ. The
variation of the action leads to Maxwell’s equations provided we impose suitable
boundary conditions at infinity to kill the boundary term resulting from the vari-
ation. Suppose the space-time contains an inner boundary besides the one at the
infinity. Then the variational principle becomes ill-defined due to the presence
of the boundary term which does not vanish at the inner boundary, without any
special boundary condition. So, the stationarity of the on-shell action requires
that we add an appropriate additional boundary term in the variation which can-
cels the offending one. The additional term is interpreted as due to a “fictitious”
membrane matter living on the inner boundary. The membrane is therefore de-
scribed by a boundary current density jµ = Fµνnν and boundary scalar fields
Φ∗ = (Dµφ∗)nµ; Φ = (Dµφ)nµ, where nν is the (outward) normal of the bound-
ary. We have assumed the inner boundary to be time-like. For black hole event
horizon, we consider the corresponding time-like stretched surface. The existence
of the membrane matter is a classic example of matter replacing the role of the
boundary condition.

But the question remains, in what sense this fictitious membrane matter cap-
tures the effective dynamics of the black hole? In the traditional construction of
membrane paradigm, this is answered by direct derivation of the equation [2]

Dνj
ν = Jνnν, (2)

where Jν = ie (φ∗Dνφ− φDνφ∗) is the current density of the bulk charged mat-
ter and Dµ is the covariant derivative compatible with the induced metric on the
inner boundary. This equation is interpreted as the conservation equation of the
membrane, where the flow of bulk matter balances the divergence of the bound-
ary current density. It shows that the membrane is dynamic and responsive to
changes due to the matter falling into the inner boundary. The fictitious mem-
brane is therefore endowed with life, imitating the dynamics of matter lost into
the boundary.

In this article, we provide a novel understanding of this equation from the
symmetry of the bulk. We show that the requirement of local gauge invariance
in the presence of an inner boundary leads to this conservation equation of the
boundary matter. The bulk symmetry enforces conservation in the boundary.

We consider the following local gauge transformations of the fields,

φ′ = eieλ(x)φ; A′
µ = Aµ +∇µλ(x). (3)

The variation of the action under this gauge transformation, on shell, takes the
form of a boundary term. All the contributions from the outer boundary vanish
provided the gauge function λ(x) vanishes at infinity. But, at the inner boundary,
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we have a non vanishing contribution:

δλS =

∫

d3x
√
−h

[

Dν (F
µνnµ)λ(x)− Jµnµλ(x)

]

. (4)

If we demand that the bulk action be invariant under the local gauge transfor-
mation, even in the presence of an inner boundary, we need set the integrand to
zero and this will lead to the desired conservation equation Dνj

ν = Jνnν of the
dynamic membrane matter. The conservation arises from the symmetry of the
bulk action in the presence of the boundary.

The same result can be obtained for the gravitational membrane also. Consider
the action of a scalar field coupled to gravity in a curved space-time with inner
boundary, a black hole stretched horizon,

S =
1

2

∫

M

d4x
√
−g

(

R− gµνφ,µφ,ν

)

+

∫

∂M

d3x
√
hK. (5)

We have added the Gibbons-Hawking-York’s boundary terms containing the
trace of the extrinsic curvature K of the boundary, which has an intrinsic metric
hµν . The membrane matter for this action is described by a boundary stress ten-
sor tµν = Khµν −Kµν and boundary field Φ = nµ∇µφ.

We demand the invariance of the action under the infinitesimal diffeomor-
phism: x′µ = xµ + ξµ. In the absence of the inner boundary, action is indeed
diffeomorphism invariant as the vector field ξµ is set to vanish at infinity. But,
once the inner boundary is present and we do not set any condition on ξ except
that it is tangent to the inner boundary, we will have a non vanishing term at the
inner boundary given by,

δξS = −
∫

d3x
√
−h

{

ξνDµ tµν − nµξν (∂µφ∂νφ)
}

. (6)

The requirement of the diffeomorphism invariance of the action: δξS = 0 gives,

Dµtµν = −nµ∂µφ∂νφ = −hανTαµn
µ. (7)

The equation has the obvious interpretation as the conservation equation for
the gravitational membrane. It captures the response of the membrane when the
matter flux enters into the boundary.

The local gauge invariance of the theory implies the existence of redundant
degrees of freedom. In general, such an invariance does not lead to any conserva-
tion law. In fact, the parameters of the gauge transformations, like the function
λ(x) or the diffeomorphism generating vector field ξµ, are set to be trivial at the
boundary. The presence of the inner boundary affects this construction because
the gauge parameter cannot be set to vanish on the inner surface. As a result, the
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local invariance of the bulk theory requires an extra condition, namely the conser-
vation law of the boundary matter. The conservation law makes the membrane
matter dynamic, providing an effective description of the interior. In case of black
hole horizon, the limit of the stretched horizon to the actual horizon is taken,
and various projections of this conservation law give the energy and momentum
evolution equation of the membrane. These equations are in the form of equations
of viscous fluid dynamics with appropriate bulk and shear viscosities [1, 2]. All
these can be seen as the requirement of the diffeomorphism invariance of the bulk,
which enforces the boundary conservation.

Let us compare our result with the construction based on horizon constraints
developed in the works [3, 4, 5]. The presence of the stretched horizon as an inner
boundary has the effect of adding a central extension to the algebra of diffeomor-
phisms. The central extension provides the asymptotic behavior of the density of
states producing the Bekenstein entropy of the horizon. As in our construction,
the imposition of horizon boundary conditions alters the physical content of the
theory and create dynamical degrees of freedom from the pure gauge. The conser-
vation law of the membrane at the boundary, resulting from the local symmetry
of the bulk is a vivid illustration of this idea.

The membrane conservation law arising from local gauge symmetry of the
classical Lagrangian takes into account only the classical flux of matter into the
boundary. Consideration of the quantum effects may add another interesting twist.
It is suggested [6, 7] that the regularity of the modes on the horizon requires the
effective theory, for the behavior of fields in the region outside the horizon, to be
chiral. This leads to the breakdown of the general covariance. The flux required
to cancel the gravitational anomaly at the horizon has a form equivalent to black-
body radiation with Hawking temperature. Therefore, in our picture, since the
diffeomorphism invariance does not hold true near the horizon, the gravitational
membrane conservation equation also breaks down by quantum effects and we
have a tentative equation Dµtµν + hανTαµn

µ = O(~). If we require that the diffeo-
morphism invariance holds true even in the semi-classical level, we need another
quantum flux to compensate the right-hand side. This flux must be same as the
flux JH of blackbody radiation at Hawking temperature TH . Therefore, we would
have a quantum conservation law:

Dµtµν + hανTαµn
µ + JH = 0 (8)

This semi-classical conservation equation captures the response of the mem-
brane due to both classical matter flux as well as quantum Hawking flux. Note
that this would be an exact equation within semi-classical approximation contain-
ing all information about the back reaction effects. The evolution of this quantum
membrane could be useful to find correlations in the outgoing Hawking spectrum.
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In our construction, the effective degrees of freedom and the laws of evolution
of black hole have their origin in the bulk symmetry. It is then natural to expect
that the black hole entropy of Killing horizons will be closely related to the Noether
charge of Killing isometry as shown in the Wald’s formalism of the first law [8].
The main ingredients in all these are the symmetries of the bulk which controls the
physics of the boundary. One wonders, in the spirit of the holographic principle,
if this can be reversed?
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