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1. Introduction

The polymer representation of quantum mechanics is obtained by applying non-

regular representation techniques developed within the Loop Quantum Gravity (LQG)

framework to systems with a finite number of degrees of freedom [1], [2]. Being a

completely background independent quantization scheme, the LQG approach enforce

the diffeomorphism covariance at the quantum mechanical level through the unitary

implementation of diffeomorphisms on a Hilbert space. The existence of diffeomorphism

invariant states suggests that a non-regular representation of the canonical commutation

relations must be considered in order to obtain a covariant representation of quantum

mechanics. This non-regularity condition, applied to minisuperspace models, has

resulted in a polymer-type representation known as Loop Quantum Cosmology (LQC).

Under this approach, important advances in the quantum gravity program have been

achieved, including the classical singularity avoidance by a quantum bounce [3], [4], a

microscopic basis for the black hole entropy [5], [6], [7], and inhomogeneus perturbations

in the cosmic expansion [8] (and references therein). Despite such efforts at the quantum

level, a proper semiclassical limit of a quantum theory of gravity remains an open issue.

The main reason lies in the difficulty to construct semiclassical states in the kinematical

Hilbert space which are peaked on classical solutions, and such that they solve the

classical dynamics. For cosmological models, these difficulties are tackled by performing

the quantization in minisuperspace, this means after reducing the phase space and

fixing all the kinematical symmetries through the homogeneity conditions for Bianchi

models [9]. Nevertheless, the interplay between these non-regular descriptions and the

ordinary Schrödinger representation, as well as the correspondence from quantum to

classical algebraic structures still need to be deciphered. Only a complete understanding

of these issues will allow us to construct a fully background independent quantum

dynamics for systems such as general relativity.

In order to shed some light on the issues discussed above, in this work we analyze

the polymer representation of quantum mechanics within the deformation quantization

formalism. The deformation quantization program, also referred to as phase space

quantum mechanics by many authors, consists in a formal passage from classical to

quantum systems using the Dirac quantization framework as a fundamental guideline

[10], [11]. The idea behind this formalism lies in a deformation with respect to some

parameter (e.g. the Planck constant ~) of the algebraic and geometrical structures of the

classical phase space. Since, for any classical system these structures can be defined in

terms of the algebra of observables, that is, smooth real or complex valued functions on

the phase space, a deformation is characterized by a non-commutative product, denoted

as the star-product, which substitutes the standard point-wise product and contains the

necessary quantum information of a given system. Consequently, this deformed star-

product induces a deformation of the Poisson bracket in such a manner that it contains

all the information related with the commutator between self-adjoint operators [12].

One crucial element of this formulation of quantum mechanics resides on the definition
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of the Wigner function, which is a quasi-probability distribution function in phase space

and corresponds to a representation of the density matrix that is responsible of all

the auto-correlation functions of a given quantum mechanical system. As it is well

known, within the deformation quantization formalism the language of operators and

wave functions, common in quantum mechanics, is interchanged by the ∗-product and

the Wigner function that encode the entire quantum mechanical properties, that is,

expectation values of observables and transition amplitudes. This interchange between

the classical and quantum structures of a system is realized in practice by the Wigner-

Weyl map which is a homomorphism relating classical observables to quantum self-

adjoint operators [13].

Following some ideas developed in [2], the aim of this paper is to obtain the Wigner

function and the star-product of the polymer representation as a distributional limit of

the Schrödinger representation. As we will demonstrate below, this quasi-probability

distribution limit agrees with the Wigner function for LQC, constructed by means of

cylindrical functions defined on the Bohr compactification on the real line [14],[15].

Following the quantization deformation scheme we construct a polymer star product,

which in the classical limit ~ 7→ 0 reduces to the standard Poisson bracket for smooth

functions, thus fulfilling Bohr’s correspondence principle. Finally, we also derive the

uncertainty principle, which happens to be related to the Generalized Uncertainty

Principles (GUP) that one may encounter in theories based on the existence of a

fundamental minimal length [16], [17].

The paper is organized as follows, in Section 2 we introduce the formalism of

deformation quantization focusing our attention in the case of Gaussian measures. In

Section 3, we derive the polymer representation as a limiting case of the Schödinger

representation within the deformation quantization formalism. In Section 4, the

uncertainty principle for the polymer representation is presented. Finally, we introduce

some concluding remarks in Section 5.

2. Deformation quantization in the Gaussian measure

In this section, we derive the Wigner-Weyl quantization scheme in the Gaussian measure.

For simplicity we restrict our attention to systems with one degree of freedom, but the

generalization to more dimensions follows straightforwardly.

2.1. The Weyl transform

The simplest approach to quantization of a classical system, is to provide a one-to-one

mapping Q~ : A → A from the set of classical observables A = C∞(R2), to the set of

quantum observables A, given by self-adjoint operators defined on a Hilbert space H.

The map Q~ must satisfy the properties

lim
~→0

1

2
Q−1

~
(Q~(f1)Q~(f2) +Q~(f2)Q~(f1)) = f1f2 , (1)



Polymer Quantum Mechanics as a Deformation Quantization 4

and

lim
~→0

Q−1
~

(

i

~
[Q~(f1), Q~(f2)]

)

= {f1, f2} , (2)

the latter known as Bohr’s correspondence principle. The relation between the classical

observable f ∈ C∞(R2) and its quantum counterpart Q~(f) ∈ A, in general does not

correspond to an isomorphism of Lie algebras [18].

In particular, the quantization mapping Q~ : A → A, applied to a classical system

described by the phase space R2, with local coordinates p, q means the passage from the

Poisson bracket which has the simple form

{q, p} = 1 , (3)

to the commutator of the operators
[

Q̂, P̂
]

ψ = i~ψ , where ψ ∈ D , (4)

where D ⊆ H is a dense subset of the Hilbert space H, such that Q̂ : D → D, and

P̂ : D → D. The equation (4) is known as the Heisenberg commutation relation. The

prescription Q~(q) = Q̂ and Q~(p) = P̂ , satisfying (4), provides the usual cornerstone for

the quantization of most classical systems, and its validity results widely confirmed by

numerous experiments. In order to study the representation of the quantum kinematics

in a particular Hilbert space, we consider the algebra generated by the operators given

by the exponentiated versions of Q̂ and P̂ , denoted by

Û(u) = e−iuP̂ /~, V̂ (v) = e−ivQ̂/~ , (5)

where u and v are real parameters with dimensions of length and momentum,

respectively. Whenever ~ 6= 0, the operators Û(u) and V̂ (v) satisfy the commutation

relation

Û(u)V̂ (v) = eiuv/~V̂ (v)Û(u) . (6)

Then, the Weyl algebra denoted by W, will be the algebra generated by finite linear

combination of the operators Û(u) and V̂ (v), such that
∑

i

(

aiÛ(ui) + biV̂ (vi)
)

∈ W , where ai, bi ∈ C . (7)

From this point of view, defining a quantization mapping means to provide a unitary

representation of the Weyl algebra on a Hilbert space.

In order to construct the Schrödinger representation of the Weyl algebra in the

Gaussian measure, let us select the Hilbert space to be

Hd = L2(R, dµd) , (8)

given by the space of square integrable functions with respect to the Gaussian weighted

measure on R

dµd(q) =
1

d
√
π
e−

q2

d2 dq , (9)
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where d is a parameter with dimensions of length. In this Hilbert space, the position

and momentum operators are represented as

Q̂ψ(q) = (qψ)(q) and P̂ψ(q) = −i~ ∂
∂q
ψ(q) + i~

q

d2
ψ(q) . (10)

This unusual expression for the representation of the momentum comes from the fact

that in the Gaussian measure the momentum operator requires an extra term in

order to define a symmetric operator or, in case we have identified a dense domain,

the corresponding self-adjoint operator. The main reason to choose this particular

representation relies on the Gelfand-Naimark-Segal (GNS) construction in which the

algebraic structure of a complete set of quantum observables solely characterizes the

Hilbert space. As it is well known, the GNS description is totally equivalent to providing

a quantum representation in terms of bounded operators and probability measures [19].

The different representations of the Weyl algebra that can be obtained are trivialized by

the Stone-von Neumann uniqueness theorem which asserts that all regular irreducible

representations are unitarily equivalent. In this manner, it is possible to recover the

standard Schrödinger representation in the Hilbert space HSchr = L2(R, dq) from Hd.

For this, we need to give an isometric isomorphism T : Hd →HSchr, defined by

ψ(q) := Tϕ(q) =
1

d1/2π1/4
e−

q2

2d2ϕ(q) , (11)

where ψ ∈ HSchr and ϕ ∈ Hd. In this sense, all the d-representations in Hd are unitarily

equivalent by the Stone-von Neumann theorem [2], [20].

Next, in order to find the Weyl transform, we start by defining Ŝ(u, v) ∈ L(Hd) as

a linear operator on Hd given by

Ŝ(u, v) := e
−iuv

2~ Û(u)V̂ (v) , (12)

and note from relation (6) that this operator follows the identities

Ŝ(u1, v1)Ŝ(u2, v2) = e
i

2~
(u1v2−u2v1)Ŝ(u1 + u2, v1 + v2) , (13)

and

Ŝ(u, v)† = Ŝ(−u,−v) , (14)

where here the dagger symbol in the left-hand side of (14) stands for the adjoint of the

operator Ŝ(u, v). Now, let us define a linear map W : L1(R2)→ L(Hd), called the Weyl

transform, as

W (f) =
1

2π~

∫

R2

f(u, v)Ŝ(u, v)dudv , (15)

where the function f(u, v) is defined on the classical phase space and the integral should

be understood in a weak sense, that is, for every φ1, φ2 ∈ Hd the inner product

〈W (f)φ1, φ2〉Hd
=
∫

R2

f(u, v)
〈

Ŝ(u, v)φ1, φ2

〉

Hd

dudv

2π~
(16)

is absolutely convergent and determines a bounded operator W (f) which satisfies

||W (f)|| ≤ 1

2π~
||f ||L1 . (17)



Polymer Quantum Mechanics as a Deformation Quantization 6

Using the properties of the Weyl algebra, one may show that the Weyl transform (15)

meets the properties

(i) For all f ∈ L1(R2),

W (f(u, v))† = W
(

f(−u,−v)
)

.

(ii) kerW = {0}.
(iii) There is a homomorphism between L1(R) and L(Hd) given by

W (f1)W (f2) = W (f1 ∗ f2) for all f1, f2 ∈ L1(R2) , (18)

where the star-product is given by

(f1 ∗ f2)(u, v) =
1

2π~

∫

R2

e
i

2~
(uv′−u′v)f1(u− u′, v − v′)f2(u′, v′)du′dv . (19)

The first property follows from the definition of the Weyl transform (15), while the

second property is a direct result from the completeness of the Hilbert space Hd. In

order to prove the third assertion, we invoke property (i) and relation (13), and observe

that within the inner product we have

〈W (f1)W (f2)φ1, φ2〉Hd
=
〈

W (f2)φ1,W (f1)
†φ2

〉

Hd

=
1

2π~

∫

R2

f2(u2, v2)
〈

Ŝ(u2, v2)φ1,W (f1)
†φ2

〉

Hd

du2dv2

=
1

2π~

∫

R2

(f1 ∗ f2) (u, v)
〈

Ŝ(u, v)φ1, φ2

〉

Hd

dudv , (20)

where f1 ∗ f2 ∈ L1(R2). We also note that whenever we consider ~ = 0 we recover the

ordinary convolution product between integrable functions [18].

2.2. The Wigner-Weyl quantization

In order to extend the Weyl transform to a more general class of functions, such as

distributions, it is convenient to introduce the following linear map

Φ := W ◦ F−1 : S(R2)→ L(Hd) . (21)

According to this definition, Φ is a linear map from the Schwartz space S(R2) of complex

valued functions whose derivatives are rapidly decreasing into the linear operator space

L(Hd). This map is called the Weyl quantization. Here W corresponds to the Weyl

transform defined in (15) and F−1 stands for the inverse Fourier transform

f̃(u, v) = F−1(f)(u, v) =
1

2π~

∫

R2

f(p, q)e
i
~

(up+vq)dpdq . (22)

By using the explicit expression for Ŝ(u, v) in (12) and the inverse Fourier

transformation, the Weyl quantization map reads

Φ(f)ϕ(q) =
1

2π~

∫

R2

f

(

p,
q + q′

2

)

e
i
~

p(q−q′)e− 1

2d2
(q2−q′2)ϕ(q′)dpdq′ , (23)
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for ϕ ∈ Hd. This means that the operator Φ represents an integral operator acting on

Hd

Φ(f)ϕ(q) =
∫

R

K(q, q′)ϕ(q′)dq′ , (24)

where the kernel K(q, q′) is given by

K(q, q′) =
1

2π~

∫

R

f

(

p,
q + q′

2

)

e
i
~

p(q−q′)e− 1

2d2
(q2−q′2)dp . (25)

Since the Fourier transform maps the Schwartz space onto itself, this implies that

the Weyl quantizer turns out to be a Hilbert-Schmidt operator acting on Hd, that

is, an operator with a well defined trace, but possibly infinite [21]. The inverse map

Φ−1 = F ◦W−1 associated to the Weyl quantizer, also known as the Weyl’s inversion

formula, can be obtained as

f(p, q) = F
(

Tr(Φ(f)S(u, v)−1)
)

, (26)

where f ∈ S(R2) and the trace is taken along an orthonormal basis for Hd [22]. By

using the kernel given in (25), the explicit expression for the Weyl’s inversion formula

reads

f(p, q) =
∫

R

K
(

q +
z

2
, q − z

2

)

e− i
~

z(p−
i~q

d2
)dz . (27)

Bearing this in mind, it is possible to define the Wigner function, which corresponds

to a phase space representation of a quantum state in the following manner. Let ρ̂ be a

density operator associated to a quantum state ϕ ∈ Hd, that is, a self-adjoint, positive

semi-definite operator of trace one written as

ρ̂φ(q) = ϕ(q)
∫

R

ϕ(q′)φ(q′)dµd(q′) , (28)

(or ρ̂ = |ϕ〉 〈ϕ| in Dirac notation), where φ, ϕ ∈ Hd. From (28), we can observe that

the operator ρ̂ is an integral operator, then by the Weyl’s inversion formula (27) its

corresponding phase space representation function is given by

ρ(p, q) =
∫

R

ϕ
(

q +
z

2

)

ϕ
(

q − z

2

)

e− i
~

zpe− 1

d2
(q2+ z2

4
) dz

d
√
π
. (29)

This is the Wigner function and, as one may easily check, it is normalized
1

2π~

∫

R2 ρ(p, q)dpdq = 1, whenever we consider normalized wave functions ϕ ∈ Hd on

its definition (29). Further, the projections on the momentum and position results in

marginal probability densities

1

2π~

∫

R

ρ(p, q)dp = ||ϕ||2Hd
,

1

2π~

∫

R

ρ(p, q)dq = ||F (Tϕ) ||2HSchr
. (30)

Another important property of the Wigner function lies on the possibility to take

negative values in certain regions of phase space. This last quasi-distributional aspect

provides a quantum device to measure interference and entanglement using only classical

and statistical features [13]. To finish this section, we should recall that given an
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arbitrary operator Â ∈ L(Hd), the Wigner function can be used to obtain the

expectation value of that operator, 〈Â〉Hd
, as a phase space average (in a particular

ordering prescription) by

1

2π~

∫

R2

ρ(p, q)A(p, q)dpdq =
〈

ϕ, Âϕ
〉

Hd

, (31)

where the operator Â = Φ(A) corresponds to the Weyl transform of the classical phase

space function A(p, q).

3. The Polymer Representation

3.1. Polymer Quantum Mechanics

In this section we derive the polymer representation of quantum mechanics from the

standard Schrödinger representation within the formalism of Wigner-Weyl quantization

developed in the previous section. We will first analyze the Weyl algebra by means

of the Weyl transform, and then through some distributional limits we will obtain the

Wigner function and the star-product associated to the polymer representation. As a

first step, we require to establish how the Weyl algebraW, generated by Û(u) and V̂ (v)

is represented on Hd = L2(R, dµd). By using the Weyl map (23), we obtain

Φ(U(u))ϕ(q) =
1

2π~

∫

R2

U

(

p,
q + q′

2

)

e
i
~

p(q−q′)e− 1

2d2
(q2−q′2)ϕ(q′)dpdq′ ,

= e
u

d2
(q− u

2
)ϕ(q − u) , (32)

and

Φ(V (v))ϕ(q) =
1

2π~

∫

R2

V

(

p,
q + q′

2

)

e
i
~

p(q−q′)e− 1

2d2
(q2−q′2)ϕ(q′)dpdq′ ,

= e− i
~

vqϕ(q) . (33)

In this representation, obtained via the GNS construction, the vacuum state is

given by the identity function ϕ0(q) = 1. The vacuum expectation value corresponding

to the generators of the Weyl algebra, Û(u) and V̂ (v), may be realized by using (31)

with ρ̂0 = |ϕ0〉 〈ϕ0|, and explicitly reads
〈

ϕ0, Û(u)ϕ0

〉

Hd

=
1

2π~

∫

R2

ρ0(p, q)U(u)dpdq = e− u2

4d2 , (34)

and
〈

ϕ0, V̂ (v)ϕ0

〉

Hd

=
1

2π~

∫

R2

ρ0(p, q)V (v)dpdq = e− v2d2

4~2 . (35)

where ρ0(p, q) may be obtained by explicitly inserting the states ϕ0(q) = 1 in the Wigner

function (29), thus yielding

ρ0(p, q) =
∫

R

e− i
~

zpe− 1

d2
(q2+ z2

4
) dz

d
√
π
. (36)

We can observe that the representation of the Weyl algebra in the Hilbert space Hd, for

d > 0, is well defined and continuous in any value of u and v.
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Following [2], our purpose now is to obtain the polymer representation as a

distributional limit from the Weyl algebra evaluated on Hd. The main idea is to study

two possible limits for the parameter d, the limit d→ 0, and the limit 1/d→ 0. Contrary

to the cases analyzed in [2], where the states become ill-defined and the heuristic

introduction of square roots of Delta distributions as half densities is required, within the

Wigner-Weyl formalism both limits are well defined and the resulting representation will

allow us to obtain the corresponding Wigner function associated with Loop Quantum

Cosmology. Before proceeding, it is convenient to focus on the fundamental vector states

belonging to the Hilbert space Hd, that is, the vectors generated by the action of the

Weyl algebra generators Û(u) and ˆV (v) on the vacuum state ϕ0. Let us call them

φu(q) := Û(u)ϕ0(q) = Φ(U(u))ϕ0(q) = e
u

d2
(q− u

2
) , (37)

and

ϕv(q) := V̂ (v)ϕ0(q) = Φ(V (v))ϕ0(q) = e− i
~

vq , (38)

respectively, where we have used the fact that ϕ0(q) = 1 in each of the last identities.

Now denoting by ρ̂φtu := |φu〉 〈φt| and ρ̂ϕvw := |ϕv〉 〈ϕw| and inserting these in expression

(31), we find that the inner product between these states is given by

〈φu, φs〉Hd
=

1

2π~

∫

R2

ρφusdpdq = e− 1

4d2
(u−s)2

, (39)

and

〈ϕv, ϕw〉Hd
=

1

2π~

∫

R2

ρϕvwdpdq = e− d2

4~2
(v−w)2

, (40)

where the Wigner functions ρφus and ρϕvw are obtained by introducing the states (37)

and (38) in (29), respectively. Thus we can observe that, unlike the Schrödinger

representation, in the Hilbert space Hd plane waves are normalized. With the preceding

calculations, we start by analyzing the limit 1/d 7→ 0. From the inner product (39) and

(40) we get

lim
1/d7→0

〈φu, φs〉Hd
= 1 , (41)

and

lim
1/d7→0

〈ϕv, ϕw〉Hd
= δv,w , (42)

where δv,w stands for a Kronecker delta, implying that the states ϕv(q) form an

orthonormal basis for the new Hilbert space obtained as a limiting case fromHd quotient

the vector space generated by φu(q) since any difference of these vectors has zero norm.

It is important to note that within this limit, on the one hand the operators V̂ (v) and

the momentum operator p̂ are well defined, as one may straightforwardly check by using

the Weyl map

Û(s)ϕv(q) = Φ(U(s))ϕv(q) =
1

2π~

∫

R2

e− i
~

spe
i
~

p(q−q′)e− 1

2d2
(q2−q′2)e− i

~
vq′

dpdq′

= e
s

d2
(q− s

2
)e− i

~
v(q−s) , (43)
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which in the limit 1/d 7→ 0 reduces to

Û(s)ϕv(q) 7→ e
i
~

svϕv(q) , (44)

while for the momentum operator we have

P̂ϕv(q) = Φ(p)ϕv(q) =
1

2π~

∫

R2

pe
i
~

p(q−q′)e− 1

2d2
(q2−q′2)e− i

~
vq′

dpdq′

= − i~dϕv

dq
+
i

~

q

d2
ϕv , (45)

which in the limit 1/d 7→ 0 behaves as

P̂ϕv(q) 7→ −i~dϕv

dq
. (46)

On the other hand, the operator V̂ (w) acts on the fundamental vector states as

V̂ (w)ϕv(q) = Φ(V (w))ϕv(q) = e− i
~

wqϕv(q) , (47)

which can be easily computed by formula (33). Nevertheless, we may notice that within

this representation there is no position operator Q̂ as a consequence of the fact that the

operator V̂ (w) is not weakly continuous, that is, the inner product
〈

ϕv, V̂ (w)ϕy

〉

7→ δw,v−y , (48)

is not continuous on the parameter w. Indeed, if one considers the basis {ϕv} one

may straightforwardly check that within this inner product the expectation value of

the position operator Q̂ always vanishes in the 1/d 7→ 0 limit. This means, by the

Stone-von Neumann theorem, that the present limit representation is not equivalent to

the standard Schrödinger representation since we have broken the regularity condition.

The resulting Hilbert space is known in the literature as the A-version of the polymer

representation [2].

Let us now analyze the Hilbert space Hd in the limit d 7→ 0. Contrary to the

previous case we obtain from the inner products (39) and (40)

lim
d7→0
〈φu, φs〉Hd

= δu,s , (49)

and

lim
d7→0
〈ϕv, ϕw〉Hd

= 1 , (50)

respectively. We recognize that within this limit the vectors φu become the orthonormal

basis and, in order to obtain a proper Hilbert space, we have to take the quotient of

the vector space generated by the functions ϕv. From (45), we readily see that in this

representation the momentum operator is not going to be defined. In order to formally

establish this result we only require to calculate the inner product
〈

φs, Û(u)φt

〉

7→ δu,s−t , (51)

which occurs to be not weakly continuous on the parameter u, and as a consequence

of the Stone-von Neumann theorem, the resulting d 7→ 0 limit of the Hilbert space
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Hd brings another inequivalent representation, called the B-version of the polymer

representation [2].

For both limiting Hilbert spaces, the A-polymer and the B-polymer versions,

although very similar, it is important to emphasize the distinct roles played by the

generators of the Weyl algebra, Û(u) and V̂ (v), in each of these cases. In the A-polymer

representation, the position operator Q̂ is not well defined since V̂ (v) is not weakly

continuous, and conversely, in the case of the B-polymer representation the momentum

operator P̂ is not well defined due to the lack of weak continuity on the operator Û(u).

Having computed both limits, one can find an equivalence relation between the A and B

polymer representation through a d↔ 1/d duality between the position and momentum

representations. The A-polymer case in the position representation turns out to be

equivalent to the B-polymer version in the momentum representation and vice versa. In

order to see this, it is necessary to analyze the fundamental states of Hd in both limits.

Nevertheless, as we can observe from expression (37), the states φu become ill-defined in

the d 7→ 0 limit. To overcome these difficulties, in reference [2] the authors considered

to incorporate these states into the standard Schrödinger representation, but this choice

has the consequence of introducing square roots the of Dirac delta distributions, which

are not well defined since Schwartz-Sobolev distributions are linear functionals on the

space of test functions [23]. In order to avoid the introduction of non-linear distributions

by means of heuristic arguments, in the next section we will investigate the properties

of the Wigner function and its polymer limits.

3.2. The polymer Wigner function and the star-product

Let us now analyze the Wigner function corresponding to the A and B-polymer

representations as limiting cases of the Wigner function associated to the Hilbert space

Hd. The resulting Wigner functions associated with the limits 1/d 7→ 0 and d 7→ 0 will

be called ρA(p, q) and ρB(p, q), respectively. Starting with the Wigner function defined

in (29) for the vector states ϕv = e− i
~

vq

ρϕv
(p, q) =

∫

R

ϕv

(

q +
z

2

)

ϕv

(

q − z

2

)

e− i
~

zpe− 1

d2
(q2+ z2

4
) dz

d
√
π
, (52)

and then taking the limit 1/d 7→ 0 for the Wigner function ρϕ(p, q), we obtain the explicit

expression for the Wigner function corresponding to the A-polymer representation

ρϕv
(p, q) 7→ δp,−v =: ρA(p, q) . (53)

Similarly, for the limiting case d 7→ 0 associated to the Wigner function defined by the

vector states φu = e
u

d2
(q− u

2
)

ρφu
(p, q) =

∫

R

φu

(

q +
z

2

)

φu

(

q − z

2

)

e− i
~

zpe− 1

d2
(q2+ z2

4
) dz

d
√
π
, (54)

we obtain the Wigner function corresponding to the B-polymer representation

ρφu
(p, q) 7→ δq,u =: ρB(p, q) . (55)
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These ultra-localized expressions for the quasi-probability distributions in the phase

space given by ρA and ρB, are distinctive in the polymer representation of quantum

mechanics since the wave functions are modulated by Kronecker deltas on a countable

(or possibly uncountable) number of points. However, we may note that the true nature

of the lattice formed by these points is not explicitly obtained, and thus, for simplicity,

we will consider a regular lattice from now on. This means that the polymer Hilbert

space consists of wave functions that vanish everywhere except for a countable number

of points on the real line which are regularly spaced qn = q0 +nλ, for a given q0 ∈ R and

n ∈ Z. For a fixed point q0, the wave functions, supported on this lattice, belong to a

separable Hilbert space which corresponds to a superselected sector of the full polymer

Hilbert space. Indeed, a state defined on this space is written as a linear superposition

of all the functions defined on the lattices indexed by q0, where q0 ∈ [0, λ). Hence,

the polymer Hilbert space is given by a direct sum of the superselected sectors Hq0
,

i.e., Hpoly = ⊕q0∈[0,λ)Hq0
. This emergence of these superselection sectors is completely

analogous to the situation appearing in the canonical construction of the polymer

representation [24]. Furthermore, the Wigner functions ρA and ρB calculated in (53) and

(55), respectively, correspond to the Wigner functions associated to the pure characters

and their Fourier transforms over the Bohr compactification RB of the real line in Loop

Quantum Cosmology [14]. This means that both limits 1/d 7→ 0 and d 7→ 0 of the

Wigner function in Hd converge to

ρA(p, q) = lim
1/d→0

ρϕv
(p, q) =

∫

RB

ϕv

(

q +
1

2
b
)

ϕv

(

q − 1

2
b
)

h(b,−p)db , (56)

ρB(p, q) = lim
d→0

ρφv
(p, q) =

∫

R̂B

ϕ̃v

(

p− 1

2
τ
)

ϕ̃v

(

p+
1

2
τ
)

h(q, τ)dτ, (57)

where RB stands for the Bohr compactification over the reals, while R̂B stands for its

locally compact dual group. Also, h(b, p) = eipb are the characters of RB and ϕ̃v denotes

the Fourier tranform of ϕv in RB. In the context of LQC one can fix the gauge and

diffeomorphism freedom of the full gravitational theory in such a way that the resulting

phase space occurs to be finite dimensional. This means that the canonical variables

given by the connection and the triad are parametrized by (c, pc), where c represents

the configuration variable corresponding to the connection associated to fiducial edges,

and pc represents its canonically conjugate momentum. In terms of geometrodynamical

variables, pc provides the scale factor (which establishes the spatial metric in the case

of homogeneous and flat cosmologies) and c determines the extrinsic curvature [25].

Since a general wave function in the kinematical Hilbert space of LQC is given as

a finite span of the fundamental characters in RB (in other terms, a wave function

corresponds to a cylindrical function), the limits 1/d→ 0 and d→ 0 correspond to the

Wigner function within the context of Loop Quantum Cosmology in the position and

momentum representations, respectively, characterizing the 1/d ↔ d duality between

the A and B-polymer representations mentioned above. As we can observe from (56)

and (57), the A-polymer representation in the position space is equivalent to the B-

polymer representation in the momentum space, and vice versa. On the other hand,
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since the fundamental vector states φu and ϕv are constructed by applying the operators

Û(u) and V̂ (v), respectively, over the vacuum state ϕ0, which by the GNS construction

corresponds to a cyclic vector. This means that any other vector of the Hilbert space

Hd can be obtained by applying a finite linear combination of the operators Û(v) and

V̂ (v) on ϕ0, as the representation of the Weyl algebra is dense on Hd. Then, in

order that the Wigner-Weyl map and the Wigner function result well defined under

the d 7→ 0 and 1/d 7→ 0 limits, the domain of Φ corresponds to the almost periodic

functions on the phase space, that is, the space of finite linear combinations of sine and

cosine trigonometric functions closed under the uniform norm [26]. As a consequence

of the fact that the integral expression of the Wigner function (55) with respect to

the Hilbert space Hd contains also a Gaussian measure factor dµd, it is possible to

demonstrate that the limit of this kind of integrals converge to the normalized Haar

measure on the Bohr compactification RB with respect to the weak topology [27], [28].

This analysis suggests that, within the deformation quantization approach introduced

here, the polymer representation and therefore the Wigner function associated to LQC

can be thought as a distributional limit of the standard Schrödinger representation.

Let us now introduce the star-product associated with the polymer representation.

The Wigner-Weyl quantization mapping Φ : S(R2) → L(Hd) studied in the previous

section, defines a bilinear operation: ∗ : S(R2) × S(R2) → S(R2) given by f1 ∗ f2 =

Φ−1 (Φ(f1)Φ(f2)) called the star-product, and written explicitly as (19). Even though

this star-product is originated through a homomorphism between the spaces S(R2)

and L(Hd), one may easily verify that it does not depend on the parameter d. This

means that after performing the limits 1/d 7→ 0 or d 7→ 0 the star-product will remain

unchanged. In order to illustrate this, we briefly outline the differential representation

of the star-product. Let f̂1, f̂2 ∈ L(Hd), such that f̂1 = Φ(f1) and f̂2 = Φ(f2). By

Weyl’s inversion formula (26)

Φ−1(f̂1f̂2) =
∫

R2

Kf1

(

q +
z

2
, y
)

Kf2

(

y, q − z

2

)

e− i
~

z(p−
i~q

d2
)dzdy , (58)

where Kf1
and Kf2

correspond to the kernel (25) associated to the operators f̂1 and

f̂2, respectively. To proceed further, we introduce a new set of variables q′ = y − q − z
2
,

and y′ = q − y − z
2
, and consider the Taylor expansion of Kf1

and Kf2
and then, after

some laborious manipulations [29] where we have to consider the Gaussian measure, we

obtain

(f1 ∗ f2) (p, q) = f1(p, q) exp

[

−i~
2

(
←−
∂q
−→
∂p −

←−
∂p
−→
∂q )

]

f2(p, q) . (59)

The form of the star-product means that in the limiting cases 1/d 7→ 0 and d 7→ 0, the

correspondence principle

lim
~→0

Φ−1
(

i

~

[

f̂1, f̂2

]

)

= lim
~→0

i

~
(f1 ∗ f2 − f2 ∗ f1)

= {f1, f2} , (60)
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is satisfied. Nevertheless, we must remember that not all operators are well defined in

the polymer representation, for instance, the position operator is not defined in the A-

polymer representation, while the momentum operator is not defined in the B-polymer

representation. This shows that as long as we take into account phase space functions

with well defined limits in each of the two polymer versions under the Wigner-Weyl

map, the correspondence principle will remain satisfied.

4. The Uncertainty Principle

In this section, we determine the uncertainty principle within the polymer

representation. For simplicity, we only consider the case for the B-polymer prescription,

though an analogous uncertainty principle will follow for the A-polymer representation.

Let f ∈ S(R2), then, as we learned in subsection (2.2), the expectation value of the

operator f̂ = Φ(f) can be expressed as (31). Since the star-product between classical

functions is given by (59), and does not depend on the parameter d, it is easy to prove

that 〈f ∗ f〉 ≥ 0 [13]. Also, following [13], in order to obtain the Heisenberg’s uncertainty

relation we need to choose

f = a+ bq + c
(

− 1

2iu
(U(u)− U(−u))

)

, (61)

where a, b, c ∈ C and the regularized momentum is defined in terms of the Weyl

generators

pu := − 1

2iu
(U(u)− U(−u)) =

1

u
sin up , (62)

taking for simplicity ~ = 1. The reason for this definition is a consequence of the

B-polymer representation, since within this representation in the limit d 7→ 0 the

momentum operator does not exist as discussed above, and then the momentum has to

be represented through the generators of the Weyl algebra. Although this election for

the momentum is not unique, it is guided by the requirement of non-degenerate energy

levels in a Hamiltonian with a quadratic kinetic term and, also, it has been proved useful

in the study of the semiclassical regime which yields an effective dynamics related by

coarse-graining maps [30]. The expectation value results in a positive quadratic form

〈f ∗ f〉 = aa + bb 〈q ∗ q〉+ cc 〈pu ∗ pu〉+ (ab+ ba) 〈q〉+ (ac+ ca) 〈pu〉
+ cb 〈pu ∗ q〉+ bc 〈q ∗ pu〉 ≥ 0 . (63)

Taking into account the usual definition of the quantum fluctuation of an operator

(∆f)2 = 〈(f − 〈f〉)2〉, and the positivity condition of the quadratic form (63) (which

results to be equivalent to the positivity of its associate 3× 3 matrix determinant) we

can thus write

(∆q)2(∆pu)2 ≥ 1

4
〈cosup〉2 + 〈(q − 〈q〉) (pu − 〈pu〉)〉2

≥ 1

4
〈cosup〉2 , (64)
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and hence

∆q∆pu ≥
1

2
|〈cosup〉| = 1

2
〈
√

1− u2p2
u〉 . (65)

From this last expression it is easy to see that whenever we consider a small parameter

u, we obtain the relation

∆q∆pu ≥
1

2

(

1− 1

2
u2∆p2

u +O(u4)
)

, (66)

where we have considered the condition 〈pu〉 = 0. This expression results exactly

the uncertainty relation obtained by [32], which is completely analogous to the ones

appearing within the context of generalized uncertainty principle (GUP) scenarios

analyzed within String Theory and Loop Quantum Gravity [16], [31], [33]. Nevertheless,

in the case of the polymer representation there is a key difference with respect to

the GUP’s. Indeed, most of generalized uncertainty principle theories determine a

nonvanishing minimal uncertainty in the position, ∆q0 > 0, such that ∆q ≥ ∆q0

(or analoguously, in the momentum), which implies, as discussed in [16], that under

such minimal uncertainties, in the position (or the momentum) of a particle, there

cannot be any physical state which is a position (or momentum) eigenstate. However,

as we can observe from expression (65), the polymer approach does not imply any

minimal uncertainty in the position. The discreteness properties within the polymer

representation are encoded in the eigenvalues of the position and momentum operators.

In order to observe this, let us take for example the polymer A-version. In this case,

the vectors ϕv(q) defined in (38) not only form an orthonormal basis, but they also

correspond to eigenstates of the momentum operator P̂ given in (46), as P̂ϕv(q) = −vϕv.

Since the eigenvalues of the momentum operator are v ∈ R, this could suggest the

appearance of a continuous spectrum. However, these eigenstates are also normalizable,

which comprise one of the characteristics of states belonging to the discrete spectrum.

This contradiction is solved by taking into account the non-separability of the polymer

Hilbert space Hpoly, where the normalizability condition on the eigenstates implies

the discreteness of the spectrum. It is important to mention that if one restricts to

one superselection sector, then this sector turns out to be separable in opposition to

the complete Hilbert space, and it also preserves a discrete spectrum. Finally, in the

context of LQC the kinematical Hilbert space is constructed by implementing the same

steps followed in the polymer representation. As we already mentioned in section III,

in this case the phase space variables (q, p) are given by the canonical pair (c, pc),

satisfying {c, pc} = 8πγG/3, where γ denote the Immirzi parameter and G the Newton

gravitational constant, respectively. Since the operator associated to the holonomy e−iµc

is not weakly continuous, this means that the connection operator ĉ is not defined. But

this is exactly the A-version of the polymer representation, hence, this implies that the

momentum operator p̂c, which is given by the densitized triad multiplied by a specific

power of a volume of the region used to define the isotropic phase space, admits a discrete

spectrum given by p̂cϕµ(c) = (8πγ/3)l2pµϕµ(c), where lp is the Planck lenght, clearly this

shows the discreteness properties of the triad spectrum. [34] Similarly to the polymer
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case the curvature components, which are given by higher powers of the connection c,

must be included in the quantization. This means that a kind of regularization must

be selected, but in any case the resulting Hamiltonian constraint results in a difference

equation rather than a differential equation. The action of this Hamiltonian operator

superselects wave functions on Hpoly which are preserved under dynamics. Although,

it has been argued that the choice of superselection sector in LQC may be constructed

by geometrically homogeneous quantum embeddings which could be identified with the

symmetric sector of diffeomorphism invariant full Loop Quantum Gravity [35], [36].

We expect that the formalism developed here could shed some light on these issues by

exploiting the technical tools that naturally emerge from the deformation quantization

approach.

5. Conclusions

In this paper, we showed that the non-regular polymer representation of quantum

mechanics can be obtained as a distributional limit of the Schrödinger representation

within the deformation quantization approach. The two limiting cases analyzed

correspond to the Wigner function within the context of Loop Quantum Cosmology in

the position and momentum representations, respectively. Then, by using the polymer

star-product obtained by the Weyl’s inversion formula and taking the limit ~ 7→ 0, we

recovered the standard Poisson structure for smooth functions, thus fulfilling Bohr’s

correspondence principle. Finally, we derived the uncertainty relations between the

position and momentum operator. However, as we have seen, under the polymer

representation that we have considered the momentum operator is not well defined,

meaning that an approximation in terms of Weyl generators must be taken. By

considering the appropriate limits, our construction results analogous to the uncertainty

relation that appears in the context of different generalized uncertainty principle

scenarios. Nevertheless, in the case of the polymer representation the discreteness

properties are encoded in the eigenvalues of the position and momentum operators.

The above mentioned properties suggest that the non-regular polymer representa-

tion described as an appropriate distributional limit in terms of Wigner quasi-probability

functions not only follows the correspondence limit among quantum algebraic structures

such as the commutator of self-adjoint operators and the classical Poisson bracket be-

tween smooth functions, but it also provides at the same time a minimal length scale

at the quantum level. We expect the results established here may clarify the quantum

dynamics of systems defined on independent background scenarios. However, a more

general analysis must be carried out in order to apply the methods developed here for

the case of field theories. This will be done elsewhere.
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