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Abstract

In this paper, we consider the unitary critical restricted-solid-on-solid (RSOS) lattice M(5, 6)

model with integrable boundary conditions. We introduce its commuting double row trans-

fer matrix satisfying the universal functional relations, and we use it in order to study the

analytic structure of the transfer matrix eigenvalues and plot representative zero configura-

tions of sample eigenvalues of the transfer matrix. We finally conclude with a comparative

analysis with the critical and tricritical Ising models with integrable boundary conditions.
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1 Introduction

Integrable models can be solved in finite volumes due to the infinite number of conservation

laws that they have in 1+1 dimensional problems. The energy spectrum can be fully determined

in this case, while it is a very difficult task in general. The Thermodynamic Bethe Ansatz

(TBA) method allows us to calculate the vacuum polarization effects of the ground state and

its energy. (Zamolodchikov, 1990; Zamolodchikov, 1991b; Zamolodchikov, 1991a). Another

important and challenging task is to extend this method in order to determine the excited state

spectra. The analytic continuation method provides some information about some excited

states using the ground state TBA equations as was done in (Dorey and Tateo, 1996), but this

method fails in obtaining the full excitation spectrum for many models including the non-unitary

M(3, 5) and the scaling Lee-Yang model (Bajnok and El Deeb, 2010; Lee and Yang, 1952).

However, there exists already a powerful and systematic way to obtain the TBA integral equa-

tions for excited states by solving the functional relations obtained from the Yang-Baxter reg-

ularization (Klumper and Pearce, 1991b; Klumper and Pearce, 1991a; Klumper and Pearce,

1992; Baxter, 1982). Their solutions can be used to fully determine the excitation spec-

trum by exploiting analytic and asymptotic properties. This approach was successfully im-

plemented in solving the tricritical Ising model M(4; 5) with conformal boundary conditions
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(Pearce, Chim and Ahn, 2001; Pearce, Chim and Ahn, 2003). The lattice regularization ap-

proach was also used to solve the Lee-Yang theory (Belavin, Polyakov and Zamolodchikov,

1984; Bajnok, El Deeb and Pearce, 2015; El Deeb, 2015) as well as the M(3, 5) model

(El Deeb, 2017).

In this paper we consider the critical unitary M(5, 6) lattice model with integrable boundary

conditions. We introduce its commuting double row transfer matrix satisfying the universal

functional relations, and we use it in order to study the analytic structure of the transfer matrix

eigenvalues and plot representative zero configurations of sample eigenvalues of the trans-

fer matrix. We finally conclude with a comparative analysis with related unitary models with

integrable boundary conditions.

The paper is structured as follows: in Section 2, the conformal model of the A5 RSOS lattice

model of Forrester-Baxter (Riggs, 1989; Andrews, Baxter and Forrester, 1984; Baxter and

Forrester, 1985) is explored in Regime III with crossing parameter λ = π
6 . It introduces the

commuting double row transfer matrices with integrable boundaries. Section 3 analyzes the

conformal spectra of its transfer matrices. We investigate the analytic structure of the transfer

matrix eigenvalues, classify their excited states in the (m,n) system and plot sample zero

configurations of representative eigenvalues. We then compare the analytic structure and

the zero configuration with corresponding configurations of the related unitary models like the

critical and tricritical Ising models. Section 4 concludes the paper with discussions and future

work.

2 The M(5, 6) Lattice Model

We analyze the Restricted Solid-on-Solid (RSOS) M(5, 6) lattice model defined on a square

lattice built on an A5 Dynkin diagram, with heights differing by ±1 at nearest neighbor sites.

It is one of the ALForrester-Baxter models developed by (Andrews et al., 1984; Baxter and

Forrester, 1985; Feverati, Pearce and Ravanini, 2003), with L = 5 in our case.

The Boltzmann weights of the general AL Forrester-Baxter models are as follows:

W

(

a± 1 a

a a∓ 1

)

= s(λ−u)
s(λ)

W

(

a a± 1

a∓ 1 a

)

=
ga∓1

ga±1

s((a± 1)λ)

s(aλ)

s(u)

s(λ)
(2.1)

W

(

a a± 1

a± 1 a

)

=
s(aλ± u)

s(aλ)

where a = 1, ..., L , while u is the spectral parameter. At criticality, s(u) = sin(u) and corre-

sponds to the conformal massless model. λ is the crossing parameter and it is given by

λ =
(p′ − p)π

p′
(2.2)

where p′ = L+ 1 and p, p′ are coprime integers with p < p′.



The local face weights satisfy the Yang-Baxter equation and this ensures that the model is

integrable. The gauge factors ga are arbitrary and here they are all set to be equal to 1.

The critical Forrester-Baxter models in Regime III in the continuum scaling limit

Regime III: 0 < u < λ, 0 < q < 1 (2.3)

correspond to the minimal models M(p, p′) whose central charge is

c = 1−
6(p − p′)2

pp′
(2.4)

In this paper we consider the M(5, 6) model having λ = π
6 and c = 4

5 . A minimal M(p, p′)

model has
(p−1)(p′−1)

2 scaling fields hence the M(5, 6) has ten independent scaling fields.

Transfer matrices

The local face weights are used to construct the transfer matrices. Since the local face

weights satisfy the Yang-Baxter equations, we can show that they form commuting families

[D(u),D(v)] = 0. This model satisfies the same functional relation satisfied by the tricrit-

ical hard squares, hard hexagon models and the Lee-Yang model and the M(3, 5) model

(Baxter, 1982; Baxter, 1980; Baxter and Pearce, 1982; Baxter and Pearce, 1983; Bajnok et al.,

2015; El Deeb, 2015; El Deeb, 2017) but with spectral parameter λ = π
6 . However, this model,

with its new crossing parameter, has its own analytic structure with three analyticity strips.

From the Yang-Baxter equations, we can show that the double row transfer matrices satisfy the

functional relation given by

D(u)D(u+ λ) = 1 +Y.D(u+ 3λ) (2.5)

where Y in (2.5) is the Z2 height reversal symmetry.

En, the conformal spectrum of energies of the M(5, 6) model can be obtained through finite

size corrections from the logarithm of the double row transfer matrix eigenvalue. The finite size

corrections in the boundary case are given by

− log T (u) = Nfbulk(u) + fboundary(u, ξ) +
2π

N
En sinϑ

where T (u) are the eigenvalues of D(u), N is the number of face weights and

ϑ =
πu

λ
= 6u (2.6)

is the anisotropy angle. fbulk and fboundary are the bulk free energy and the boundary free

energy respectively. N is even in the boundary case.

2.0.1 Boundary weights

Commuting row transfer matrices and triangle boundary conditions that satisfy the left and

right boundary Yang Baxter equations guarantee the integrability of this model. We label the

conformal boundary conditions by the Kac labels (r, s) where 1 ≤ r ≤ 4 and 1 ≤ s ≤ 5. We limit



our study to the (1, 1) boundary, as it is a good representative of the other boundary conditions,

with minor differences in their analytic structures. The (1, 1) triangle boundary weights are

arbitrary and they are given by

KL

(

1

1
2

∣

∣

∣

∣

u

)

=
s(2λ)

s(λ)
, KR

(

2
1

1

∣

∣

∣

∣

u

)

= 1 (2.7)

Other integrable boundary conditions can be constructed by the repeated action of a seam on

the integrable (1, 1) boundary (Behrend and Pearce, 2001), and can be derived automatically.

The fact that the boundary weights satisfy the left and right boundary Yang-Baxter equations

ensures the integrability of the model in presence of those boundaries.

2.0.2 Double row transfer matrix

We construct a family of commuting double row transfer matrices D(u) from the face and

triangle boundary weights defined before. For a lattice of width N , transfer matrix D(u) is

given by

D(u)ba =
∑

c0,..,cN
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(2.8)

It satisfies periodicity D(u + π) = D(u), commutativity [D(u),D(v)] = 0 and the crossing

symmetry property D(u) = D(λ − u). In the general case, D(u) is not symmetric or normal,

but it can be diagonalized because D̃(u) = GD(u) = D̃(u)T is symmetric where the diagonal

matrix G is given by

G
b

a =
N−1
∏

j=1

G(aj , aj+1)δ(aj , bj) with G(a, b) =







s(λ)
s(2λ) , b = 1, 4

1 otherwise
(2.9)

We introduce the normalized transfer matrix

D(u) = Sb(u)
s2(2u− λ)

s(2u+ λ)s(2u− 3λ)

(

s(λ)s(u+ 2λ)

s(u+ λ)s(u+ 3λ)

)N

T(u) (2.10)

In the following analysis we discuss (1, 1) left and right boundary weights corresponding to the

(r, s) = (1, 1) boundary. The eigenvalues of the normalized double row transfer matrix T(u)

satisfy the functional equation

t(u)t(u+ λ) = 1 + t(u+ 3λ) (2.11)



3 Conformal Spectra

In this section, we analyze the complex zero distributions of the eigenvalues of the double row

transfer matrix with emphasis on the behavior of finite excitations above the ground state.
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Figure 1: The zero configuration of the eigenvalue of the transfer matrix corresponding to the

ground state. All the zeros are distributed as 2-strings in the first analyticity strip.

(m,n) systems and zero patterns

This lattice model corresponds to the conformal field theory model with central charge c = 4
5 .

The face weights and the triangle boundary weights are expressed in terms of the trigonometric

functions s(u) = sin(u). We characterize its eigenvalues by the locations and patterns of the

zeros in the complex u− plane. The elements of the unrenormalized transfer matrix are Laurent

polynomials in the variables z = eiu and z−1 = e−iu. The transfer matrices are commuting

families with a common set of u-independent eigenvectors. Consequently, the eigenvalues are

also Laurent polynomials of the same degree. We numerically diagonalize those eigenvalues

and obtain their zeros. They are characterized by the location and the pattern of the zeros in

the complex u-plane that are analyzed in terms of the (m,n) systems.

In the boundary case, it is enough to study the eigenvalue zero distributions on the upper half

plane as the transfer matrix is symmetric under complex conjugation. The zeros form strings

and the excitations are described by their string content in the analyticity strips. In this paper

we only consider the boundary case with (r, s) = (1, 1). There are three different analyticity

strips in the complex u-plane but the third is a subset of the second. They are given by

−π

12
< Re u<π

4 ,
π

3
< Re u<5π

6 ,
5π

12
< Re u<3π

4 (3.1)

In terms of λ, the analyticity strips in the complex u−plane could be written as:

−λ

2
< Re u<3λ

2 , 2λ < Re u<5λ , 5λ
2 < Re u<9λ

2 (3.2)
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Figure 2: A typical configuration of zeros of an eigenvalue of the transfer matrix corresponding

to an excited state. The zeros of the first strip are in green, the second in red, and the third in

blue.

We notice the occurrence of zeros in all analyticity strips. In the first strip we assign those

patterns as “1-strings” and “2-strings” formed by single zeroes and pairs of zeroes respectively.

In the second, only “2-strings” appear while in the third we obtain again “1-strings” and “2-

strings”. The second and the third strips could be treated as one analyticity strip with a pattern

of long and short 2-strings. However, we follow here the general classification of RSOS models

with more than one analyticity strips for unitary M(L,L + 1) models. Figure 1 gives the zero

configuration content for the ground state eigenvalue of the boundary M(5, 6) model while

figures 2 and 3 display sample configurations for eigenvalues corresponding to excited states .
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Figure 3: Another configuration of zeros of an eigenvalue of the transfer matrix corresponding

to an excited state. Here we see the 1-strings of the first analyticity strip in green together with

1-strings and 2-strings of the third analyticity strips in blue.



In the first strip, a 1-string uj =
π
12 + ivj whose real part is π

12 lies in the middle of the analyticity

strip. Each 2-string consists of a pair of zeros whose real parts are at −π
12 and π

4 , with equal

imaginary parts, thus uj = −π
12 + iyj ,

π
4 + iyj . In the second strip, the 2-string lies at uj =

π
3 + iyj ,

5π
6 + iyj with equal imaginary parts and with real parts π

3 and 5π
6 . Finally, the third strip

contains a pattern of a 1-string occurring at uj = 7π
12 + ivj whose real part is 7π

12 and 2-strings

occurring at uj =
5π
12 + iyj ,

3π
4 + iyjwith real parts 5π

12 and 3π
4 .

The string contents are described by (m,n) systems (Berkovich, 1994) . The (1, 1) sector, in

unitary minimal models M(L,L− 1) satisfies the relation:

m+ n =
1

2
(Ne1 +Am) (3.3)

where A is the adjacency matrix of the AL−2 model, e1 = (1, 0, .., 0) , m = (m1,m2, ...,mL−2),

and n = (n1, n2, ..., nL−2).

For the unitary M(5, 6) model, we obtain the relations

m1 + n1 =
N +m2

2
, m2 + n2 =

m1 +m3

2
, m3 + n3 =

m2

2

where m is the number of short 2-strings, n is the number of long 2-strings and N is even.

We can verify that the number of zeros N = 2n1 + 2n2 + 2n3 + m1 +m3 hence the 1-strings

corresponding to the second analyticity strip do not contribute to the zero configuration plot.

In all of the sectors, the 1-string contributes to one zero. In addition, 2-string contributes

two zeroes. Hence, the (m,n) system expresses the conservation of the 2N zeroes in the

periodicity strip. The ground state occurs when all zeros occur as 2-strings in the first sector

solely. The appearance of 1-strings in this sector and all other strings in the other sectors

expresses excited states. The first excited states are expressed by the 1-strings of the first

sector and 2-strings from the second strip. The appearance of zero patterns from the 1-string

and 2-string content of the third strip represents the next higher excited states. Note that

n → N as N → ∞ while mi and n2 and n3 are finite for finite excitations.

Other unitary models Several other unitary models were analyzed including the M(3, 4)

critical Ising model and the M(4, 5) tricritical Ising model. We can notice that the analytic

structure consists of a single strip for the critical Ising model with the real part given by

−π

8
< Re u<3π

8

In terms of the spectral parameter λ,

−λ

2
< Re u<3λ

2

and symmetric with respect to Re u = 3π
8 with λ = π

4 .
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Figure 4: A configuration of zeros of an eigenvalue of the transfer matrix corresponding to an

excited state of the Ising model.

The tricritical Ising model consists of two analyticity strips given by

−π

10
< Re u<3π

10 ,
2π

5
< Re u<4π

5

corresponding to
−λ

2
< Re u<3λ

2 , 2λ < Re u<4λ

with λ = π
5 . Sample configurations of zeroes of eigenvalues representing excited states of

those models are given in figure 4 and figure 5.

In this respect, the M(5, 6) model has a similar structure to those unitary models, with three

analyticity strips as discussed before. This is a general feature of the M(L,L + 1) unitary

models with λ = π
L+1 with L− 2 analyiticty strips.
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Figure 5: A configuration of zeros of an eigenvalue of the transfer matrix corresponding to an

excited state of the tricritical Ising model. Here we see the 1-strings of the first analyticity strip

in green together with 1-strings and 2-strings of the second analyticity strips in red.



4 Conclusion

In this paper, the M(5, 6) relativistic integrable theory was partially analyzed from the lattice

point of view, in the (r = 1, s = 1) sector. We described the patterns of zeros of the cor-

responding double row transfer matrix eigenvalues and their (m,n) systems. We adopted a

similar approach to analyze this model as was used before in (Bajnok et al., 2015; El Deeb,

2015; El Deeb, 2017). Other sectors of the boundary case are similar in their patterns of zeros.

The only difference is that some analytic strips would contain a fixed zeroes at their centers.

Future work should extend the scope and exploit the lattice description of the integrable scatter-

ing theory in order to fully solve the TBA equations of the system and determine the spectrum

of the model. The massive M(3, 5) and M(5, 6) models must be studied in following papers.

It also remains essential to study the same models using the bootstrap methods.
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