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Abstract: We study the holographic entanglement entropy in a (d+ 1)-dimensional boundary quantum

field theory at both the zero and finite temperature. The phase diagrams for the holographic entanglement

entropy at various temperatures are obtained by solving the entangled surfaces in the different homology.

We also verify the Araki-Lieb inequality and illustrate the entanglement plateau.
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1 Introduction

Entanglement is a pure quantum mechanics phenomenon inherent in quantum states. It can be measured

quantitatively by the entanglement entropy associated with a specified entangled region A located on a

Cauchy slice of the spacetime by integrating out the degrees of freedom in its complementary region Ac. It

has been shown that the leading divergence term of the entanglement entropy is proportional to the area

of the entangling boundary, i.e. the boundary of the entangled region A. Furthermore, the finite part of

the entanglement entropy contains non-trivial information about the quantum states. It is well known that

the entanglement entropy of a given region and its complement are the same, SA = SAc , for a system with

only pure states. However, this is not true anymore for a system with finite temperature. The difference

δSA = SA − SAc has been conjectured to satisfy the Araki-Lieb inequality |δSA| ≤ SA∪Ac [1].

Calculating entanglement entropy is usually a not easy task in QFT. Remarkably, by AdS/CFT corre-

spondence [2–4], the holographic entanglement entropy (HEE) was proposed to be the area of the minimal

entangled surface in [5–7] and was justified later on [8–11]. This prescription gives a very simple geometric

picture to compute the HEE and has been widely studied for the various holographic setups, for a review

see [12]. It was shown that the Araki-Lieb inequality is due to the homology constraint for the entan-

gled surface [13–15]. For certain choices of the entangled regions there are disconnected minimal surfaces

satisfying the homology constraint that leads to the famous phenomenon of the entanglement plateau [16].

On the other hand, BQFT is a quantum field theory defined on a manifold with a boundary where

some suitable boundary conditions are imposed. It has important applications in the physical systems

with boundaries. For examples, string theory with various branes and some condensed matter systems
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including Hall effect, chiral magnetic effect, topology insulator etc. Several years ago, holographic BQFT

was proposed by extending the manifold where BQFT is defined to a one-dimensional higher asymptotically

AdS space, i.e. the bulk manifold, with a geometric boundary [17, 18]. The key point of holographic BQFT

is thus to determine the shape of the geometric boundary in the bulk. For the simple shapes with high

symmetry such as the case of a disk or half plane, many elegant results for BQFT have been obtained in

[17–19]. Some interesting developments of BQFT can be found in [18–27].

Since both the entanglement entropy and BQFT can be studied holographically, it is natural to investi-

gate the HEE in holographic BQFT. The HEE in pure AdS bulk spacetime has been studied in [28, 29, 32].

It was found that the proper boundary condition gives the orthogonal condition that requires the minimal

entangled surface must be normal to the geometric boundaries if they intersect. The authors in [28, 29] also

found an interesting phenomenon that the entanglement entropy depends on the distance to the boundary

and carries a phase transition. In addition, the HEE in the (2 + 1)-dimensional bulk manifold, such as

AdS3 and BTZ black hole, has been considered in [30, 31].

In this work, we study the HEE in a (d+1)-dimensional BQFT at both the zero and finite temperatures.

In the case of the zero temperature, we consider the (d+ 2)-dimensional pure AdS spacetime as the bulk

manifold. We find three phases for the HEE depending on the size and the location of the entangled

region A. Our result is consistent with the conclusion in [28, 29]. In the case of the finite temperature,

we consider the (d+ 2)-dimensional Schwazschild-AdS black hole as the bulk manifold. The similar three

phases are found for the HEE. However, due to the presence of the black hole horizon, the HEE for the

entangled region A and its complementary region Ac are different. For BQFT at the finite temperature,

entanglement entropy is mixed with the thermal entropy given by the Bekenstein-Hawking entropy SBH .

We show that the Araki-Lieb inequality |δSA| ≤ SBH always holds by a directly calculation. In addition,

we obtain the entanglement plateau for various sizes and locations of the entangled region A. Because

there is a new phase due to the geometric boundary, the entanglement plateau enjoys much richer structure

in QFT with boundaries.

The paper is organized as follows. In section II, we briefly review the holographic BQFT and present

the solutions which we will use in this work. The HEE in BQFT is calculated in section III. We discuss

the phase structure of the HEE at both the zero and finite temperatures. We also verify the Araki-Lieb

inequality and obtain the entanglement plateau. We summarize our results in Section IV.

2 Holographic Boundary Quantum Field Theory

We consider a (d+ 2)-dimensional bulk manifold M which has a (d+ 1)-dimensional conformal boundary

∂M as shown in the Fig.1. The bulk manifold M is either a pure AdS spacetime, as in Fig.1(a), or an

asymptotic AdS black hole with an event horizon, as in Fig.1(b). In addition, there is a (d+1)-dimensional

hypersurface Q in M that intersects the conformal boundary ∂M at a d-dimensional hypersurface P. A

BQFT is defined on ∂M within the boundary P. The hypersurface Q could be considered as the extension

– 2 –



M

@M P

Q

(a) Pure AdS spacetime

M

@M P

M

@M P

Event Horizon

Q

(b) AdS black hole

Figure 1. Spacetime setup for the holographic BQFT. (a) The bulk manifold is a pure AdS spacetime. (b) The

bulk manifold is an asymptotic AdS black hole with a horizon.

of the boundary P from ∂M into the bulk M and represents a geometric boundary of the bulk. This is

our holographic setup for a BQFT living in ∂M with a boundary P.

The total action of the system is the sum of the actions of the various geometric objects and their

boundary terms,

S = SM + SGH + SQ + SP , (2.1)

where

SM =

∫
M

√
−g(R− 2ΛM), (2.2)

SQ =

∫
Q

√
−h(RQ − 2ΛQ + 2K), (2.3)

S∂M = 2

∫
∂M

√
−γK ′, (2.4)

SP = 2

∫
P

√
−σθ, (2.5)

and we have taken 16πG = 1. In the total action (2.1), SM is the action of the bulk manifold M with R

and ΛM being the intrinsic Ricci curvature and the cosmological constant of M. SQ is the action of the

geometric boundary Q with RQ, ΛQ and K being the intrinsic Ricci curvature, the cosmological constant

and the extrinsic curvatures of Q embedded in M. S∂M is the action of the conformal boundary of ∂M
with K ′ being the extrinsic curvatures of ∂M embedded inM. We remark that the terms of K and K ′ are

the Gibbons-Hawking boundary terms for the boundaries Q and ∂M of the bulk manifoldM, respectively.

Finally, SP is the common boundary term of Q and ∂M with θ = cos−1 (nQ · nM) being the supplementary

angle between Q and ∂M, which makes a well-defined variational principle on P. Furthermore, gab denotes
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the metric of the bulk manifold M, hab = gab − nQa nQb and γab = gab − nMa nMb denote the induced metric

of the boundaries Q and ∂M, σab denotes the metric of P. Here we have defined the unit normal vectors

of Q and ∂M as nQ and nM.

Varying SM with gab gives the equation of motion of the bulk M,

0 = Rab −
1

2
Rgab + ΛMgab. (2.6)

Varying SQ with hab gives the equation of motion of the geometric boundary Q,

RQab + 2Kab −
(

1

2
RQ +K − ΛQ

)
hab = 0, (2.7)

which is just the Neumann boundary condition originally proposed by Takayanagi in [17] and lately gen-

eralized by Chu et al. in [29] by adding the intrinsic curvature RQ.

The crucial problem in the construction of the holographic BQFT is to determine the (d + 1)-

dimensional geometric boundary Q that satisfies the boundary condition (2.7). However, the boundary

condition (2.7) is too strong to have a solution even in the pure AdS spacetime because there are more

constraint equations than the degrees of freedom. In [28, 29], the authors proposed the following mixed

boundary condition,

(d− 1) (RQ + 2K)− 2 (d+ 1) ΛQ = 0. (2.8)

Although it is still difficult to obtain a general solution of Q with the mixed boundary condition (2.8),

it is possible to find solutions in some special cases. A class of solutions satisfying the mixed boundary

condition (2.8) have been obtained in [28, 29].

In this work, instead of constructing more solutions of the geometric boundary Q, our purpose is to

study the boundary effect for the HEE in BQFT. We will thus use an almost trivial solution of Q that is

perpendicular to the conformal boundary ∂M with a simple embedding. Nevertheless, we will find rich

phase structures of the HEE in our simple geometry.

We present the solutions which will be used to study the HEE in detail in the following.

2.1 Pure AdS

To study a (d+ 1)-dimensional BQFT at the vanishing temperature, we consider the bulk manifold M as

the (d+ 2)-dimensional pure AdS spacetime AdSd+2 with the metric,

ds2M =
l2AdS

z2

(
−dt2 + dz2 +

d∑
i=1

dx2i

)
, (2.9)

where lAdS is the AdS radius. The conformal boundary of AdSd+2 is a (d + 1)-dimensional Minkowski

spacetime located at z = 0.

We propose a simple solution of the geometric boundary Q as a (d + 1)-dimensional hepersurface

embedded in the bulk manifold as,

ds2Q =
l2AdS

z2

(
−dt2 + dz2 +

d∑
i=2

dx2i

)
, (2.10)
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with a simple embedding x1 = constant. The intrinsic curvature, the extrinsic curvature and the cosmo-

logical constant on Q can be calculated as,

RQ = −d(d+ 1)

l2AdS

, Kab = 0, ΛQ = −d(d− 1)

2l2AdS

. (2.11)

It is easy to verify that the mixed boundary condition (2.8) is satisfied.

This simple solution is a special case of the solutions constructed in [28, 29] with θ = 0, i.e. the

geometric boundary Q is perpendicular to ∂M at their intersection P.

2.2 Schwarzschild-AdS Black Hole

To study the (d+ 1)-dimensional BQFT at a finite temperature, we consider the bulk manifold M as the

(d+ 2)-dimensional Schwarzschild-AdS black hole with the metric,

ds2M =
l2AdS

z2

(
−g (z) dt2 +

dz2

g (z)
+

d∑
i=1

dx2i

)
, (2.12)

with

g (z) = 1− zd+1

zd+1
H

, (2.13)

The Hawking temperature and the Bekenstein-Hawking entropy density of the (d+2)-dimensional Schwarzschild-

AdS black hole are

T =
d+ 1

4πzH
, SBH =

ldAdSL
d

4zdH
. (2.14)

Similar to the pure AdS case, we propose a solution of the geometric boundary Q as a (d+ 1)-dimensional

hepersurface embedded in the bulk manifold as,

ds2Q =
l2AdS

z2

(
−g (z) dt2 +

dz2

g (z)
+

d∑
i=2

dx2i

)
, (2.15)

with a simple embedding x1 = constant. The intrinsic curvature, the extrinsic curvature and the cosmo-

logical constant on Q are the same as the pure AdS case,

RQ = −d(d+ 1)

l2AdS

, Kab = 0, ΛQ = −d(d− 1)

2l2AdS

, (2.16)

which satisfy the mixed boundary condition (2.8).

3 Holographic Entanglement Entropy

Without the geometric boundary Q, the prescription to compute the entanglement entropy holographically

for the static situations has been addressed by Ryu and Takayanagi (RT) in [5, 6]. It was later generalized

in [7] to general states including arbitrary time dependence. In this work, we focus on the static situation.
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Figure 2. Spacetime setup for the holographic BQFT with an entangled region A. The minimal surface EA could

end not only on the conformal boundary ∂M but also on the geometric boundary Q. (a) The bulk manifold is a

pure AdS spacetime. The minimal surface for A and Ac have the same homology. (b) The bulk manifold is an

asymptotically AdS black hole. The minimal surface for A and Ac have the different homologies due to the black

hole horizon.

We consider a spatial region A with a boundary ∂A lying on a Cauchy slice Σ = A+Ac ⊂ ∂M, with

Ac the complementary part of A, as shown in Fig.2(a). The HEE is given by the RT formula [5, 6],

SA = min
X

Area (EA)

4G
(d+2)
N

, X =
{
EA
∣∣∣ EA|∂M = ∂A; ∃RA ⊂M, ∂RA = EA ∪ A

}
, (3.1)

where EA is a codimension-2 minimal surface anchored on ∂A in the (d + 2)-dimensional bulk spacetime

M. The minimal surface EA is required to satisfy a homology constraint: EA is smoothly retractable

to the boundary region A. More precisely, there exists a codimension-1 region RA ⊂ M, the so called

entanglement wedge, which is bounded by the minimal surface EA and the entangled region A on the

conformal boundary ∂M.

In the presence of the geometric boundary Q, the minimal surface EA could end not only on the

conformal boundary ∂M but also on the geometric boundary Q as showed in [28, 29]. We thus propose

the following formula for the HEE in BQFT,

SAEE = min
X

Area (EA)

4G
(d+2)
N

, X =
{
EA
∣∣∣ EA|∂M = ∂A, EA|Q = PA; ∃RA ⊂M, ∂RA = EA ∪ A ∪QA

}
, (3.2)

where PA divides the geometric boundary Q into two parts, QA and QAc , with QA having the same

homology with A and QAc having the same homology with Ac, as shown in Fig.2. Requiring the boundary

condition (2.8) to be smooth, EA should be orthogonal to Q when they intersect as showed in [28, 29].

To be concrete, in this work, we consider a bulk spacetimeM with two boundariesQL,R which intersect

the conformal boundary ∂M at P = ±l/2 perpendicularly. We choose the region A ⊂ ∂M as an infinite
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long strip,

x1 ∈
[
x− a

2
, x+

a

2

]
, xi ∈ Rd−1 for i = 2, · · · d, (3.3)

which preserves (d− 1)-dimensional translation invariance in the directions xi for i = 2, · · · d.

In the static gauge, we can write down the ansatz for the minimal surface EA,

z = z (x1) , z
(
x± a

2

)
= 0, z (x) = z0, z

′ (x) = 0, (3.4)

where x1 = x is the turning point of the minimal surface EA.

For a general (d+ 2)-dimensional bulk metric,

ds2 = −gtt (z) dt2 +

d∑
i=1

gii (z) dx2i + gzz (z) dz2, i = 1, · · · d, (3.5)

the size a and the HEE SAEE of the entangled region A can be calculated as

a = 2z0

∫ 1

0
dv

[
g11 (z0v)

gzz (z0v)

(
g̃2 (z0v)

g̃2 (z0)
− 1

)]−1/2
, (3.6)

SAEE =
ldAdSL

d−1

2G
(d+2)
N

∫ 1

0
dv z0g̃ (z0v)

[
g11 (z0v)

gzz (z0v)

(
1− g̃2 (z0)

g̃2 (z0v)

)]−1/2
, (3.7)

where v = z/z0 and

g̃ (z) =

√√√√ d∏
i=1

gii (z), (3.8)

and L is the length of the directions in which the translation invariance is preserved,∫
Rd−1

dd−1x = Ld−1. (3.9)

Using Eqs.(3.6) and (3.7), the HEE can be solved in term of the size a as SAEE(a) in principle.

3.1 Pure AdS Spacetime

We first consider the bulk spacetimeM as a (d+2)-dimensional pure AdS spacetime with the metric (2.9),

and choose the geometric boundary Q as a (d+ 1)-dimensional hepersurface with the metric (2.10). This

is dual to BQFT at the zero temperature.

In the case of pure AdS spacetime, the size a can be integrated to obtain

a = 2z0

∫ 1

0

vddv√
1− v2d

= 2z0
√
π

Γ
(
d+1
2d

)
Γ
(

1
2d

) . (3.10)

The HEE is divergent near the boundary at v → 0. We thus need to regulate the HEE by putting a small

cut-off ε� 1. After the regulation, the HEE can be obtained as

SAEE =
ldAdS

2 (d− 1)G
(d+2)
N

[(
L

ε

)d−1
−
(
L

z0

)d a

2L

]
, (3.11)
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(a) Sunset (b) Sky (c) Rainbow

Figure 3. The minimal surfaces in the pure AdS bulk spacetime. (a) the entanglement wedge RA has the shape

of the sunset when the entangled region A is very small. (b) the entanglement wedge RA has the shape of the sky

when the entangled region A is very large. (c) the entanglement wedge RA has the shape of the rainbow when the

entangled region A is very closed to the boundary.

where the divergent term is proportional to the boundary of the entangled region A, i.e. SAEE ∼ Ld−1 ∼ ∂A,

as expected. The remaining term is finite.

In the presence of the geometric boundaries QL,R, the minimal surface EA could anchor on QL,R in

addition to the conformal boundary ∂M. In this work, we only consider the entangled region A being a

simple connected region. Under this consideration, there are three types of the minimal surfaces which

satisfy the homology constraint, as shown in Fig.3. If the minimal surface EA is connected and only anchors

on the conformal boundary ∂M, the entanglement wedge RA takes the shape of the sunset as shown in

Fig.3(a). If the minimal surface EA is disconnected and each part anchors on the different geometric

boundaries QL,R in addition to the conformal boundary ∂M, the entanglement wedge RA takes the shape

of the sky as shown in Fig.3(b). Finally, if the minimal surface EA is disconnected and both part anchor

on the same geometric boundary in addition to ∂M, the entanglement wedge RA takes the shape of the

rainbow as shown in Fig.3(c). The HEE corresponding to the different minimal surfaces can be calculated

as

SAsunset = SAEE(a), (3.12)

SAsky =
1

2
SAEE(l − a+ 2|x|) +

1

2
SAEE(l − a− 2|x|), (3.13)

SArainbow =
1

2
SAEE(l + a− 2|x|) +

1

2
SAEE(l − a− 2|x|). (3.14)

Although each of the HEE in the above three cases is the local minimum, the global minimum depends on

the size a and the location x of the entangled region A.

For a small enough A, the entanglement wedge RA takes the shape of the sunset. While for a large

enough A, the entanglement wedge RA takes the shape of the sky. If the location of the region A is very

close to one of the geometric boundaries QL,R, the minimal surface EA would be inclined to the boundary

and break into two parts, the entanglement wedge RA will take the shape of the rainbow as shown in

Fig.3(c).
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Figure 4. Phase Diagram of the holographic entanglement entropy in the pure AdS bulk spacetime. Different phases

are marked with the different colors.

The HEE transfers among the three phases as the size a and the location x of the entangled region A
varying, which correspond to the quantum phase transitions at the zero temperature in the dual BQFT.

The phase diagram is shown in Fig.4 (We set l = 1/2 in the figures of this paper). At the middle, x = 0,

there is a critical value a0 for the size of the entangled region A. For a < a0, the entanglement wedge

RA takes the shape of the sunset, while for a > a0, the minimal surface EA breaks into two parts and

the entanglement wedge RA takes the shape of the sky. When x is away from the middle, the critical

value decreases until it reaches the triple critical points at (±xt, at) where a new phase, in which the

entanglement wedge RA takes the shape of the rainbow, emerges due to the effect of the boundary Q.

When |x| is beyond the critical points at (±xc, ac), the sky phase disappears, the sunset phase and the

rainbow phase compete until x reaches the boundaries at x = ±l/2.

In the pure AdS case, it is easy to see that, for a entangled region A, and its complementary Ac, the

associated minimal surfaces EA and EAc have the same homology. Therefore, A and Ac share the same

minimal surface EA = EAc , as well as the same HEE SAEE = SA
c

EE .

3.2 Schwarzschild-AdS Black Hole

We next consider the bulk spacetime M as a (d + 2)-dimensional Schwarzschild-AdS spacetime with the

metric (2.12), and choose the geometric boundary Q as a (d + 1)-dimensional hypersurface embeded in

M with the metric (2.15). This is dual to BQFT at the finite temperature. The temperature in BQFT

is identified with the Hawking temperature of the black hole by the holographic correspondence. The

temperature and the entropy density of the black hole were given in Eq. (2.14).

In the case of AdS black hole spacetime, the size a of the entangled region A can be expressed as the
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following integral

a = 2z0

∫ 1

0

vddv√(
1− (bv)d+1

)
(1− v2d)

, (3.15)

where we have defined the parameter b = z0/zH , which measures how close the minimal surface EA is from

the horizon.

Similar to the pure AdS case, the HEE is divergent near the boundary at v → 0 and we need to

regulate it by putting a small cut-off ε. After the regulation, the HEE can be obtained as

SEE =
ldAdS

2 (d− 1)G
(d+2)
N

(
L

ε

)d−1
− 1

d− 1

 a

bd
SBH

L

− bz0
∫ 1

0

(d− 3) v√(
1− (bv)d+1

)
(1− v2d)

dv − bz0
∫ 1

0

(d+ 3) v2d+1√(
1− (bv)d+1

)
(1− v2d)

dv

 , (3.16)

where the first term is divergent and is proportional to the boundary of the region A as the same as in the

pure AdS case. The remaining terms in the square brackets are finite.

In the small size limit a→ 0, the turning point z0 → 0 as well, so that the the parameter b = z0/zH → 0.

The HEE thus reduces to

SEE '
ldAdS

2 (d− 1)G
(d+2)
N

(
L

ε

)d−1
− a

(d− 1) bd
SBH

L

=
ldAdS

2 (d− 1)G
(d+2)
N

[(
L

ε

)d−1
−
(
L

z0

)d a

2L

]
, (3.17)

which is exact the same as in the pure AdS case as it should be. While for a finite size a, the HEE in the

black hole case dramatically deviates from that in the pure AdS case.

In the case of the black hole spacetime, the associated minimal surfaces EA and EAc for the entangled

region A and its complementary Ac have different homology due to the presence of the black hole horizon,

so that the HEE SAEE for a region A is generically not the same as the HEE SA
c

EE for its complementary

Ac. This is the crucial difference between the cases of the AdS black hole and the pure AdS spacetime.

As in the pure AdS case, there are three types of the minimal surfaces depending on the size a and

the location x of the region A, and similarly for its complementary Ac, as shown in Fig.5. The HEE

corresponding to the different minimal surfaces EA can be calculated as

SAsunset = SAEE(a), (3.18)

SAsky =
1

2
SAEE(l − a+ 2|x|) +

1

2
SAEE(l − a− 2|x|) + SBH , (3.19)

SArainbow =
1

2
SAEE(l + a− 2|x|) +

1

2
SAEE(l − a− 2|x|). (3.20)
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(a) Sunset (b) Sky (c) Rainbow

(d) Reversed-sunset (e) Reversed-sky (f) Reversed-rainbow

Figure 5. The minimal surfaces in the asymptotically AdS black hole bulk spacetime. The thick black line at the

top indicates the black hole horizon. (a/d) the entanglement wedge RA/RAc has the shape of the sunset/reversed-

sunset when the entangled region A is very small. (b/e) the entanglement wedge RA/RAc has the shape of the

sky/reversed-sky when the entangled region A is very large. (c/f) the entanglement wedge RA/RAc has the shape

of the rainbow/reversed-rainbow when the entangled region A is very closed to the boundary.

The HEE corresponding to the minimal surfaces EAc can be calculated as

SA
c

R−sunset = SAEE(a) + SBH , (3.21)

SA
c

R−sky =
1

2
SAEE(l − a+ 2|x|) +

1

2
SAEE(l − a− 2|x|), (3.22)

SA
c

R−rainbow =
1

2
SAEE(l + a− 2|x|) +

1

2
SAEE(l − a− 2|x|) + SBH . (3.23)

For a small enough A, hence the large enough Ac, the minimal surface EA only anchors on ∂M, and

the entanglement wedge RA takes the shape of the sunset, similar to the case of the pure AdS; while the

minimal surface EAc includes both EA and the black hole horizon, and the entanglement wedge RAc takes

the shape of the reversed-sunset, as shown in Fig.5(a,d). For a large enough A, hence the small enough Ac,

the minimal surface EA breaks into two parts plus the horizon and the entanglement wedge RA takes the

shape of the sky; while the minimal surface EAc is EA minus the horizon, and the entanglement wedge RAc

takes the shape of the reversed-sky, as shown in Fig.5(b,e). When the location of the entangled region A is

very close to one of the geometric boundaries, the minimal surface EA would be inclined to the boundary

and the entanglement wedge RA takes the shape of the rainbow; while the minimal surface EAc is EA
plus the horizon and the entanglement wedge RAc takes the shape of the reversed-rainbow as shown in
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Figure 6. Phase Diagram of the holographic entanglement entropy SA
EE for a entangled region A in the

Schwarzschild-AdS blackhole bulk spacetime with the horizon zH = 1.5.

Fig.5(c,f). However, the positions of the phase transitions among the three phases are usually different for

A and Ac, that makes the full phase structure for A and Ac rather complicated.

The HEE transfers among the different phases corresponding to the phase transitions at the finite

temperature in the dual BQFT. These phase transitions are the mixture of the quantum phase transition

and the thermal phase transition.

Fig.6 shows the phase diagram of the HEE for the entangled region A at the horizon zH = 1.5, i.e.

at the temperature T = 0.212 in the dual BQFT. At the middle, x = 0, there is a critical value a0 for

the size of the region A. For a < a0, the entanglement wedge RA takes the shape of the sunset, while

for a > a0, EA breaks into two parts plus the horizon and the entanglement wedge RA takes the shape of

the sky. When x is away from the center at x = 0, the critical value decreases until it reaches the triple

critical points at (±xt, at) where a new phase, in which the entanglement wedge RA takes the shape of the

rainbow, emerges due to the effect of the boundary Q. When |x| is beyond the critical points at (±xc, ac),
the sky phase disappears, the sunset phase and the rainbow phase compete until x reaches the boundaries

at x = ±l/2.

The phase diagram of the HEE for the region A in the black hole case has the similar structure

as which in the pure AdS case, but with different critical points (±xt, at) and (±xc, ac). Fig.7(a,b,c,d)

shows the critical points and the phase boundaries in the phase diagrams of the HEE SAEE at the different

temperatures. In the low temperature limit, i.e. the large zH , the phase diagram in the black hole case is

asymptotic to the phase diagram in the pure AdS case as expected. While in the high temperature limit,

i.e. the small zH , both the sky and the rainbow phases shrink to zero, only the sunset phase survives.

The behaviors of the HEE in these two limits are easy to understand from the viewpoint of the

holographic principle. In the low temperature limit, the horizon is far away from the conformal boundary
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(a) zH = 0.6 (b) zH = 1 (c) zH = 2 (d) zH = 9

(e) zH = 0.6 (f) zH = 1 (g) zH = 2 (h) zH = 9

Figure 7. The phase diagrams of the holographic entanglement entropy in the Schwarzschild-AdS black hole

with different horizons. i.e. different temperatures. The critical points (±xt, at) and (±xc, ac) change with the

temperatures. (a,b,c,d) The holographic entanglement entropy SA
EE for the entangled region A. (e,f,g,h) The

holographic entanglement entropy SAc

EE for its supplementary region Ac. For the large horizon or low temperature,

the phase diagrams of SA
EE and SAc

EE approach to each other and become the same as the phase diagram in the pure

AdS bulk spacetime.

∂M at z = 0 where the BQFT lives, so that the horizon hardly affects the shape of the minimal surface.

In addition, the Bekenstein-Hawking entropy density in Eq.(2.14) approaches to zero in this limit and can

be neglected. Therefore, the system in the low temperature limit is the same as that in the pure AdS

spacetime.

On the other hand, in the high temperature limit, the horizon is very close to the conformal boundary

so that the rainbow phase is impossible. In addition, the Bekenstein-Hawking entropy density is divergent

in this limit so that the sky phase, which includes the horizon, is disfavored. Therefore, only the sunset

phase exists in the high temperature limit.

The HEE of Ac has the similar behavior with the critical points (±x̃t, ãt) and (±x̃c, ãc). The phase

diagram for the HEE of Ac is shown in Fig.8. At the middle x = 0, there is a critical value ã0. For a < ã0,

the entanglement wedge RAc takes the shape of the reversed-sunset; while for a > ã0, EAc breaks into two

parts plus the horizon and the entanglement wedge RAc takes the shape of the reversed-sky. When x is

away from the middle at x = 0, the critical value decreases until it reaches the triple critical points at

(±x̃t, ãt) where a new phase, in which the entanglement wedgeRAc takes the shape of the reversed-rainbow,

– 13 –



Figure 8. Phase Diagram of the holographic entanglement entropy SAc

EE for a entangled region A in the

Schwarzschild-AdS blackhole bulk spacetime with the horizon zH = 1.5.

emerges due to the effect of the boundary Q. When |x| is beyond another critical points at (±x̃c, ãc), the

reversed-sky phase disappears, and the reversed-sunset phase and the reversed-rainbow phase compete

until x reaches the boundaries at x = ±l/2.

However, the critical points (±x̃t, ãt) and (±x̃c, ãc) for Ac shift with the temperature in the opposite

way of (±xt, at) and (±xc, ac) by a similar argument for A. In the low temperature limit with zH →∞, the

system is the same as that in the pure AdS spacetime. While in the high temperature limit with zH → 0,

only the reversed-sky phase exists. The critical points and the phase boundaries in the phase diagrams of

the HEE SA
c

EE at the different temperatures are shown in Fig.7(e,f,g,h).

3.3 Entanglement Plateau

It was conjectured that the HEE satisfies the Araki-Lieb inequality∣∣∆SAEE

∣∣ =
∣∣SAEE − SA

c

EE

∣∣ ≤ SBH , (3.24)

in the holographic BQFT. To show that, we explore the HEE for A and Ac in more details by plotting

their phase diagrams together in the Fig.9. In the phase diagram, there are five zones as marked in the

plot. The associated phase in each zone is listed in the Table 1.

We see that
∣∣∆SAEE

∣∣ = SBH for the zones I, II and V. This induces the well known entanglement

plateau. ∆SAEE at different location x is plotted in Fig.10(b). For |x| ≤ xt, by increasing the size a, ∆SAEE

goes through the zones I-III-V and plots the typical entanglement plateau. For xt ≤ |x| ≤ xc, by increasing

the size a, ∆SAEE goes through the zones I-III–IV-V and plots the plateau with a defected corner. For

xc ≤ |x| ≤ x̃t, by increasing the size a, ∆SAEE goes through the zones I-III–IV with the upper plateau

disappearing. For x̃t ≤ |x| ≤ x̃c, by increasing the size a, ∆SAEE goes through the zones I-II-IV. Finally, for
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.

Figure 9. The phase diagrams of the holographic entanglement entropy SA
EE and SAc

EE for the the entangled region

A and its complementary Ac are combined together. There are five zones, marked with different colors, that are

associated to the different phases. The vertical lines represent the different phase transition tracks at the different

location x = 0, 0.13, 0.23, 0.30, 0.40

Zone A Ac ∆SAEE

I Sunset Reversed-sunset −SBH

II Rainbow Reversed-rainbow −SBH

III Sunset Reversed-sky (−SBH , SBH)

IV Rainbow Reversed-sky (−SBH , SBH)

V Sky Reversed-sky +SBH

Table 1. The shapes of RA and RAc in the different zones of the phase diagram in Fig.9. The values of ∆SA
EE =

SA
EE − SAc

EE for different zones are listed at the right column of the table.

x̃c ≤ |x| ≤ l/2, by increasing the size a, ∆SAEE goes through the zones I-II and always takes the constant

value −SBH . The 3d graph of the entanglement plateau is plotted in Fig.10(a).

4 Summary

In this paper, we studied the HEE in a (d + 1)-dimensional holographic BQFT. We considered two sim-

ple solutions for the geometric boundary Q embedded in the (d + 2)-dimensional bulk manifolds in the

holographic BQFT. The AdSd+2 bulk manifold corresponds to BQFT at the zero temperature, and the

(d + 2)-dimensional Schwarzschild-AdS black hole bulk manifold corresponds to BQFT at the finite tem-

perature.
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(a) 3d entanglement plateau (b) Entanglement plateau at different x

Figure 10. (a) The 3d plot of the holographic entanglement plateau v.s the location x and the size a of the entangled

region A. The different phase transition tracks at the different location x = 0, 0.13, 0.23, 0.30, 0.40 are outlined and

plotted in (b).

We generalized the Ryu and Takayanagi formula by including the geometric boundaries and calculated

the HEE in both cases. For the pure AdS spacetime, we found three phases depending on the size and the

location of the entangled region A. We obtained the phase diagram of the HEE in the holographic BQFT.

It is easy to see that the HEE SAEE for a region A is always the same as the HEE SA
c

EE for its complementary

Ac. For the Schwarzschild-AdS black hole spacetime, we found that the HEE SAEE is generically not the

same as the HEE SA
c

EE due to the homology constraint. Three new phases were found for the region Ac. We

obtained the phase diagrams of the HEE for both A and Ac and showed that both of them are asymptotic

to that in the pure AdS case in the low temperature limit as expected.

Furthermore, we verified the Araki-Lieb inequality
∣∣∆SAEE

∣∣ =
∣∣SAEE − SA

c

EE

∣∣ ≤ SBH and obtained the

entanglement plateau by combining the phase diagrams of the HEE for both A and Ac together. We

plotted the 3d entanglement plateau v.s the size a and the location x of the entangled region A.
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