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A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE
ASSOCIATED WITH THE IKEDA LIFT OF HALF-INTEGRAL
WEIGHT

SHUICHI HAYASHIDA

ABSTRACT. In this article we obtain an explicit formula for certain Rankin-Selberg
type Dirichlet series associated to certain Siegel cusp forms of half-integral weight.
Here these Siegel cusp forms of half-integral weight are obtained from the composi-
tion of the Ikeda lift and the Eichler-Zagier-Ibukiyama correspondence. The integral
weight version of the main theorem had been obtained by Katsurada and Kawamura.
The result of the integral weight case is a product of L-function and Riemann zeta
functions, while half-integral weight case is a infinite summation over negative fun-
damental discriminants with certain infinite products. To calculate explicit formula
of such Rankin-Selberg type Dirichlet series, we use a generalized Maass relation and
adjoint maps of index-shift maps of Jacobi forms.

1. INTRODUCTION

The purpose of this paper is to show a certain formula for Dirichlet series of Rankin-
Selberg type of certain Siegel cusp forms of half-integral weight.

Let 2n and k be positive even integers such that & > 2n 4+ 1. Let g be a cusp
form of weight &k — n + % in the Kohnen plus-space. Let f be a normalized Hecke
eigenform of elliptic cusp form of weight 2k — 2n which corresponds to g by the Shimura
correspondence. Let F' be the Siegel cusp form of weight k of degree 2n which is the
Ikeda lift (the Duke-Imamoglu-Ikeda lift) of ¢g. In [K-K 08] Katsurada and Kawamura
obtained the identity

(2~ 2kt am) 30 NN s — ok 1)~ k4 20) (s ),
N=1

where ¢, denotes the N-th Fourier-Jacobi coefficient of F' and (¢, 1%y) denotes the
Petersson inner product of ¢. Here ((s) denotes the Riemann zeta function and L(s, f)
denotes the usual L-function of f. In the case of n = 1 the above formula had been
obtained by Kohnen and Skoruppa in [K-S 89].

Let GG be the Siegel cusp form of weight k:—% of degree 2n—1 which is obtained from the
1st Fourier-Jacobi coefficient 1) by the Eichler-Zagier-Ibukiyama correspondence. Here
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the Eichler-Zagier-Ibukiyama correspondence is the linear isomorphism between Jacobi
forms of index 1 and the generalized plus-space of Siegel modular forms (see [Ib 92]).
The form G belongs to the generalized plus-space. We remark that if n = 1, then G = g¢.
Let ¢,,, be the m-th Fourier-Jacobi coefficient of G for any natural number m. (See §)).
We remark that ¢, is a Jacobi cusp form of weight k& — % of index m of degree 2n — 2
and ¢, is identically 0 unless —m = 0,1 mod 4. We denote by (¢, ¢,) the Petersson
inner product of ¢,,. (See §2.6] for the definition). If n = 1, then ¢, is the m-th Fourier
coefficient of g and we put (G, ¢r) 1= |dp|? in this case.

The aim of this paper is to show the following theorem.

Theorem 1.1. Let f be a normalized Hecke eigenform of elliptic cusp form of weight
2k — 2n. Let the symbols be as above. We have

Z <¢m> ¢m>

+k—n—2
m€Z>0 ms " 2
—m=0,1 mod 4

= ((25—2n+2)((4s)"" L(2s, f, Ad)

Do 2n—2\ ,,—k+1
(D1Do]» DID0]) ey () ) p g (p)
ZMH 14p2 1_( ) o

k—n—1
Do Dol 772 i

for sufficient large Re(s), where Dy < 0 runs over all fundamental discriminants and
ag(p) denotes the p-th Fourier coefficient of f. Here L(s, f, Ad) denotes the adjoint
L-function of f:

B oAd) = JTH0=27) (= e™) (=07}

where {oz;f} are complex values determined by the identity

ar(p) = (ozp+oz;1)pk_”_%.

In the case of n = 1 the above formula coincides with the formula in [K-Z 81| p.182,
1.5] with a modification that the function ¢(2s)¢(4s)~*L(2s, f, Ad) should be multiplied
in the left hand side in [K-Z 81} p.182, 1.5].

To obtain main theorem, a generalization of the Maass relation (Proposition [£.3]) plays
an important rule. This generalization of the Maass relation had been shown essentially
in [H 16, Theorem 8.2]. We also need calculations of adjoint maps of index-shift maps.

We remark that we have analytic properties of the above Dirichlet series by using
Rankin-Selberg method for generalized plus-space which is shown in [H2 18, Corollary
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3.4]. We put
1
Ri(G;s) = 7 *[(s+k—n— §)F(s +n—1)((2s+ 2n — 2)
« Z <¢ma ¢m>1 .
e ms+k—n—§

—m=0,1 mod 4

Then R4(G; s) has meromorphic continuation to the whole complex plane and satisfies
the functional equation

Ri(G;s) = Ri(G;1—3s).
The function R, (G; s) is entire except for s =n and s = 1 —n. The residue at s = n is
Resy—nR1(Gis) = (14 6,,) 2% 175 3(G, @),

where we put 0,1 :=1ifn=1and J,; :=0if n > 1, and (G, G) denotes the Petersson
inner product of G. Moreover, an explicit formula for (G, G) is shown in [K-K15]. To
describe the value (G, G) we prepare some symbols.
We put I'c(s) := 2(2m)°I'(s) and put £(s) := Ic(s)((s). We set
A(s, f,Ad) = Te(s)Te(s + 2k —2n — 1)L(s, f, Ad).
Then it is known in [K-K15] that

n—1
(G.G) = (18,0279 (g ) [TE(20)A(2i +1, £, Ad).
i=1
Therefore the residue of R1(G;s) at s =n is
n—1

Res,—,Ry(Gss) = 27 2KEn=dinCn=9-1zk=3 (g o) TT £(20)A(2i + 1, £, Ad).
i=1
Remark also that the infinite product

(%) (1 +p*2)p~**ay(p)
H 1+p—28—1 - . - -
PiDol b
in Theorem [[.T]appears in a formula of a certain two variable Dirichlet series .Z 1(f; A, s)
associated to f (cf. [[-K 03] p.225]).

This article is organized as follows. In §2] we prepare some symbols. We also recall
definitions of Jacobi forms and the index shift maps of Jacobi forms. In §3] we recall
Ikeda lifts and construct Siegel modular forms of half-integral weight. In §4 we review
a generalization of the Maass relation for Siegel modular forms of half-integral weight.



4 S. HAYASHIDA

We also introduce a index shift map Ds,_o(N) for Jacobi forms of half-integral weight.
In 5] we review a linear isomorphism between Jacobi forms of integral weight and half-
integral weight. In §6 we give a formula for the adjoint map D}, (N) of D,,(N) with
respect to the Petersson inner product. In §7 we review the Fourier-Jacobi coefficients of
the generalized Cohen-Eisenstein series and Jacobi-Eisenstein series. We also calculate
the image of them by an adjoint map Uy, of a certain index-shift map Uy. Finally, in
g8 we will give a proof of Theorem [Tl
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2. NOTATION AND DEFINITIONS

We denote by Z-o (resp. R.g) the set of all positive integers (resp. positive real
numbers). The symbol R™™ denotes the set of n x m matrices with entries in a ring
R. The symbol L} denotes the set of all semi positive-definite, half-integral symmetric
matrices of size n, and the symbol L denotes the set of all positive definite, half-integral
symmetric matrices of size n. The transpose of a matrix B is denoted by 'B. We write
A[B] = 'BAB for two matrices A € R™™ and B € R™™ . We write the identity
matrix (resp. zero matrix) of size n by 1, (resp. 0,). We denote by tr(S) the trace of

a square matrix S and we write e(S) := e2mV=ITI(S) for o square matrix S. For square

a1
matrices ay, ..., a,, we denote by diag(a, ..., a,) the diagonal matrix ( ) The
Qan

symbol p is reserved for prime number. For any odd prime p the symbol (;) denotes

the Legendre symbol. If p = 2, then we denote by (g) =1, —1 or 0 for d = £1 mod 8§,
d=+3 mod 8 or d =0 mod 2, respectively.
We denote by $),, the Siegel upper half space of degree n and denote by Sp,(R)

the real symplectic group of size 2n. We set I',, := Sp,(Z). We put I' é")(él) =

{(é g) eT, 0€4z<nm>} and put ') = {(é g) eT, ozon}. We de-

note by M (i)% the vector space of Siegel modular forms of weight & — % of F(()")(Zl). We
)

put M 1:—(”1) the plus-space of weight k —% of degree n, which is a certain subspace of M ]ii 1
2 2

and it is a generalization of Kohnen plus-space for general degree (cf. Ibukiyama [Ib 92],

see also §0)). The symbol S zj_(? denotes the vector space of all Siegel cusp forms in M Ij_(z)
2 2

In the following we quote some symbols and definitions from [H 16].
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2.1. Jacobi group. For a positive integer n we define the group

GSp, (R {gERQ"Q" |g(1n 0, ) g—n(g)((l]z On) for some n(g )€R>0}.

For a matrix g € GSp./ (R), the number n(g) in the above definition of GSp;' (R) is called
the similitude of the matrix g.
For positive integers n and r, we define a subgroup G; . € GSp;,.(R) by

A p
A, B,C,D
t t t ) )~ )
¢, = 3| AL [ e aspt, ) UV, g
1, A s K
A B U O

(n,r) _t (ryr)
where <C D) € GSp, (R), 0 V € GSpf(R), \,p € R and k = 'k € R".
We remark that two matrices (4 5) and (§ {) in the above notation have the same

1n —-A

T

(6 5)< (5 ¥) 10ms),
(2 5) 10un)

instead of ((& B) x 1a,, [(A, p), &]) for simplicity. The element ((4 B), [(A, 1), ]) belongs
to Sp,,..(R). Similarly, we abbreviate an element

(Frede) (0)
(o2 - 2)

and abbreviate it as ([(\, u), k], (& B)) for the case U =V =1, .

If there is no confusion, we write

1
A B n
. 1 . t t t
similitude. We abbreviate an element ( Vb ) Al ’\“+”> as
1%

We will often write

as

[(A, 1), K]

for the element (1a,, [(A, 1), k]) for simplicity.
We set a subgroup of G . by

I, = {(M[(\p),k)€GL, | Mel,\ueZ™ kez™} |
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2.2. Groups GSp; (R) and C/;\;{/l The symbol GSp; (R) denotes the group which con-
sists of pairs (M, ¢(7)), where M is a matrix M = (4 B) € GSp;f(R), and where ¢ is
a holomorphic function on §, which satisfies |o(7)|? = det(M)~2| det(CT + D)|. The

group operation on GSp, (R) is given by (M, (7)) (M, ¢/ (7)) :== (MM, o(M'T)¢' (1))
for (M, ), (M',¢') € GSp,, (R).
We denote the theta constant 6 (7) := Z e(t[p]) for 7 € §,,. We embed F((]") (4)

pez(n.1)
into the group GSp; (R) via M s (M, 0™ (M) 0™ (7)~1).
We denote by I (4)* the image of T'/” (4) in GSp; (R) by this embedding.
We define the group
Hyi(R) = {[(\ ), k] € Sppyy(R) | A, € R™Y s e RY .

and define the group

Gl = GSp/(R) x Hy,(R)
= {1101 | 31 € GBPIR. [0 )] € Haa(B)
with the group operation

(Mlv [(>‘17 Ml)v '%1]) ' (M27 [()‘27 :u2)7 H2]) = (MlM?v [()‘/7 :u/)v H/])

for (M;, [(Mi, i), ki) € C/?;{/l (i = 1,2), and where [(N, ), x| € H,1(R) is the matrix
determined through the identity

(My o ("0 0) [(Ag, pa), ka]) (M x ("32) 9 [(Ng, pia), o))
(M1M2 ( M1)0 n(Mz) 1)7[(>‘/7:U’/>7 /D

in G ;. Here n(M;) is the similitude of M;.

2.3. Action of the Jacobi group. The group G;{m acts on ), x C™") by

v (T, z) = ((é g) -T,t(CT+D)_1(z+7‘)\+u)tU>
for any v = (A 5)x (4 2),[(\ ), k]) € G}, and for any (7,2) € H, x C""). Here

(é g) -7 := (A7 + B)(CT1 + D)~ is the usual transformation.

The group G 1 acts on $,, x C™Y through the projection G — Gy |. It means G/’\;{/l
acts on §,, x C“ by

’3/'(7',2) = (MX (n((]]\/[)(1)>’[()\’u)’/€])(7-’z)
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for 4 = (M, ), [(\ p),k]) € G, and for (7,2) € $H, X C™Y. Here n(M) is the
similitude of M € GSp; (R).

2.4. Factors of automorphy. Let k& be an integer and let M be a symmetric matrix
of size r with entries in R. For any v = ((2 8) x (Y ), [(A\ p), 6]) € G} we define the
factor of automorphy

']k,M (77 (Tv Z))
= det(V)*det(C7 + D) e(VIMU((CT + D) *C)[z + 7A + 1))
xe(=VIMUCNA + 12X + Xz + pd + A+ K)).

We define the slash operator |z ¢ by
(¢|k,/\/l7)(7—> Z) = Jk,/\/l(’% (T> Z))_l’gb(’y ’ (T> Z))

for any function ¢ on $,, x C™") and for any ~ € Gir. We remark that

o172, (7,2)) = Jem(n,72 - (7, Z))Jk,v;lMUl (72, (7, 2)),

Ve = (@) lev-r e 2

for any v; = (M; x (' ), [N, o), wi]) € Gy, (1= 1,2).

Let k and m be integers. For any 5 = ((M, p), [(A, 1), k]) € G;, | we define the factor
of automorphy

Jetn3(72) = (P e (M)m(((CT + D))z + 74+ )
xe(—=n(M)m(ATA + 2+ Xz + TuX + "+ k),
where n(M) is the similitude of M. We define the slash operator |, _ 1m by
¢|k—%,m,§/ = Jk—%,m(’?a (Ta Z))_lgb(’? ’ (77 Z))

for any function ¢ on §, x C™Y. We remark that

Jk—%,m(7~17~27(773)) = Jk—%,m(’fla’ﬁ'(Taz))Jk—%,n(Ml)m(%a(7'72))
¢|k_%7m7~17~2 = (¢|k—%,m7~l)|k—%7n(1\/fl)m7~2

for any 3; = ((Mi, i), [(Ni, pi), ki]) € Gi,1 (i=1,2).

2.5. Jacobi forms of matrix index. We quote the definition of Jacobi forms of matrix
index from [Zi 89].

Definition 2.1. For an integer k and for an matriz M € LT, a C-valued holomorphic

function ¢ on $, x C™ s called a Jacobi form of weight k of index M of degree n, if
1 satisfies the following two conditions:
J

n,r’

(1) the transformation formula Y|k pmy = for any v € T’
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(2) ¥ has the Fourier expansion: ¥(1,z) = Z c(N,R)e(NT)e(*Rz).
NeSym? ,Rez ()
4N—-RM~1R>0

We remark that the second condition follows from the Koecher principle (cf. [Zi 89,
Lemma 1.6]) if n > 1. In the condition (2), if ¢ satisfies ¢(N, R) = 0 unless 4N —
RM~YR > 0, then 1 is called a Jacobi cusp form.

We denote by J,g"}A (resp. J,SL/)VIC“SP ) the C-vector space of Jacobi forms (resp. Jacobi
cusp forms) of weight k of index M of degree n.

For v, 1y € J,SL/)VIC“SP , the Petersson inner product is defined by

(W, 02) = [ (7 2)da(r, 2)e” D det(o)* 7 dudv dady,
]:n,'r

where F,, , 1= Fi’r (H, x C) 7 =utiv, 2 =z + iy, du = Higj Ui, dv = HiSj Vi g,
dr = Hi,j T j and dy = Hi,j Yij-

2.6. Jacobi forms of half-integral weight. We set a subgroup I') of G} | by

= {0 O,k € G MY e D @) A pe 200k e 2
>~ T (4)* & H,1(Z),

where we put H, 1(Z) := H, ;(R)NZE 2202 and where the group I'/” (4)* was defined
in §2.2
Definition 2.2. For integers k and m, a holomorphic function ¢ on §, x C"™V is called
a Jacobi form of weight k — % of index m of degree n, if ¢ satisfies the following two
conditions:

(1) (b‘k—%,mfy* = ¢ fOT any fy* S Fi:klz

(2) ¢*|ak—1,2m7 has the Fourier expansion for any v € T';

(¢°|ok—1.2m7) (1,2) = Z C(N, R) 6(%]\77') e("Rz).

NeSym?,ReZ(m1)
ANmMm—hR'R>0

with a integer h > 0, and where the slash operator |ox_1 2m was defined in §2.41

In the condition (2), for any v if ¢ satisfies C(N, R) = 0 unless 4Nm — hR'R > 0,
then ¢ is called a Jacobi cusp form.
We denote by Jlgi)l .. the C-vector space of Jacobi forms of weight & — % of index m
27

of degree n.
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For ¢y, ¢y € Jé@fﬁp , the Petersson inner product is defined by
27

—1 _ —1 5
(61,620 = |Tu:TE(4)] / 01(7, 2) a7, 2)e™ ™™ M det(v)* T dudv da dy,
]:n,l,4

where 14 := I | (H\(H, xC™D), 7 = utiv, 2 = z+iy, du = [Lic; wigs dv = ITic; vij,
dx =[], zi1 and dy = [, yi.1 and [Pn W (4)] denotes the index of I (4) in T, and

where we put

i@ = {

(M, [(A, ), K]) € T4, | M € TV (4), A p € 200, 1 € 2}
~ TW(4) x H,(Z).

Lemma 2.3. Let ¢ € g

1. Then ¢ is a Jacobi cusp form, if and only if the function
27

det(v)2*2e > Mg (7, 2)]

is bounded on $), x C". Here we put v = Im(t) and y = Im(z).

Proof. 1t is an analogue to [K1.89, p.410 Lemma] and [Du 95, Corollary to Proposition
1]. Here we omitted the detail. O

2.7. Index-shift maps of Jacobi forms. In this subsection we introduce index-shift
maps for two kinds of Jacobi forms (of matrix index and of half-integral weight). These
are generalizations of the Vj-map in the sense of Eichler-Zagier [E-Z 85].

We define GSp;'(Z) := GSp," (R) N Z(2™?") and

Gspi@) = {(n.) € GSpI®)| M € Gspi() .

First we define index-shift maps for Jacobi forms of integral weight with some matrix

indices.
Let M = (7)€ Ly. We take a matrix X € GSp, (Z) such that the similitude of X

is n(X) = N? with a natural number N. For any v € J,g"}/l we define the function

PIV(X)

= X b (B3 0w 0000),

uwE(Z/NZ) (1) MeTp\T'p XTy,

where (0, u), (

iy
M x g N
00

v) € (Z/NZ)™?. See the subsection §2.1] for the symbol of the matrix
0
]%> ,[((0,w), (0,v)), 02]) . The above summations are finite sums and do

»

0,
0
0
1
0
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not depend on the choice of the representatives u, v and M. One can check that ¢|V (X)
belongs to J") N oy,- 1t means that V(X) is a map:
BMI(Y D))

V(X) I = JkM[(O o)

Moreover, if ¢ € J,~C JUP then |V (X) € Jli"/\;[“(s” o) This fact is shown by the
01
expression of the Fourier coefficients of ¢|V (X).

For the sake of simplicity we set

Van-a(®@®) = V(diag(la,plp—a:P*lasPla—a))

for any prime p and for any a (0 < a < n).
Next we shall define index-shift maps for Jacobi forms of half-integral weight of integer
index. We assume that p is an odd prime. Let m be a positive integer. Let Y = (X, ¢) €

J,ii)%m we define

GSp, (Z) with n(X) = p®, where v is a positive integer. For ¢ €

~ n(2k—1) n(n+1)
PIV(Y) = n(X) 7 2 > Sl—1,,(M, [(0,0),0]),
J\ZeF(")(4)*\1“(”)(4)*}/1“(”)( )
where the above summation is a finite sum and does not depend on the choice of the
representatives M. One can show by a direct computation that ¢|V( ) belongs to
J(")

k—2L mp2v’
For the sake of simplicity we set

Van-a(@®) = V((diag(la, plo—a; p*las plaa), 0%?))

for any odd prime p and for any o (0 < a < n)~
For the prime p = 2, the index-shift map V,,— a(4) is defined for certain subspace
J]:_(Z)m of ‘]/ir:)l . This is a map from J]:_("l) to J]: i . The map V,, ,,_o(4) is defined
27 27 27
through the linear isomorphism between J,glM and J+(" with M = (%71) € Lj such

k_,
that det(2M) = m. The definition of Vj, ,,_4(4) is

- k‘(2n+1)—n(n+1)+la
LM(¢)|Va,n—a(4) : 2 2)T 3 LM[(zl)}(¢|Va7n—a(4))

for ¢ € J,ﬁ% Here 1), is the linear isomorphism map from J,g"/)v, to J]j ™) See Al for
) ) —E,m
the detail of the map t4.

3. IKEDA LIFT AND SIEGEL MODULAR FORMS OF HALF-INTEGRAL WEIGHT

In this section we recall the Tkeda lift and construct Siegel modular forms of half-
integral weight through the Eichler-Zagier-Ibukiyama correspondence.
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Let 2n and k be positive even integers such that £ > 2n 4+ 1. Let

g(2) = Yo eN)e(Nz) e sV,
Nez ?
N=0,(—1)" mod 4

be a Hecke eigenform. Let f be a normalized Hecke eigenform of elliptic cusp form of
weight 2k — 2n which corresponds to g by the Shimura correspondence. Let F' be a Ikeda
lift of g which is a Siegel cusp form of weight k of degree 2n given by

> AT)e(Tr

TeLy,

where 7 € £)9, and the Fourier coefficient A(T') is given by

A(T) = ¢(|Dg))f H E (T, ay),

plfr

and where the fundamental discriminant pT and the natural number fr are determined
by (—1)"det(2T) = Drf%, and where F,(T,X) € C[X + X '] is a certain Laurent
polynomial (see [Ik 01, p. 642] for the deﬁnition) Here «, is the complex number

determined by as(p) = (o, +a,')p* "2, and where ay(p) is the p-th Fourier coefficient
of f.

We take the Fourier-Jacobi expansion of F' :

F((72) = Zomtragev

NEeZ

where 7 € $o,_1, w € $H; and z € C*~LY_ The function 1y is a Jacobi form of weight
k of index N of degree 2n — 1.

There exists G € § ;_(21"_1) which corresponds to 1; by the linear isomorphism between

S+ @1 and the space of Jacobi cusp forms of weight k£ of index 1 of degree 2n — 1

(see [[b92] and see also Proposition 5.2 in §5l The form G is given by G = 11 (11)).
We remark that the map

+(1) +(2n—1)
Sk_ i — Sk__

given by the above manner is a linear map. If g is a Hecke eigenform, then G is also a
Hecke eigenform (cf. [H 11, Theorem 1.1]).
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4. GENERALIZATION OF THE MAASS RELATION FOR SIEGEL MODULAR FORMS OF
HALF-INTEGRAL WEIGHT
Let g € S+ . be a Hecke eigen form. Let G € S]j_(i"_l) be the lift of g as in §3. We
2

take the Fourler J acobi expansion

o((£ 2) - s

m€Z>0

Since G belongs to the plus-space, ¢,, = 0 unless m =0, 3 mod 4.
To explain a generalization of the Maass relation, we prepare some symbols. For
integers | (2<1), 8 (0<B<I—1)and a (0 <a <), we put

(pH-l—a _ p—l—l-i-a)p% if 6 =q— 2’

. X+ X if f=a—1,
bﬁ,oe = bﬁ,a,l,p(X) - p—l+a+% if 6 =q,
0 otherwise,
and we set By ;11(X) as the [ x (I + 1)-matrix defined by
pits box -+ oy
Bii1(X) = (bga)s=0,. -1 = . . :
a=0,...,1 1
0 p2 by
with entries in C[X 4+ X~']. The 2 X (n + 1)-matrix A5, ;(X) is defined by
- n+2
Ay i (X) = H Bia(p™ 7'X)
= B 3<p"¥ X)Baa(p® UX) - Bua (X)),

For a € Z~o and for ¢ € J]i_l ., we define the function ¢|U, by
3
(0|Ua)(7,2) = (7, az).
In [H 16] we obtained the following generalization of the Maass relation.

Proposition 4.1. For any natural number m and for any prime p, we have the identity
between the vectors

(¢m|‘~/0,2n 2( ) ¢m|‘/12n 3( ) ¢m|‘/2n 2,0 p

2 11
k(2n—3)—2n°—n+ <¢ m

= p Up s ¢m|Up7 (bmp m)

. 1
XAIQJ,Zn—l(aP) dzag(l,p2,p, — D
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Therefore we obtain
(4.1)

¢m|‘~/i,2n—2—i(p2) = ai ¢m|Up+a2< 2k 3¢ |Uv2 +pk 2( p )¢m|U +¢mp)

for any ¢ (0 < i < 2n — 2) with certain constants a; = a;;, (j = 1,2) which do not
depend on the choice of m. In particular, if 7« = 1, then by a straightforward calculation
we obtain ay = ag1, = pFE=3 - +Tn—5 L (),

Definition 4.2. For any prime p we set
Dan-2(p®) = ay'(Vign—s(p®) — arU,),
where ay and ay are constants determined by the identity ({{.1]).

We remark that the map 152”_2(]92) depend on the choice of g, since a; is determined
by the value {a;"}. Remark also that Dy,_o(p?) and Da,_2(¢?) are compatible if two

primes p and ¢ are not the same. Moreover, ﬁgn_2(p2) and Uy are compatible for any
natural number N.

Let n' = 2n — 2 and let m be a natural number. We define the sequence of maps
{Dn(N)}n and {Dp(N)}n := {Dprn(N)}x through the following two formal Dirichlet

series
> Dn/ A e _3_9s -1
S 2O [T (1 Dt + )

N=1 p

5 (- G

p

and

where I denotes the identity map. We remark that the definitions of D, (N?) and
D,,(N?) depend on the choice of g € S,j_(;) .1~ The definition of Dy, (N %) is independent,
2

of the choice of m, but the definition of D,s(N?) depends on the choice of m. Because

of the compatibility of D,y (p?) and Uy, the above definitions are well-defined. Moreover
D,(N?) and Uy are compatible for any natural numbers N and M.

Proposition 4.3. Let G € S]:r_(%" Y be as above. For any natural numbers N and for

any negative fundamental dzscmmmant —m, we define D, (N?) as above. Then we have
mnz = Gl D (N?).
Proof. Due to the definition of D, (p®), we have
0 = p* *Du(p® *)Up = Do (™) D (%) + D (")
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for any 0 > 1 and
—m _ ~
B (7) pk 2Up = _Dn’(pz) + Dn’(p2)'
Thus
(4.2)

0 = ™300 D (p® ) Up2 — G| Do (0°°) Drt (p°) + b | Dot (p™ )
for any 0 > 1 and

(4.3) _ (‘Tm) P20 = | Do (0%) + Ol Dor (0°).

On the other hand, since D, (p?) = —aUp+ é‘z,zn_?,(pz) and due to (L)) with i = 1,
we have

-m'\ k
(44) — <—p )p _2¢m"Up = p2 _3¢7;n21

for any natural number m’.

We remark that ¢§5 =0.

If m’ = m, then due to the identities (£3) and (), we have ¢,,p2 = G| Do (p?).

If m' = mp® (6§ > 1) and if ¢ppe5-25 = @p| Dy (p* %) (j = 0,1) is true, then due to
the identities (L.2) and (£4), we have ¢, 2512 = ¢ | Dy (p?72). Thus, by induction we
obtain @2 = ¢ | Dy (p*) for any § > 0.

Let ¢ be a prime which is different from p, then (%‘7’26) = (%) Thus the definition

of D,(¢*") does not change, even if we replace m by mp*. The identities ([£2)) and (Z.3)
are true, even if we replace m and p by mp?® and by g, respectively. Therefore, we
conclude this proposition by induction with respect to natural numbers p* and m. O

Up2 - ¢m’|Dn’ (p2) + ¢m’p2

Lemma 4.4. Let G € S]j_(i"_l) be as above. We fix a natural number m. We define
2

ﬁn/(N) and D,/ (N) as above. For any natural numbers N, M, § and v, and for any
prime p, we have the identities

(1)

min(d,y)
Dn/(p%)Dn/(p%) _ Z p(2k—3)iUp2iDn/(p2(6+'y—2z))
=0
(2)
~ ~ B R N2M2
Dy(N*)Dy(M?) = > d* 3)Ud2Dn,( = )



A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE 15

min(d,y)
D, (p%)an (p2'y) — Z p(2k—3)z’ Up% D, (p2(6+'y—2i)>
=0
—m min(d,y)—1 . .
- (7) pk—2 Z p<2k_3)ZUp2i+1Dn/ (p2(5+’y—1—22)>.
=0

Dy (N?) Dy (M?) = Z a3 Z p(dy)di—? (ﬂ) Udzdan,<N2M2)’

dy d*d?
d|(N,M) dy | BL2)
where p 1s the Mobius function.

Proof. The identity (1) follows from a straightforward calculation. The identity (3)
follows from (1) and from the relation

~ —m
an(p25) — Dn/(p%) . (7) pk_zUpan(p25_2).

The identities (2) and (4) follow from (1) and (3). 0

5. ISOMORPHISM BETWEEN THE SPACES OF JACOBI FORMS

In this section we review a generalization of the Eichler-Zagier-Ibukiyama correspon-
dence shown in [HI 1§]. It is a linear isomorphism between certain spaces of Jacobi
forms of integral weight and of half-integral weight.

Let n’, k and r be natural numbers. We assume that k is an even integer and r > 1.

ir
We take a matrix M = </1\t/ll 2 ) € L} with My € L} | and L € M,_,,(Z). We set

'L

M e AM, — L'L %fr22,
0 ifr=1.

If r =1, then M =1 and we put det(9) := det()) = 1 by abuse of notation.

A plus-space J +_("1l)§m for Jacobi forms is introduced in [H1 18]. This is a subspace of
27
J,ii)l on and is a generalization of the generalized plus-space of Siegel modular forms to
27

Jacobi forms, and where Jlirj)l o denotes the space of Jacobi forms of weight k — 5 of
29

index 9 of degree n'. (See the definition of J]Sﬁ o 11 [HI1 18, §2.3] for the case r—1 > 2.
27

In this article we use the case r —1 =0 and r — 1 = 1). The space Jlj_(ril)gm is defined as
2
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follows. Let ¢ € Jﬁ)l o be a Jacobi form of weight & — 5 of index 9 on F((]",)(Zl). We
5,

take the Fourier expansion of ¢ :

o(r,2) = Z Cy(N',R)e(N'T + R"*z)

N',R!

for (7,2) € $H,y x C™ 7= where N' and R’ run over L¥, and Z™"~Y respectively, such
that 4N’ — RO R’ > 0. Then ¢ belongs to J]j_("l )m if and only if C4(N’, R") = 0 unless
27

N1 R’)
2 ¢ ¥
1 + AN edl;,
<§tR/ i)ﬁ
with some \ € Z®+r=11) |
This condition requires a condition on 9t. For example, if r—1 = 1 and if J]j_(z )zm £,
2 k)
then M = 0,3 mod 4.
We define J+(TL ) cusp — J+(n) N J(n )1cusp.

k—1.0m k=2 “k—1m
— +) gt () +(n)eusp _ gH(n")cusp _ o+(n')
If r =1, then Jk—%m_‘]k—%m_Mk—% and Jk—%gm —Jk_%’@ —Sk_% .

Lemma 5.1. Let F € M,j_(zurr). We take the Fourier-Jacobi expansion
2

F((72) = X et

MeLx

where 7 € H,, 2 € C7) and w € $H,. Then for € J]:_(Z,)Em Moreover, if F' € S,:r_(zurr),
27 2

+(n') cusp

Proof. It is obvious from the definition of the plus-space J]j_("ll)im O
27

In particular the function ¢,, in §l belongs to the plus-space J;_(zl"_m.

Let M be as above. There exists a linear isomorphism map tx from J,g"/z/t to JIEN);Fzm
b _E,
(cf. [E-Z 85| (for r =n =1), [Ib 92] (for r =1, n > 1), [HL 18] (for r > 1, n > 1)). This
map ty is given as follows.
We assume ) € J,gn/& and denote by Cy(x, %) the Fourier coefficients of ¢. For 7 € $),,/

and for z = (21, 25) € C™') (2, € C™' =Y 2, € C™ V), we take the theta decomposition

U(r,2) = Z fr(7, 20)0 R L(T, 21, 22),

Rez(™ D)
R mod 27,(n’.1)
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where

fr(m 1) = > Cy(Ny, (N3 R))

NleLTL”N3€Z("I'T’1)
1 1
xe((Ny — ERtR)T + (N3 — iRtL)tzl)
and where the function ¥, g 1, is defined by

1
V1r,L(T, 21, 22) = 191,(15)(7,521L+22)

1 1
= Z e (ZItZIST + 2t (§Z1L + 22))

zez(™’sD)
xz( R) mod 2

L
(cf. [H1 18, Lemma 4.1]). We put
im(W)(1,21) = Z fr(47,427).
ReZ(»D) /(27(m1))
Then tp(1)) belongs to Jlj_(ril)gm (cf. [H1 18| Proposition 4.4]). If ¢ is a Jacobi cusp form,
27

then (7)) is also a Jacobi cusp form. If r = 1, then M = 1 and () is a Siegel
modular form (cf. [E-Z 85)], [Ib 92]).

1

sL
Proposition 5.2 ([HIL 18]). We take a matric M = </1\t/l£ 21
2

even integer. The map tnq gives the linear isomorphisms:

()~ )
']k,M = Jk—%,zm’

)EL;F. Let k be an

(n')cusp  ~u +(n') cusp
A

In the case of r =1 (it means M =1, M = () and J;—(nl/)z);n = M,j_("ll)), these isomorphisms
27 2
have been shown in [E-Z 85] (for n’ =1) and in [Ib 92] (forn’ > 1).

Aa for the relation between the Petersson inner products and the linear isomorphism
map ¢y is known as follows.

Lemma 5.3. For 1 € JU)™7 (i = 1,2) we set ¢; = tp(ty) € J;(?l)mct“s’). Then we
b _57

have

(W1, 00) = 22D (g, 4y).

Proof. This lemma has been shown in [E-Z 85, Theorem 5.4] (for » = 1 and n’ = 1),
in [K-K15, p.2051] (for » = 1 and n’ > 1), and in [H2 18, Lemma 3.1] (for » > 1 and
n' >1). O
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In the followings we consider the case r = 2.
Let a € Qso, b€ Q and M € L. For v € JIE"AZI we define the function

WUz 0))(7,2) = P(r,2(39))

b1
Lemma 5.4. Let r =2 and M = (1}) € L. Let ¢ € J,ﬁ"j& Then, for any a € Z

and for any b € Z, we have w|U( 0) € J]injl\zt[(a 0)] and we have
b1

a
b1

»

@l = g (W)

1

Proof. The first statement follows directly from the definition of Jacobi forms. And the
second statement can be shown by comparing the Fourier coefficients of both sides. The
reader is referred to [H 16, Proposition 4.3] for the detail of the calculation for the second
statement. O

Lemma 5.5. Letr =2 and M = ({7) € L. For any odd prime p and for 0 < a </,
let Von—o(p?) and Vi —o(p?) be index-shift maps defined in §2.7. Then, for any ¢ €

J,g"ja we have
~ / —n’(n' 7 la
B o) Vawmalt?) = PO L V)

Proof. The identity can be shown by comparing the Fourier coefficients of both sides.
The proof is the same as in [H 16, Proposition 4.4]. O

We remark that V, ,_o(4) has been defined through the identity (5.1). (See §27).

6. ADJOINT MAPS

In this section we introduce some adjoint maps for Jacobi forms with respect to the
Petersson inner product.

We assume M = (f7) € Ly such that det(2M) = m. We remark that m = 0,3
mod 4. There exists M for any such natural number m.

Let n’ and N be natural numbers.

6.1. Adjoint map U* for Jacobi forms of integral weight. For any ¢ € J;"&[(N 0]
Mo 1

we define the function

V(N gy = N2 > ¢|U(N04?)|k,M[((>\1a0),(Ml,O)%Oz]-

1 !
1,1 €(Z/NZ)"' 1)

Lemma 6.1. We obtain a map
Uty oy = J™) — "
() F gy ) 7 e

Moreover, 1 eJ("')C“sf” . then Y|U? eJ(n’)cus:n'
fo e Sy e vV ) € e
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Proof. One can check the first statement by a straightforward calculation. For the

second statement we need to show that ¢|U E ~ oy 1s a Jacobi cusp form. It is shown by

[y

*

)
the expression of the Fourier coefficients of w|U N 0) by using the Fourier coefficients of
01

. 0

Lemma 6.2. The map U} 5 ¥ 0) 1s the adjoint map of U( 0) with respect to the Petersson

—~

mmner product. It means that we have
<¢1|U(Jaf (1))7¢2> = <¢17¢2\U(1(\)7 (1])>

n') cusp
M5 D]

Proof. We fix a fundamental domain Fy 5 of I'}, )\ (), X C™?). And we put

for any Y € JIEZ&CUSP and any 1y € J(

Fua(N) = {(7,2(5 1)) € 9 x T2 | (7,2) € Fuvs

We have vol(F,o(N)) = N?"vol(F,5). Here vol(x) is the volume with the measure
det(v) ™™ 3dudvdr dy. Let X = [((A1,0), (u1,0)),04] € ZM x Z("2) x 722 We write
z=x++/—1y=(21,2) € C"? z; = x;+ /=1y, (i = 1,2). Then, by the substitution
21— 21+ %T)\l + %,ul, we have

<¢1|U(Jgg),¢z>

- / —4
= /. (T, (NzlaZz))%(ﬂz)det(v)k_"_se(TJM (Y Do y]) dudv dz dy
1 /
= | V1(7, (N21 + 71 + i, 22) ) (T, (21+N7>\1+NM1> 7)) det(v)" " 7?
X (7_4”/\4 (N O o[y + (v, 0)]) du dv da d
62—m_ ()] v ]y Nvl,]uvxy,

and by the substitution z; — %zl

= / N—2n’w1 (T, (21 + T)\l + M1, ZQ))IDQ(T, (N_l(Zl + T>\1 + ,ul), 22)) det(v)k_"/_?’
For o(N)
xe(T/\/lv [y + (vA1,0)]) dudvdx dy

:/‘mN%mvme( 0))IX) (7. 2) det(v)* " ~Pe( T

./\/lv_l[ |) du dvdz dy.

21
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Thus we have

(WU 0y, ¥2)
_ N Y /MN 2y (1, 2) (e x (N D)), 2)

AL, p1 L€z,

% det(v)F"'Be( =2

Mv_l[ ) du dv dx dy.

211
= N / U1 (T, 2) (2|U? y o\ )(T, 2) det(v)k_",_ge(ﬁj\/lv_l[y]) du dv dx dy
1 (V) (% 1) 2mi
/ —4
= (7, 2) (V2|U y o3 (T 2) det(v)k_" _36(4Mv_1[y]) du dv dx dy
Furs (01) 2mi
= <¢1,¢2|U€N 0)>-
01
Thus we conclude this lemma. O

Lemma 6.3. For any natural numbers N and M, we have

(1)

U U? =
LT
(2)
Uy = U U?
el = bWy

for any prime p and for any Y, € JIE"/& and any Yy € J]i"/a‘[(N 0y Moreover, if a natural

01
number d is coprime to N, then

(3

el = 2y,
@

sl Pty = SV
for any s € Jé"&[(]g 0)] and any Vs € Jéf&{(]\(f]d 0]

Proof. The identity (1) is obvious because of the definitions. The identity (2) follows

from the definitions of U (N 0) and U7 y ,, since
01 (9%)

DU 0y U van1 0y [l (M + NAL, 0), (s + Ny, 0), 0]
0 1)1 (VD7)

= YU (-1 gy lkad(A1,0), (111, 0), 02
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for any i, A}, p1, ¢y € Z™Y. The identities (3) and (4) also follow from straightforward
calculations. O

6.2. Adjoint map U* for Jacobi forms of half-integral weight.

Definition 6.4. By combining Proposition [5.3 and Lemma [6.2 we define the adjoint

map Uy of Un with respect to the Petersson inner product. For ¢ € J;_(z )mN2 we define
27

Uy = LM((L;;[(]XQ)](¢)>|UE]X9))

Then, due to Proposition [5.2 and Lemma [6.2, we have ¢|Uy € J;_(Z/)m And if ¢ €
27
+(n') cusp * +(n’) cusp
J. - then ¢|U}; € Jk_%m :

%,mNz’

Lemma 6.5. The map U}; is the adjoint map of Uy with respect to the Petersson inner
product. It means that we have

(011U, ¢2) = (o1, $2|Un)

for any ¢, € J,ii)%’c:jp and any ¢y € Jéi)%cisﬁz

Proof. Due to Lemma [5.3] Lemma [5.4] and Lemma [6.2], we have

(1092} = 2D ey (TN e (02)
_ 2—2n’(k—1)<bj_v}(¢l)|U[(](\]f (1))], L,/_\/}[(J(\)f (1))](¢2)>
_ 2—2"'(’“‘1)@;,}(@), L/_\j[(](\)f (1))](¢2)|U[*(1(\]/ (1])}>
= (91, 92|Ux)-

Lemma 6.6. For any natural numbers N and M, we have
(1)
oi|Un|Uy = ¢,
(2)

Uy = 62|Un|Uny
for any ¢, € J;_(g/)m and any Qg € J;_(gi)mm. Moreover, if a natural number d is coprime
to N, then

(3)

$2|Ud|lUy = ¢2|Ux|Us,
(4)

¢s|UglUy = ¢s5|Ux|Ug
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+(n' +(n'
for any ¢ € Jk—(%,)mN2 and any ¢3 € Jk_(%,)mWM?'

Proof. This lemma follows from Definition [6.4], Lemma [5.4] and Lemma 0
Lemma 6.7. If (N,2) =1, then the map Uy, is given by
. o 1
olUN = N Y > (¢|U%) Im [(A, Zm,O}
NE(Z/NZ)W pe(Z/ANZ)

for any ¢ € Jlj_(",)

%,mN2 ’
Proof. By comparing the Fourier coefficients of the both side, we obtain the identity. O

6.3. Adjoint map V* for Jacobi forms of integral weight. Let X € GSp;(Z) be a
matrix such that the similitude of X is n(X) = N? with a natural number N. For any

eJ (') we define the function
Ve My )

PIVHX) = NE N > >

A1,p1€(Z/N2Z) D) Ag ua€(Z/NZ)( 1) MeT A\, XTI,y
0
0
0

it (0 (3888 )00 20 G, 0] )

where (Mg, Ao), (g1, it2) € (Z/N?Z)™D x (Z/NZ)™D. See §2.1] for the symbol of the
10
matrix (M X (8](\)7
00
not depend on the choice of the representatives (A1, A2), (u1, p2) and M.
Let V(X) be the index-shift map for Jacobi forms of matrix index defined in §2.7

Lemma 6.8. We have

S
00
N2 ) ,[(A, ), 02] ) . The above summations are finite sums and do
0

=2

PIViIX) = WV(X)IUZNz 0)

01

In particular, the function |V*(X) belongs to J,i"j& It means that V*(X) is a map:

VH(X) Jéf&[(g 0y = T
Moreover, if ) € Jg&&"fg?)}, then ¥|V*(X) € J,EZ,\Z,CUSP
Proof. The fist identity follows from the definitions of V*(X), V(X)) and U E‘ N2 0)° The
other statements follow from this identity. 0

Lemma 6.9. The map V*(X) is the adjoint map of V(X)) with respect to the Petersson
inner product. It means that we have

(alV(X), ¥2) = (Y1, 92V*(X))
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(n') cusp ) cusp
or an eJ and an eJ" )
f ywl kM yw2 kM[(O 1)]
Proof. The proof is similar to the one of Lemma 0

For the sake of simplicity we set

Vi o) = V*(diag(la, ply—a, P*Lla; Plw—a))
for any prime p and for any o (0 < o < n/).

6.4. Adjoint map V* for Jacobi forms of half-integral weight. We define the
index-shift map V*,,__(p?) for Jacobi forms of half-integral weight.

an —x

Definition 6.10. For any prime p and for any ¢ € J]j_(z/)?an we define
27

e (TR L)

Lemma 6.11. For any prime p, for any ¢, € J]:_("ll)n:wp and for any ¢ € J;_(Z,)n:;‘jp, we
27 27

have
<¢1‘Va,n’—a(p2)7¢2> = <¢1,¢2| a,n/ —a(p )>
Proof. This is due to Lemma [5.3] Lemma and Lemma [6.9 O
Lemma 6.12. We have
ANVt w—a®) = OVam—a®)U;2

for any prime p and for any ¢ € J +(" )njusl’
Proof. This lemma follows from Lemma [6.8 Definition [6.4] Lemma and Defini-
tion [6.10} -

6.5. Adjoint map D* for Jacobi forms of half-integral weight. Let n’ = 2n — 2
and let the symbol D,(N?) be as in §4l

In this section we will give the adjoint map of D,(N?) with respect to the Petersson
inner product.

Proposition 6.13. The adjoint map D7, (N?) of D, (N?) with respect to the Petersson
inner product is given by
S D(N?) = ¢|Dw(N?)|Uys.

for any ¢ € J]:_(Z/)mNz. It means we have
27

(1D (N?), ) = (1, ¥| Do (N?)|UR2)

for any 1, € J;_(Z/);“Sp and any 1y € J +(" )CusP
27
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Proof. For a prime p we write Viy(p?) = Vin—3(p?) and V;i(p?) = Vi, _5(p?) for the
sake of simplicity. Due to Lemma 611, Lemma [6.12] Lemma and Lemma [6.0], for
Jacobi cusp forms 1 and 1, with suitable indices, we have

(W|Upas | Ve (p%), 02) - = (] Upes, 2| Vi (7)) = (] Ups, 02| Vi ()| U2)
= <¢17¢2‘V( )‘U25‘U45+2> = <¢17w2‘Up25|v( )|U45+2>

Since D,/(N) is generated by a linear combination of compositions of V,/(p?) and
Uz, and since {V,(p*)}, and {Uy}n are compatible, we conclude (¢1|D,/(N?), 1) =
(1, 2| Dyt (N?)| U2} by similar arguments as above. O

7. JACOBI-EISENSTEIN SERIES AND INDEX-SHIFT MAPS

Let n’ be a natural number. In this section we introduce Fourier- Jacobl coefficients
{el(‘c )1 _}m of a generalized Cohen—Elsenstem series. Here e,(f_)_ Jlj_f . Moreover,
(n'

we shall give a formula for ek

N2 |U%, where U}, is the adjoint map introduced in §6.2
7.1. Jacobi-Eisenstein series. In this subsection we review some Jacobi-Eisenstein
series and their Fourier-Jacobi coefficients.

Let r > 0 be an integer and let M € L. For an even integer k > n’ + r + 1, the
Jacobi-Eisenstein series of weight k of index M of degree n’ is defined by

EM = Y S 1a(((0,0),0,), M),

Mer N\, Az

We take M =1 € Z-y. We define

where the linear map ¢; : Jj (" — M, +( ) is defined in g5l The form ’H 1 belongs to the

)

plus-space M, +(" . In this artlcle we call H") . a generalized Cohen—Eisenstein series,

k—3
since 7—[( has been introduced by Cohen [Co 75]. (See also |Ar 98]).

For m e Z we denote by ek_)l . the m-th Fourier-Jacobi coefficient of H,(;L_/II), it means
27 2

Hlin_,?) <(t )) Zek__ T, z)e(mw),

meZ

n’)

for T € Sﬁn/, 2z € C" and w € $;. We remark that ek_ = 0 unless m = 0, 3 mod 4,

n’)

1
—2m

since ”Hk_ 1 ) belongs to the plus-space M 1:—(”1 1) Remark also that e
2 2

form which belongs to J; 1) .

29

is a Jacobi
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On the other hand, we take a Fourier-Jacobi expansion of E " +1).

(0 2)0(2))eler = X i umnem (2 22,

MEeL}
M=(17)

T 21 Z9
/
where |‘z;1 w1 wy | € Hyge, T € Hu, w1 € H; and w3 € H;. The form 6}(:/\)4 is a
t t ’
Z2 W2 W3

Jacobi form which belongs to J,g"ja

Xk

Lemma 7.1. For M = (* 1) € Ly we put m = det(2M). Then we have

mle) = 6,

Proof. From the definition of two linear maps ¢; and ¢ty and from the definition of the
Fourier-Jacobi expansions, the diagram

Jlgzl’ﬂ) L> M}:—_(rlz’—i-l)

2
Tom == 3

is commutative, where two down arrows are glven by the Fourier-Jacobi expansions.
Thus this lemma follows from the definitions of ek 1 m and e,gnﬂlt. O

/ /
We now describe e,(cn /\)A as a linear combination of the Jacobi-Eisenstein series {E,g"/&,} M-

We denote by hk 1( ) the m-th Fourier coefficient of the Cohen-Eisenstein series
HY | It means ’H (1) = Z hy_1(m)e(mT).

fe— 1

Let m be a natural number such that —m = Dy f? with a fundamental discriminant
Dy and with a natural number f It is obvious that m = 0,3 mod 4. We define

- S y(2).

daf

where p is the Mobius function.
We will use the following lemma for the proof of Proposition [7.8]

Lemma 7.2. Let m' be a natural number such that —m’ =0, 1 mod 4. Then for any

prime p we have
_ —-m"\
ge(p*m’) = <p2’“ - <7) p* 2) gi(m').
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Proof. See [H 16, Lemma 3.2]. O

X ok

Lemma 7.3. For M = (* 1) € LT we set m = det(2M). Let Dy and f be as above.
If k > n' + 3, then
elgn/,\),l (1,2) ng<d2) kM[W (7', 2 Wy),
dlf
where we chose a matriz Wy € Z3? for each d which satisfies the conditions det(Wy) =
d, M [Wd_l} € Ly and M [Wd_l} = (i *) If Wy satisfies these conditions, the right
hand side of the identity does not depend on the choice of Wy.

Proof. The reader is referred to [H 16, Proposition 3.3]. This formula has originally been

given in [Bo 83| Satz 7]. O
Definition 7.4. For M = (I ﬂ{) € Ly we set m = det(2M). We define
Egi)%m = LM(EIE"AL)
Lemma 7.5. Let the symbols M, m and f be as above. Then we have E(")1 € J]:_Of
27
and
™) (1,2) = ng<ﬂ) E™) (1,dz).
b2 22) Bt (7
dlf
Proof. This lemma follows from Proposition [(£.2] Lemma [7.T] and Lemma [7.3] O

Lemma 7.6. Let the symbols be as above. We have
B el0h = NEY,
for any natural number N, where Uy, is the adjoint map of Uy introduced in §6.2.

Proof. Since

(n") * -1 (n") *
B el = e (i B Wiy )

it is enough to show
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From the definition we have

By = 2 2 Ty (0,00 ()™

1
MEF(" ) )\EZ(", 2)

= > D T (F9),0),00, M), (m 2 (§9))

MEF(()Z/) )\GZ(”/ ,2)

We write Xy o = [(X,0), (1,0)),05] with X, p/ € Z"Y. Then

(gl o) ) = £ 5 st

Mer() xez™'?

where we write v = ([(A(§ ) + (X", 0), (1, 0)),02], M) and where

)\// _ )\/
(u”) - l(u”)’

E™) U* - N~ > E™) U Xy
ety 019 ) C o\ Ty o1V ) e
N/ €(Z/NZ) 1)

Thus we obtain

= NE").
O

Definition 7.7. Let N be a natural number and let v = ord,N be the largest integer
such that p”|N. We define

XV — XV
X -X-1

N

n! n X”+1 — X_(V+1) DO o
WON.X) = BN X) = - (=)

X - X1 )P
Proposition 7.8. Let the symbols m, Dy and f be as in Lemma [7.5 Recall Dy is

the fundamental discriminant such that f = \/m/|Dy| is a natural number. If natural
number N is coprime to f, then we obtain

() f =2 a3 ()
ek—%,mN2|UN - 2 H\D ’ 2)ek— m’

p|N

where v = ord,N.
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Proof. We assume that f and p are coprime. Due to Lemma [7.5 Lemma[7.2, Lemma [6.6]
and Lemma [7.6] we have

() .o ~ (Mo )
6k_%7mp2u|UpV - Zzgk <ﬁp( )) Ek‘ 1 Zln 2(1/ %)

df =0

- o3

daf

vl D
—3)(v—1i 0 - —3)v—i- "
Z ph=3)(r=i) phmAr R =im) Eii—)l m p2(r=1)
p 27d2p

1=0

Udpi | U;V

Udl Ut

_n'_3y, _(k—n'_3y,
_(&)pk 9 n+(k——l—%)(y—1)p(k 2 2) —p (k 2 2) }

Thus we have

ol . k-1 —3) k-2l 3\ (n)
kn__ mp2”‘U o p( ? V\I] (py7p 2 2)ekn_%7m'
By induction with respect to m and p, we obtain this proposition. O

8. PROOF OF MAIN THEOREM

In this section we shall prove Theorem [[LTl Let the symbols G and ¢,, be as in {II
and §3l The adjoint map Uy was introduced in Definition [64l The index-shift map
Dyy_o(N?) was denoted in § The adjoint map Da,_o(N?)* of Dy,_s(N?) was obtained
in Proposition

We write —m = D f? with a fundamental discriminant Dy and with a natural number

f.
Lemma 8.1. We assume that f and N are coprime. Then we have

dmnz|Uy = N2 [T 200", )b

p|N
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Proof. Due to Proposition [7.§ we have
2n— 2 ’—n—l n— v '—n 2n—2
el UG = NV R el phrE)eltn )

k-1, k’—— m
p|N

for infinitely many natural number &’. By a standard argument for Ikeda lifts, we obtain
this lemma. 0

Lemma 8.2. We assume that f and N are coprime. Then we have
Om| Dan—2(N?)|Ds,_»(N?)

= Y (Na)*T TN () (—) 2T o820, ).

d|N di| & ‘dzdl

Proof. By virtue of Proposition [6.13, Lemma [£.4(4), Proposition £3] Lemma [6.6/(2) and
Lemma [1], we obtain

¢m|D2n—2(N2)‘D;n—2(N2>
= Gm|Dana(N?)[ Doy o(N?)|Ux
= ol S () (B) Ui Do (i ) 03
m dl 1 d?d; 2n—2 d4d% N2

dIN dl\%

Dy
= D AN u(dy) (d_> d’f_2¢mTN3|Ud2d1|Uz*v2
dN 0| o
2k—3 Dy k—2 *
= S S uta) (B ol
dIN d| X s
= > A u(dy) ( )d’f 2 (N2d=2dr)F e IT v& 20", ) ém
N d| N Pl -
_ —2n— _ D 1’L—§ n— 4
= (NS () (d_o) a7 T w20 ).
dN di| & Plzg

We shall now prove Theorem [[.I. We have

Z (P> bm) Z i (B1Do| 25 P Do|N2)
ez m8+k—n—% |D |s+k n— % frat N2(s+k—n—%) !
—m=0,1 mod 4

where Dy runs over all negative fundamental discriminants. Due to Proposition 3] we
have @ py vz = @|py||Dan—2(N?) for any natural number N. Here Da,_5(N?) is defined
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for a fixed |Dy|. Thus, by virtue of Lemma B.2] we have

Z (@1Dy|v2, PlDgIN2)

N2s
N=1
_ i (@100)| D2n—2(N?), &1 pg| | D2n—a(N?))
o N2s
N=1
B i (010 | D2n—2(N?) D5, _o(N?), ¢1po|)
o N28
N=1
o0 N —2s5+2k—2n—1
= <¢\Do\> ¢|Do|> Z Z (E) d_28+2k_3
N=1dN
> Z (dy) <_) d?_g H ‘11;2"_2)(pu,ap)
d1 ‘N 2

Plza;

= {P|po P|Do)C (25 — 2k + 3)

XZN28+2k2nlzudl( )n%H\I](2n2(p Oép)

di|N

= <¢\Do\> ¢|D0|><(28 — 2k + 3)

% H {1 + Zpé(—2s+2k—2n—1) <\D§12n—2) (p26’ ap) _ (_0) pn—%\pé2n—2) (p26—1’ Oép)) }

p 6=1 p
= {P|po> PDy)) C(28 — 2k + 3)

v H {(1 . agp—2s+2k—2n—l)(1 . a;2p—2s+2k—2n—1)}_1

P‘ dq

D
« {1+p—2s+2k—2n—1 _ <?0> p—2s+2k 3n— (ozp—l—oz 1)

2
4 <&) p—2s+2k—2n—2(1 +p—2s+2k—2n—1) _ (&) p—2s+2k—n—g(ap + %;1)}
b

p
= <¢\D0\>¢|Do|> C(?S — 2k + 3) L(2$ —2k+2n+1,f, Ad)

D 2
—4s dk—4n—2 0 —25+4+2k—2n—2
X H { + ) (1 + <?) p =t )

DO) —2s4+2k—2n—1 2n—2 —2s4+2k—3n— 1 }
—(2) - 1+ +
(%) - ) (1+57) p Hop +a;")

= (Dol Ppo)) C(25 — 2k +3) ((4s — 4k + An + 2) 7' L(2s — 2k + 2n + 1, f, Ad)
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Do) (1 on—2\  —k+1
x [[{1+p 22— ( P ) (L4 p™ ) p™ " ar(p)

ptDo
Therefore we conclude Theorem [L.1]

p2s—2k+2n+l +1
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