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A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE

ASSOCIATED WITH THE IKEDA LIFT OF HALF-INTEGRAL

WEIGHT

SHUICHI HAYASHIDA

Abstract. In this article we obtain an explicit formula for certain Rankin-Selberg
type Dirichlet series associated to certain Siegel cusp forms of half-integral weight.
Here these Siegel cusp forms of half-integral weight are obtained from the composi-
tion of the Ikeda lift and the Eichler-Zagier-Ibukiyama correspondence. The integral
weight version of the main theorem had been obtained by Katsurada and Kawamura.
The result of the integral weight case is a product of L-function and Riemann zeta
functions, while half-integral weight case is a infinite summation over negative fun-
damental discriminants with certain infinite products. To calculate explicit formula
of such Rankin-Selberg type Dirichlet series, we use a generalized Maass relation and
adjoint maps of index-shift maps of Jacobi forms.

1. Introduction

The purpose of this paper is to show a certain formula for Dirichlet series of Rankin-
Selberg type of certain Siegel cusp forms of half-integral weight.

Let 2n and k be positive even integers such that k > 2n + 1. Let g be a cusp
form of weight k − n + 1

2
in the Kohnen plus-space. Let f be a normalized Hecke

eigenform of elliptic cusp form of weight 2k−2n which corresponds to g by the Shimura
correspondence. Let F be the Siegel cusp form of weight k of degree 2n which is the
Ikeda lift (the Duke-Imamoḡlu-Ikeda lift) of g. In [K-K 08] Katsurada and Kawamura
obtained the identity

ζ(2s− 2k + 4n)
∞∑

N=1

〈ψN , ψN〉
N s

= 〈ψ1, ψ1〉ζ(s− k + 1)ζ(s− k + 2n)L(s, f),

where ψN denotes the N -th Fourier-Jacobi coefficient of F and 〈ψN , ψN〉 denotes the
Petersson inner product of ψN . Here ζ(s) denotes the Riemann zeta function and L(s, f)
denotes the usual L-function of f . In the case of n = 1 the above formula had been
obtained by Kohnen and Skoruppa in [K-S 89].

Let G be the Siegel cusp form of weight k− 1
2
of degree 2n−1 which is obtained from the

1st Fourier-Jacobi coefficient ψ1 by the Eichler-Zagier-Ibukiyama correspondence. Here
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2 S. HAYASHIDA

the Eichler-Zagier-Ibukiyama correspondence is the linear isomorphism between Jacobi
forms of index 1 and the generalized plus-space of Siegel modular forms (see [Ib 92]).
The form G belongs to the generalized plus-space. We remark that if n = 1, then G = g.
Let φm be the m-th Fourier-Jacobi coefficient of G for any natural number m. (See §4).
We remark that φm is a Jacobi cusp form of weight k − 1

2
of index m of degree 2n− 2

and φm is identically 0 unless −m ≡ 0, 1 mod 4. We denote by 〈φm, φm〉 the Petersson
inner product of φm. (See §2.6 for the definition). If n = 1, then φm is the m-th Fourier
coefficient of g and we put 〈φm, φm〉 := |φm|2 in this case.

The aim of this paper is to show the following theorem.

Theorem 1.1. Let f be a normalized Hecke eigenform of elliptic cusp form of weight
2k − 2n. Let the symbols be as above. We have

∑

m∈Z>0

−m≡0,1 mod 4

〈φm, φm〉
ms+k−n− 1

2

= ζ(2s− 2n+ 2) ζ(4s)−1L(2s, f, Ad)

×
∑

D0

〈φ|D0|, φ|D0|〉
|D0|s+k−n−

1
2

∏

p∤|D0|



1 + p−2s−1 −

(
D0

p

)
(1 + p2n−2) p−k+1af(p)

1 + p2s





for sufficient large Re(s), where D0 < 0 runs over all fundamental discriminants and
af (p) denotes the p-th Fourier coefficient of f . Here L(s, f, Ad) denotes the adjoint
L-function of f :

L(s, f, Ad) :=
∏

p

{(
1− p−s

) (
1− α2

pp
−s) (1− α−2

p p−s
)}−1

,

where
{
α±
p

}
are complex values determined by the identity

af (p) =
(
αp + α−1

p

)
pk−n−

1
2 .

In the case of n = 1 the above formula coincides with the formula in [K-Z 81, p.182,
l.5] with a modification that the function ζ(2s)ζ(4s)−1L(2s, f, Ad) should be multiplied
in the left hand side in [K-Z 81, p.182, l.5].

To obtain main theorem, a generalization of the Maass relation (Proposition 4.3) plays
an important rule. This generalization of the Maass relation had been shown essentially
in [H 16, Theorem 8.2]. We also need calculations of adjoint maps of index-shift maps.

We remark that we have analytic properties of the above Dirichlet series by using
Rankin-Selberg method for generalized plus-space which is shown in [H2 18, Corollary
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3.4]. We put

R1(G; s) := π−2sΓ(s+ k − n− 1

2
)Γ(s+ n− 1)ζ(2s+ 2n− 2)

×
∑

m∈Z>0

−m≡0,1 mod 4

〈φm, φm〉
ms+k−n− 1

2

.

Then R1(G; s) has meromorphic continuation to the whole complex plane and satisfies
the functional equation

R1(G; s) = R1(G; 1− s).

The function R1(G; s) is entire except for s = n and s = 1− n. The residue at s = n is

Ress=nR1(G; s) = (1 + δn,1)
−122k−1πk−

3
2 〈G,G〉,

where we put δn,1 := 1 if n = 1 and δn,1 := 0 if n > 1, and 〈G,G〉 denotes the Petersson
inner product of G. Moreover, an explicit formula for 〈G,G〉 is shown in [K-K15]. To
describe the value 〈G,G〉 we prepare some symbols.

We put ΓC(s) := 2(2π)−sΓ(s) and put ξ̃(s) := ΓC(s)ζ(s). We set

Λ̃(s, f, Ad) := ΓC(s)ΓC(s+ 2k − 2n− 1)L(s, f, Ad).

Then it is known in [K-K15] that

〈G,G〉 = (1 + δn,1)2
−6k(n−1)+n(2n−3)〈g, g〉

n−1∏

i=1

ξ̃(2i)Λ̃(2i+ 1, f, Ad).

Therefore the residue of R1(G; s) at s = n is

Ress=nR1(G; s) = 2−2k(3n−4)+n(2n−3)−1πk−
3
2 〈g, g〉

n−1∏

i=1

ξ̃(2i)Λ̃(2i+ 1, f, Ad).

Remark also that the infinite product

∏

p∤|D0|



1 + p−2s−1 −

(
D0

p

)
(1 + p2n−2) p−k+1af(p)

1 + p2s





in Theorem 1.1 appears in a formula of a certain two variable Dirichlet series L−1(f ;λ, s)
associated to f (cf. [I-K 03, p.225]).

This article is organized as follows. In §2 we prepare some symbols. We also recall
definitions of Jacobi forms and the index shift maps of Jacobi forms. In §3 we recall
Ikeda lifts and construct Siegel modular forms of half-integral weight. In §4 we review
a generalization of the Maass relation for Siegel modular forms of half-integral weight.
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We also introduce a index shift map D2n−2(N) for Jacobi forms of half-integral weight.
In §5 we review a linear isomorphism between Jacobi forms of integral weight and half-
integral weight. In §6 we give a formula for the adjoint map D∗

n′(N) of Dn′(N) with
respect to the Petersson inner product. In §7 we review the Fourier-Jacobi coefficients of
the generalized Cohen-Eisenstein series and Jacobi-Eisenstein series. We also calculate
the image of them by an adjoint map U∗

N of a certain index-shift map UN . Finally, in
§8 we will give a proof of Theorem 1.1.

Acknowledgement:
The author would like to express his sincere thanks to Professor Hidenori Katsurada

for his variable comments. This work was supported by JSPS KAKENHI Grant Number
80597766.

2. Notation and definitions

We denote by Z>0 (resp. R>0) the set of all positive integers (resp. positive real
numbers). The symbol R(n,m) denotes the set of n ×m matrices with entries in a ring
R. The symbol L∗

n denotes the set of all semi positive-definite, half-integral symmetric
matrices of size n, and the symbol L+

n denotes the set of all positive definite, half-integral
symmetric matrices of size n. The transpose of a matrix B is denoted by tB. We write
A[B] := tBAB for two matrices A ∈ R(n,n) and B ∈ R(n,m) . We write the identity
matrix (resp. zero matrix) of size n by 1n (resp. 0n). We denote by tr(S) the trace of

a square matrix S and we write e(S) := e2π
√
−1 tr(S) for a square matrix S. For square

matrices a1, ..., an, we denote by diag(a1, ..., an) the diagonal matrix

( a1
...

an

)
. The

symbol p is reserved for prime number. For any odd prime p the symbol
(

∗
p

)
denotes

the Legendre symbol. If p = 2, then we denote by
(
d
2

)
= 1, −1 or 0 for d ≡ ±1 mod 8,

d ≡ ±3 mod 8 or d ≡ 0 mod 2, respectively.
We denote by Hn the Siegel upper half space of degree n and denote by Spn(R)

the real symplectic group of size 2n. We set Γn := Spn(Z). We put Γ
(n)
0 (4) :={(

A B
C D

)
∈ Γn

∣∣∣∣ C ∈ 4Z(n,n)

}
and put Γ

(n)
∞ :=

{(
A B
C D

)
∈ Γn

∣∣∣∣ C = 0n

}
. We de-

note by M
(n)

k− 1
2

the vector space of Siegel modular forms of weight k − 1
2
of Γ

(n)
0 (4). We

putM
+(n)

k− 1
2

the plus-space of weight k− 1
2
of degree n, which is a certain subspace ofM

(n)

k− 1
2

and it is a generalization of Kohnen plus-space for general degree (cf. Ibukiyama [Ib 92],

see also §5). The symbol S
+(n)

k− 1
2

denotes the vector space of all Siegel cusp forms inM
+(n)

k− 1
2

.

In the following we quote some symbols and definitions from [H 16].
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2.1. Jacobi group. For a positive integer n we define the group

GSp+
n (R):=

{
g ∈ R(2n,2n) | g

(
0n −1n
1n 0n

)
tg = n(g)

(
0n −1n
1n 0n

)
for some n(g) ∈ R>0

}
.

For a matrix g ∈ GSp+
n (R), the number n(g) in the above definition of GSp+

n (R) is called
the similitude of the matrix g.

For positive integers n and r, we define a subgroup GJ
n,r ⊂ GSp+

n+r(R) by

GJ
n,r :=








A B
U

C D
V







1n µ
tλ 1r

tµ tλµ+ κ
1n −λ

1r


 ∈ GSp+

n+r(R)

∣∣∣∣∣∣∣∣

A,B,C,D,
U, V,
λ, µ, κ




,

where

(
A B
C D

)
∈ GSp+

n (R),
(
U 0
0 V

)
∈ GSp+

r (R), λ, µ ∈ R(n,r) and κ = tκ ∈ R(r,r).

We remark that two matrices ( A B
C D ) and ( U 0

0 V ) in the above notation have the same

similitude. We abbreviate an element

(
A B
U

C D
V

)( 1n µ
tλ 1r tµ tλµ+κ

1n −λ
1r

)
as

((
A B
C D

)
×
(
U 0
0 V

)
, [(λ, µ), κ]

)
.

We will often write
((

A B
C D

)
, [(λ, µ), κ]

)

instead of (( A B
C D )× 12r, [(λ, µ), κ]) for simplicity. The element (( A B

C D ) , [(λ, µ), κ]) belongs
to Spn+r(R). Similarly, we abbreviate an element

(
1n µ
tλ 1r tµ tλµ+κ

1n −λ
1r

)(
A B
U

C D
V

)

as
(
[(λ, µ), κ],

(
A B
C D

)
×
(
U 0
0 V

))
,

and abbreviate it as ([(λ, µ), κ], ( A B
C D )) for the case U = V = 1r .

If there is no confusion, we write

[(λ, µ), κ]

for the element (12n, [(λ, µ), κ]) for simplicity.
We set a subgroup of GJ

n,r by

ΓJn,r :=
{
(M, [(λ, µ), κ]) ∈ GJ

n,r

∣∣M ∈ Γn, λ, µ ∈ Z(n,r), κ ∈ Z(r,r)
}
.
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2.2. Groups ˜GSp+
n (R) and G̃J

n,1. The symbol ˜GSp+
n (R) denotes the group which con-

sists of pairs (M,ϕ(τ)), where M is a matrix M = ( A B
C D ) ∈ GSp+

n (R), and where ϕ is

a holomorphic function on Hn which satisfies |ϕ(τ)|2 = det(M)−
1
2 | det(Cτ + D)|. The

group operation on ˜GSp+
n (R) is given by (M,ϕ(τ))(M ′, ϕ′(τ)) := (MM ′, ϕ(M ′τ)ϕ′(τ))

for (M,ϕ), (M ′, ϕ′) ∈ ˜GSp+
n (R).

We denote the theta constant θ(n)(τ) :=
∑

p∈Z(n,1)

e(τ [p]) for τ ∈ Hn. We embed Γ
(n)
0 (4)

into the group ˜GSp+
n (R) via M 7→ (M, θ(n)(Mτ) θ(n)(τ)−1).

We denote by Γ
(n)
0 (4)∗ the image of Γ

(n)
0 (4) in ˜GSp+

n (R) by this embedding.
We define the group

Hn,1(R) :=
{
[(λ, µ), κ] ∈ Spn+1(R) | λ, µ ∈ R(n,1), κ ∈ R

}
.

and define the group

G̃J
n,1 := ˜GSp+n (R)⋉Hn,1(R)

=
{
(M̃, [(λ, µ), κ])

∣∣∣ M̃ ∈ ˜GSp+
n (R), [(λ, µ), κ] ∈ Hn,1(R)

}

with the group operation

(M̃1, [(λ1, µ1), κ1]) · (M̃2, [(λ2, µ2), κ2]) := (M̃1M̃2, [(λ
′, µ′), κ′])

for (M̃i, [(λi, µi), κi]) ∈ G̃J
n,1 (i = 1, 2), and where [(λ′, µ′), κ′] ∈ Hn,1(R) is the matrix

determined through the identity

(M1 ×
(
n(M1) 0

0 1

)
, [(λ1, µ1), κ1])(M2 ×

(
n(M2) 0

0 1

)
, [(λ2, µ2), κ2])

= (M1M2 ×
(
n(M1)n(M2) 0

0 1

)
, [(λ′, µ′), κ′])

in GJ
n,1. Here n(Mi) is the similitude of Mi.

2.3. Action of the Jacobi group. The group GJ
n,r acts on Hn × C(n,r) by

γ · (τ, z) :=

((
A B
C D

)
· τ , t(Cτ +D)−1(z + τλ + µ)tU

)

for any γ = (( A B
C D )× ( U 0

0 V ) , [(λ, µ), κ]) ∈ GJ
n,r and for any (τ, z) ∈ Hn × C(n,r). Here(

A B
C D

)
· τ := (Aτ +B)(Cτ +D)−1 is the usual transformation.

The group G̃J
n,1 acts on Hn×C(n,1) through the projection G̃J

n,1 → GJ
n,1. It means G̃J

n,1

acts on Hn × C(n,1) by

γ̃ · (τ, z) := (M ×
(
n(M) 0

0 1

)
, [(λ, µ), κ]) · (τ, z)
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for γ̃ = ((M,ϕ), [(λ, µ), κ]) ∈ G̃J
n,1 and for (τ, z) ∈ Hn × C(n,1). Here n(M) is the

similitude of M ∈ GSp+
n (R).

2.4. Factors of automorphy. Let k be an integer and let M be a symmetric matrix
of size r with entries in R. For any γ = (( A B

C D )× ( U 0
0 V ) , [(λ, µ), κ]) ∈ GJ

n,r we define the
factor of automorphy

Jk,M (γ, (τ, z))

:= det(V )k det(Cτ +D)k e(V −1MU(((Cτ +D)−1C)[z + τλ+ µ]))

×e(−V −1MU(tλτλ + tzλ+ tλz + tµλ+ tλµ+ κ)).

We define the slash operator |k,M by

(ψ|k,Mγ)(τ, z) := Jk,M(γ, (τ, z))−1ψ(γ · (τ, z))
for any function ψ on Hn × C(n,r) and for any γ ∈ GJ

n,r. We remark that

Jk,M(γ1γ2, (τ, z)) = Jk,M(γ1, γ2 · (τ, z))Jk,V −1
1 MU1

(γ2, (τ, z)),

ψ|k,Mγ1γ2 = (ψ|k,Mγ1)|k,V−1
1 MU1

γ2.

for any γi =
(
Mi ×

(
Ui 0
0 Vi

)
, [(λi, µi), κi]

)
∈ GJ

n,r (i = 1, 2).

Let k and m be integers. For any γ̃ = ((M,ϕ), [(λ, µ), κ]) ∈ G̃J
n,1 we define the factor

of automorphy

Jk− 1
2
,m(γ̃, (τ, z)) := ϕ(τ)2k−1e(n(M)m(((Cτ +D)−1C)[z + τλ + µ]))

×e(−n(M)m(tλτλ+ tzλ+ tλz + tµλ+ tλµ+ κ)),

where n(M) is the similitude of M . We define the slash operator |k− 1
2
,m by

φ|k− 1
2
,mγ̃ := Jk− 1

2
,m(γ̃, (τ, z))

−1φ(γ̃ · (τ, z))

for any function φ on Hn × C(n,1). We remark that

Jk− 1
2
,m(γ̃1γ̃2, (τ, z)) = Jk− 1

2
,m(γ̃1, γ̃2 · (τ, z))Jk− 1

2
,n(M1)m

(γ̃2, (τ, z))

φ|k− 1
2
,mγ̃1γ̃2 = (φ|k− 1

2
,mγ̃1)|k− 1

2
,n(M1)m

γ̃2

for any γ̃i = ((Mi, ϕi), [(λi, µi), κi]) ∈ G̃J
n,1 (i = 1, 2).

2.5. Jacobi forms of matrix index. We quote the definition of Jacobi forms of matrix
index from [Zi 89].

Definition 2.1. For an integer k and for an matrix M ∈ L+
r , a C-valued holomorphic

function ψ on Hn ×C(n,r) is called a Jacobi form of weight k of index M of degree n, if
ψ satisfies the following two conditions:

(1) the transformation formula ψ|k,Mγ = ψ for any γ ∈ ΓJn,r,
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(2) ψ has the Fourier expansion: ψ(τ, z) =
∑

N∈Sym∗
n,R∈Z(n,r)

4N−RM−1tR≥0

c(N,R)e(Nτ)e(tRz).

We remark that the second condition follows from the Koecher principle (cf. [Zi 89,
Lemma 1.6]) if n > 1. In the condition (2), if ψ satisfies c(N,R) = 0 unless 4N −
RM−1tR > 0, then ψ is called a Jacobi cusp form.

We denote by J
(n)
k,M (resp. J

(n) cusp
k,M ) the C-vector space of Jacobi forms (resp. Jacobi

cusp forms) of weight k of index M of degree n.

For ψ1, ψ2 ∈ J
(n) cusp
k,M , the Petersson inner product is defined by

〈ψ1, ψ2〉 :=

∫

Fn,r

ψ1(τ, z)ψ2(τ, z)e
−4πTr(Mv−1[y]) det(v)k−n−r−1 du dv dx dy,

where Fn,r := ΓJn,r\(Hn × C(n,r)), τ = u+ iv, z = x+ iy, du =
∏

i≤j ui,j, dv =
∏

i≤j vi,j,
dx =

∏
i,j xi,j and dy =

∏
i,j yi,j.

2.6. Jacobi forms of half-integral weight. We set a subgroup ΓJ∗n,1 of G̃J
n,1 by

ΓJ∗n,1 :=
{
(M∗, [(λ, µ), κ]) ∈ G̃J

n,1 |M∗ ∈ Γ
(n)
0 (4)∗, λ, µ ∈ Z(n,1), κ ∈ Z

}

∼= Γ
(n)
0 (4)∗ ⋉Hn,1(Z),

where we putHn,1(Z) := Hn,1(R)∩Z(2n+2,2n+2), and where the group Γ
(n)
0 (4)∗ was defined

in §2.2.

Definition 2.2. For integers k and m, a holomorphic function φ on Hn×C(n,1) is called
a Jacobi form of weight k − 1

2
of index m of degree n, if φ satisfies the following two

conditions:

(1) φ|k− 1
2
,mγ

∗ = φ for any γ∗ ∈ ΓJ∗n,1,

(2) φ2|2k−1,2mγ has the Fourier expansion for any γ ∈ ΓJn,1:

(
φ2|2k−1,2mγ

)
(τ, z) =

∑

N∈Sym∗
n,R∈Z(n,1)

4Nm−hRtR≥0

C(N,R) e

(
1

h
Nτ

)
e
(
tRz
)
.

with a integer h > 0, and where the slash operator |2k−1,2m was defined in §2.4.

In the condition (2), for any γ if φ satisfies C(N,R) = 0 unless 4Nm − hRtR > 0,
then φ is called a Jacobi cusp form.

We denote by J
(n)

k− 1
2
,m

the C-vector space of Jacobi forms of weight k − 1
2
of index m

of degree n.
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For φ1, φ2 ∈ J
(n) cusp

k− 1
2
,m

, the Petersson inner product is defined by

〈φ1, φ2〉 :=
[
Γn : Γ

(n)
0 (4)

]−1
∫

Fn,1,4

φ1(τ, z)φ2(τ, z)e
−4πmv−1[y] det(v)k−n−

5
2 du dv dx dy,

where Fn,1,4 := ΓJn,1(4)\(Hn×C(n,1)), τ = u+iv, z = x+iy, du =
∏

i≤j ui,j, dv =
∏

i≤j vi,j,

dx =
∏

i xi,1 and dy =
∏

i yi,1 and
[
Γn : Γ

(n)
0 (4)

]
denotes the index of Γ

(n)
0 (4) in Γn, and

where we put

ΓJn,1(4) :=
{
(M, [(λ, µ), κ]) ∈ ΓJn,1 |M ∈ Γ

(n)
0 (4), λ, µ ∈ Z(n,1), κ ∈ Z

}

∼= Γ
(n)
0 (4)⋉Hn,1(Z).

Lemma 2.3. Let φ ∈ J
(n)

k− 1
2
,m
. Then φ is a Jacobi cusp form, if and only if the function

det(v)
1
2
(k− 1

2
)e−2πmv−1[y]|φ(τ, z)|

is bounded on Hn × Cn. Here we put v = Im(τ) and y = Im(z).

Proof. It is an analogue to [Kl 89, p.410 Lemma] and [Du 95, Corollary to Proposition
1]. Here we omitted the detail. ⊓⊔

2.7. Index-shift maps of Jacobi forms. In this subsection we introduce index-shift
maps for two kinds of Jacobi forms (of matrix index and of half-integral weight). These
are generalizations of the Vl-map in the sense of Eichler-Zagier [E-Z 85].

We define GSp+
n (Z) := GSp+

n (R) ∩ Z(2n,2n) and

˜GSp+
n (Z) :=

{
(M,ϕ) ∈ ˜GSp+

n (R)

∣∣∣∣ M ∈ GSp+
n (Z)

}
.

First we define index-shift maps for Jacobi forms of integral weight with some matrix
indices.

Let M = ( ∗ ∗
∗ 1 ) ∈ L+

2 . We take a matrix X ∈ GSp+
n (Z) such that the similitude of X

is n(X) = N2 with a natural number N . For any ψ ∈ J
(n)
k,M we define the function

ψ|V (X)

:=
∑

u,v∈(Z/NZ)(n,1)

∑

M∈Γn\ΓnXΓn

ψ|k,M
(
M ×

(
N2 0 0 0
0 N 0 0
0 0 1 0
0 0 0 N

)
, [((0, u), (0, v)), 02]

)
,

where (0, u), (0, v) ∈ (Z/NZ)(n,2). See the subsection §2.1 for the symbol of the matrix(
M ×

(
N2 0 0 0
0 N 0 0
0 0 1 0
0 0 0 N

)
, [((0, u), (0, v)), 02]

)
. The above summations are finite sums and do
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not depend on the choice of the representatives u, v andM . One can check that ψ|V (X)

belongs to J
(n)

k,M[(N 0
0 1 )]

. It means that V (X) is a map:

V (X) : J
(n)
k,M → J

(n)

k,M[(N 0
0 1 )]

.

Moreover, if ψ ∈ J
(n) cusp
k,M , then ψ|V (X) ∈ J

(n) cusp

k,M[(N 0
0 1 )]

. This fact is shown by the

expression of the Fourier coefficients of ψ|V (X).
For the sake of simplicity we set

Vα,n−α(p
2) := V (diag(1α, p1n−α, p

21α, p1n−α))

for any prime p and for any α (0 ≤ α ≤ n).
Next we shall define index-shift maps for Jacobi forms of half-integral weight of integer

index. We assume that p is an odd prime. Let m be a positive integer. Let Y = (X,ϕ) ∈
˜GSp+

n (Z) with n(X) = p2ν , where ν is a positive integer. For φ ∈ J
(n)

k− 1
2
,m

we define

φ|Ṽ (Y ) := n(X)
n(2k−1)

4
−n(n+1)

2

∑

M̃∈Γ(n)
0 (4)∗\Γ(n)

0 (4)∗Y Γ
(n)
0 (4)∗

φ|k− 1
2
,m(M̃, [(0, 0), 0]),

where the above summation is a finite sum and does not depend on the choice of the

representatives M̃ . One can show by a direct computation that φ|Ṽ (Y ) belongs to

J
(n)

k− 1
2
,mp2ν

.

For the sake of simplicity we set

Ṽα,n−α(p
2) := Ṽ ((diag(1α, p1n−α, p

21α, p1n−α), p
α/2))

for any odd prime p and for any α (0 ≤ α ≤ n).
For the prime p = 2, the index-shift map Ṽα,n−α(4) is defined for certain subspace

J
+(n)

k− 1
2
,m

of J
(n)

k− 1
2
,m
. This is a map from J

+(n)

k− 1
2
,m

to J
+(n)

k− 1
2
,4m

. The map Ṽα,n−α(4) is defined

through the linear isomorphism between J
(n)
k,M and J

+(n)

k− 1
2
,m

with M = ( ∗ ∗
∗ 1 ) ∈ L+

2 such

that det(2M) = m. The definition of Ṽα,n−α(4) is

ιM(ψ)|Ṽα,n−α(4) := 2k(2n+1)−n(n+ 7
2
)+ 1

2
α ιM[( 2 1 )]

(ψ|Vα,n−α(4))

for ψ ∈ J
(n)
k,M. Here ιM is the linear isomorphism map from J

(n)
k,M to J

+(n)

k− 1
2
,m
. See §5 for

the detail of the map ιM.

3. Ikeda lift and Siegel modular forms of half-integral weight

In this section we recall the Ikeda lift and construct Siegel modular forms of half-
integral weight through the Eichler-Zagier-Ibukiyama correspondence.



A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE 11

Let 2n and k be positive even integers such that k > 2n+ 1. Let

g(z) =
∑

N∈Z
N≡0,(−1)n mod 4

c(N)e(Nz) ∈ S
+(1)

k−n+ 1
2

be a Hecke eigenform. Let f be a normalized Hecke eigenform of elliptic cusp form of
weight 2k−2n which corresponds to g by the Shimura correspondence. Let F be a Ikeda
lift of g which is a Siegel cusp form of weight k of degree 2n given by

F (τ) =
∑

T∈L+
2n

A(T )e(Tτ),

where τ ∈ H2n and the Fourier coefficient A(T ) is given by

A(T ) = c(|DT |)fk−n−
1
2

T

∏

p|fT

F̃p(T, αp),

and where the fundamental discriminant DT and the natural number fT are determined
by (−1)n det(2T ) = DTf

2
T , and where F̃p(T,X) ∈ C[X + X−1] is a certain Laurent

polynomial (see [Ik 01, p. 642] for the definition). Here αp is the complex number

determined by af(p) = (αp+α−1
p )pk−n−

1
2 , and where af (p) is the p-th Fourier coefficient

of f .
We take the Fourier-Jacobi expansion of F :

F

((
τ z
tz ω

))
=

∑

N∈Z
ψN(τ, z)e(Nω),

where τ ∈ H2n−1, ω ∈ H1 and z ∈ C(2n−1,1). The function ψN is a Jacobi form of weight
k of index N of degree 2n− 1.

There exists G ∈ S
+(2n−1)

k− 1
2

which corresponds to ψ1 by the linear isomorphism between

S
+(2n−1)

k− 1
2

and the space of Jacobi cusp forms of weight k of index 1 of degree 2n − 1

(see [Ib 92] and see also Proposition 5.2 in §5. The form G is given by G = ι1(ψ1)).
We remark that the map

S
+(1)

k−n+ 1
2

→ S
+(2n−1)

k− 1
2

given by the above manner is a linear map. If g is a Hecke eigenform, then G is also a
Hecke eigenform (cf. [H 11, Theorem 1.1]).
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4. Generalization of the Maass relation for Siegel modular forms of

half-integral weight

Let g ∈ S
+(1)

k−n+ 1
2

be a Hecke eigen form. Let G ∈ S
+(2n−1)

k− 1
2

be the lift of g as in §3. We

take the Fourier-Jacobi expansion

G

((
τ z
tz ω

))
=

∑

m∈Z>0

φm(τ, z)e(mω).

Since G belongs to the plus-space, φm = 0 unless m ≡ 0, 3 mod 4.
To explain a generalization of the Maass relation, we prepare some symbols. For

integers l (2 ≤ l), β (0 ≤ β ≤ l − 1) and α (0 ≤ α ≤ l), we put

bβ,α := bβ,α,l,p(X) =





(pl+1−α − p−l−1+α)p
1
2 if β = α− 2,

(X +X−1)p if β = α− 1,

p−l+α+
3
2 if β = α,

0 otherwise,

and we set Bl,l+1(X) as the l × (l + 1)-matrix defined by

Bl,l+1(X) := (bβ,α) β=0,...,l−1
α=0,...,l

=



p−l+

3
2 b0,1 · · · b0,l

. . .
. . .

...

0 p
1
2 bl−1,l




with entries in C[X +X−1]. The 2× (n+ 1)-matrix Ap2,2n−1(X) is defined by

Ap2,n+1(X) :=

n∏

l=2

Bl,l+1(p
n+2
2

−lX)

= B2,3(p
n+2
2

−2X)B3,4(p
n+2
2

−3X) · · ·Bn,n+1(p
n+2
2

−nX).

For a ∈ Z>0 and for φ ∈ J
(n′)

k− 1
2
,m

we define the function φ|Ua by

(φ|Ua)(τ, z) := φ(τ, az).

In [H 16] we obtained the following generalization of the Maass relation.

Proposition 4.1. For any natural number m and for any prime p, we have the identity
between the vectors

(φm|Ṽ0,2n−2(p
2), φm|Ṽ1,2n−3(p

2), ..., φm|Ṽ2n−2,0(p
2))

= pk(2n−3)−2n2−n+ 11
2

(
φm

p2
|Up2 , φm|Up, φmp2

)



0 p2k−3

pk−2 pk−2
(

−m
p

)

0 1




×Ap2,2n−1(αp) diag(1, p
1
2 , p, ..., pn−1).
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Therefore we obtain

(4.1)

φm|Ṽi,2n−2−i(p
2) = a1 φm|Up + a2

(
p2k−3φm

p2
|Up2 + pk−2

(−m
p

)
φm|Up + φmp2

)

for any i (0 ≤ i ≤ 2n − 2) with certain constants aj = aj,i,p (j = 1, 2) which do not
depend on the choice of m. In particular, if i = 1, then by a straightforward calculation
we obtain a2 = a2,1,p = pk(2n−3)−4n2+7n− 3

2 6= 0.

Definition 4.2. For any prime p we set

D̂2n−2(p
2) := a−1

2 (Ṽ1,2n−3(p
2)− a1Up),

where a1 and a2 are constants determined by the identity (4.1).

We remark that the map D̂2n−2(p
2) depend on the choice of g, since a1 is determined

by the value {α±
p }. Remark also that D̂2n−2(p

2) and D̂2n−2(q
2) are compatible if two

primes p and q are not the same. Moreover, D̂2n−2(p
2) and UN are compatible for any

natural number N .
Let n′ = 2n − 2 and let m be a natural number. We define the sequence of maps

{D̂n′(N)}N and {Dn′(N)}N := {Dn′,m(N)}N through the following two formal Dirichlet
series

∞∑

N=1

D̂n′(N2)

N s
=

∏

p

(
I − D̂n′(p2)p−s + Up2p

2k−3−2s
)−1

and
∞∑

N=1

Dn′(N2)

N s
=

{
∏

p

(
I −

(−m
p

)
Upp

k−2−s
)} ∞∑

N=1

D̂n′(N2)

N s
,

where I denotes the identity map. We remark that the definitions of D̂n′(N2) and

Dn′(N2) depend on the choice of g ∈ S
+(1)

k−n+ 1
2

. The definition of D̂n′(N2) is independent

of the choice of m, but the definition of Dn′(N2) depends on the choice of m. Because

of the compatibility of D̂n′(p2) and UN , the above definitions are well-defined. Moreover
Dn′(N2) and UM are compatible for any natural numbers N and M .

Proposition 4.3. Let G ∈ S
+(2n−1)

k− 1
2

be as above. For any natural numbers N and for

any negative fundamental discriminant −m, we define Dn′(N2) as above. Then we have

φmN2 = φm|Dn′(N2).

Proof. Due to the definition of Dn′(p2δ), we have

0 = p2k−3Dn′(p2δ−2)Up2 −Dn′(p2δ)D̂n′(p2) +Dn′(p2δ+2)
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for any δ ≥ 1 and

−
(−m

p

)
pk−2Up = −D̂n′(p2) +Dn′(p2).

Thus

(4.2)

0 = p2k−3φm|Dn′(p2δ−2)Up2 − φm|Dn′(p2δ)D̂n′(p2) + φm|Dn′(p2δ+2)

for any δ ≥ 1 and

−
(−m

p

)
pk−2φm|Up = −φm|D̂n′(p2) + φm|Dn′(p2).(4.3)

On the other hand, since D̂n′(p2) = −a1
a2
Up+

1
a2
Ṽ1,2n−3(p

2) and due to (4.1) with i = 1,
we have

−
(−m′

p

)
pk−2φm′ |Up = p2k−3φm′

p2
|Up2 − φm′|D̂n′(p2) + φm′p2(4.4)

for any natural number m′.
We remark that φm

p2
= 0.

If m′ = m, then due to the identities (4.3) and (4.4), we have φmp2 = φm|Dn′(p2).
If m′ = mp2δ (δ ≥ 1) and if φmp2δ−2j = φm|Dn′(p2δ−2j) (j = 0, 1) is true, then due to

the identities (4.2) and (4.4), we have φmp2δ+2 = φm|Dn′(p2δ+2). Thus, by induction we
obtain φmp2δ = φm|Dn′(p2δ) for any δ ≥ 0.

Let q be a prime which is different from p, then
(

−mp2δ
q

)
=
(

−m
q

)
. Thus the definition

of Dn′(q2γ) does not change, even if we replace m by mp2δ. The identities (4.2) and (4.3)
are true, even if we replace m and p by mp2δ and by q, respectively. Therefore, we
conclude this proposition by induction with respect to natural numbers p2δ and m. ⊓⊔

Lemma 4.4. Let G ∈ S
+(2n−1)

k− 1
2

be as above. We fix a natural number m. We define

D̂n′(N) and Dn′(N) as above. For any natural numbers N , M , δ and γ, and for any
prime p, we have the identities

(1)

D̂n′(p2δ)D̂n′(p2γ) =

min(δ,γ)∑

i=0

p(2k−3)iUp2iD̂n′(p2(δ+γ−2i))

(2)

D̂n′(N2)D̂n′(M2) =
∑

d|(N,M)

d(2k−3)Ud2D̂n′

(
N2M2

d4

)
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(3)

Dn′(p2δ)Dn′(p2γ) =

min(δ,γ)∑

i=0

p(2k−3)iUp2iDn′(p2(δ+γ−2i))

−
(−m

p

)
pk−2

min(δ,γ)−1∑

i=0

p(2k−3)iUp2i+1Dn′(p2(δ+γ−1−2i)).

(4)

Dn′(N2)Dn′(M2) =
∑

d|(N,M)

d2k−3
∑

d1| (N,M)
d

µ(d1)d
k−2
1

(−m
d1

)
Ud2d1Dn′

(
N2M2

d4d21

)
,

where µ is the Möbius function.

Proof. The identity (1) follows from a straightforward calculation. The identity (3)
follows from (1) and from the relation

Dn′(p2δ) = D̂n′(p2δ)−
(−m

p

)
pk−2UpD̂n′(p2δ−2).

The identities (2) and (4) follow from (1) and (3). ⊓⊔

5. Isomorphism between the spaces of Jacobi forms

In this section we review a generalization of the Eichler-Zagier-Ibukiyama correspon-
dence shown in [H1 18]. It is a linear isomorphism between certain spaces of Jacobi
forms of integral weight and of half-integral weight.

Let n′, k and r be natural numbers. We assume that k is an even integer and r ≥ 1.

We take a matrix M =

(M1
1
2
L

1
2

t
L 1

)
∈ L+

r with M1 ∈ L+
r−1 and L ∈Mr−1,1(Z). We set

M :=

{
4M1 − LtL if r ≥ 2,

∅ if r = 1.

If r = 1, then M = 1 and we put det(M) := det(∅) = 1 by abuse of notation.

A plus-space J
+(n′)

k− 1
2
,M

for Jacobi forms is introduced in [H1 18]. This is a subspace of

J
(n′)

k− 1
2
,M

and is a generalization of the generalized plus-space of Siegel modular forms to

Jacobi forms, and where J
(n′)

k− 1
2
,M

denotes the space of Jacobi forms of weight k − 1
2
of

index M of degree n′. (See the definition of J
(n′)

k− 1
2
,M

in [H1 18, §2.3] for the case r−1 ≥ 2.

In this article we use the case r − 1 = 0 and r − 1 = 1). The space J
+(n′)

k− 1
2
,M

is defined as
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follows. Let φ ∈ J
(n′)

k− 1
2
,M

be a Jacobi form of weight k − 1
2
of index M on Γ

(n′)
0 (4). We

take the Fourier expansion of φ :

φ(τ, z) =
∑

N ′,R′

Cφ(N
′, R′)e(N ′τ +R′tz)

for (τ, z) ∈ Hn′ ×C(n′,r−1), where N ′ and R′ run over L∗
n′ and Z(n′,r−1), respectively, such

that 4N ′−R′M−1tR′ ≥ 0. Then φ belongs to J
+(n′)

k− 1
2
,M

if and only if Cφ(N
′, R′) = 0 unless

(
N ′ 1

2
R′

1
2
tR′ M

)
+ λtλ ∈ 4L∗

n′

with some λ ∈ Z(n′+r−1,1).
This condition requires a condition on M. For example, if r−1 = 1 and if J

+(n′)

k− 1
2
,M

6= ∅,
then M ≡ 0, 3 mod 4.

We define J
+(n′) cusp

k− 1
2
,M

:= J
+(n′)

k− 1
2
,M

∩ J (n′) cusp

k− 1
2
,M

.

If r = 1, then J
+(n′)

k− 1
2
,M

= J
+(n′)

k− 1
2
,∅ =M

+(n′)

k− 1
2

and J
+(n′) cusp

k− 1
2
,M

= J
+(n′) cusp

k− 1
2
,∅ = S

+(n′)

k− 1
2

.

Lemma 5.1. Let F ∈M
+(n′+r)

k− 1
2

. We take the Fourier-Jacobi expansion

F

((
τ z
tz ω

))
=

∑

M∈L∗
r

fM(τ, z)e(Mω),

where τ ∈ Hn′, z ∈ C(n′,r) and ω ∈ Hr. Then fM ∈ J
+(n′)

k− 1
2
,M
. Moreover, if F ∈ S

+(n′+r)

k− 1
2

,

then fM ∈ J
+(n′) cusp

k− 1
2
,M

.

Proof. It is obvious from the definition of the plus-space J
+(n′)

k− 1
2
,M
. ⊓⊔

In particular the function φm in §4 belongs to the plus-space J
+(2n−2)

k− 1
2
,m

.

Let M be as above. There exists a linear isomorphism map ιM from J
(n)
k,M to J

(n)+

k− 1
2
,M

(cf. [E-Z 85] (for r = n = 1), [Ib 92] (for r = 1, n > 1), [H1 18] (for r > 1, n ≥ 1)). This
map ιM is given as follows.

We assume ψ ∈ J
(n′)
k,M and denote by Cψ(∗, ∗) the Fourier coefficients of ψ. For τ ∈ Hn′

and for z = (z1, z2) ∈ C(n′,r) (z1 ∈ C(n′,r−1), z2 ∈ C(n′,1)), we take the theta decomposition

ψ(τ, z) =
∑

R∈Z(n′,1)

R mod 2Z(n′,1)

fR(τ, z1)ϑ1,R,L(τ, z1, z2),
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where

fR(τ, z1) =
∑

N1∈L∗

n′ ,N3∈Z(n′,r−1)

Cψ(N1,
(
N3 R

)
)

×e((N1 −
1

4
RtR)τ + (N3 −

1

2
RtL)tz1)

and where the function ϑ1,R,L is defined by

ϑ1,R,L(τ, z1, z2) := ϑ
1,(RL )

(τ,
1

2
z1L+ z2)

=
∑

x∈Z(n′,1)

x≡(RL ) mod 2

e

(
1

4
xtxτ + xt

(
1

2
z1L+ z2

))

(cf. [H1 18, Lemma 4.1]). We put

ιM(ψ)(τ, z1) :=
∑

R∈Z(n,1)/(2Z(n,1))

fR(4τ, 4z1).

Then ιM(ψ) belongs to J
+(n′)

k− 1
2
,M

(cf. [H1 18, Proposition 4.4]). If ψ is a Jacobi cusp form,

then ιM(ψ) is also a Jacobi cusp form. If r = 1, then M = 1 and ι1(ψ) is a Siegel
modular form (cf. [E-Z 85], [Ib 92]).

Proposition 5.2 ([H1 18]). We take a matrix M =

(M1
1
2
L

1
2

t
L 1

)
∈ L+

r . Let k be an

even integer. The map ιM gives the linear isomorphisms:

J
(n′)
k,M

∼= J
+(n′)

k− 1
2
,M
,

J
(n′) cusp
k,M

∼= J
+(n′) cusp

k− 1
2
,M

.

In the case of r = 1 (it means M = 1, M = ∅ and J
+(n′)

k− 1
2
,M

=M
+(n′)

k− 1
2

), these isomorphisms

have been shown in [E-Z 85] (for n′ = 1) and in [Ib 92] (for n′ > 1).

Aa for the relation between the Petersson inner products and the linear isomorphism
map ιM is known as follows.

Lemma 5.3. For ψi ∈ J
(n′) cusp
k,M (i = 1, 2) we set φi = ιM(ψi) ∈ J

+(n′) cusp

k− 1
2
,M

. Then we

have

〈ψ1, ψ2〉 = 22n
′(k−1)〈φ1, φ2〉.

Proof. This lemma has been shown in [E-Z 85, Theorem 5.4] (for r = 1 and n′ = 1),
in [K-K15, p.2051] (for r = 1 and n′ > 1), and in [H2 18, Lemma 3.1] (for r > 1 and
n′ ≥ 1). ⊓⊔
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In the followings we consider the case r = 2.

Let a ∈ Q>0, b ∈ Q and M ∈ L+
2 . For ψ ∈ J

(n′)
k,M we define the function

(ψ|U( a 0
b 1 )

)(τ, z) := ψ(τ, z ( a 0
b 1 ))

Lemma 5.4. Let r = 2 and M = ( ∗ ∗
∗ 1 ) ∈ L+

2 . Let ψ ∈ J
(n′)
k,M. Then, for any a ∈ Z>0

and for any b ∈ Z, we have ψ|U( a 0
b 1 )

∈ J
(n′)

k,M[(a 0
b 1 )]

and we have

ιM(ψ)|Ua = ιM[( a 0
b 1 )]

(
ψ|U( a 0

b 1 )

)
.

Proof. The first statement follows directly from the definition of Jacobi forms. And the
second statement can be shown by comparing the Fourier coefficients of both sides. The
reader is referred to [H 16, Proposition 4.3] for the detail of the calculation for the second
statement. ⊓⊔
Lemma 5.5. Let r = 2 and M = ( ∗ ∗

∗ 1 ) ∈ L+
2 . For any odd prime p and for 0 ≤ α ≤ n′,

let Ṽα,n′−α(p2) and Vα,n′−α(p2) be index-shift maps defined in §2.7. Then, for any ψ ∈
J
(n′)
k,M we have

ιM(ψ)|Ṽα,n′−α(p
2) = pk(2n

′+1)−n′(n′+ 7
2
)+ 1

2
α ιM[( p 1 )]

(ψ|Vα,n′−α(p
2)).(5.1)

Proof. The identity can be shown by comparing the Fourier coefficients of both sides.
The proof is the same as in [H 16, Proposition 4.4]. ⊓⊔

We remark that Ṽα,n′−α(4) has been defined through the identity (5.1). (See §2.7).

6. Adjoint maps

In this section we introduce some adjoint maps for Jacobi forms with respect to the
Petersson inner product.

We assume M = ( ∗ ∗
∗ 1 ) ∈ L+

2 such that det(2M) = m. We remark that m ≡ 0, 3
mod 4. There exists M for any such natural number m.

Let n′ and N be natural numbers.

6.1. Adjoint map U∗ for Jacobi forms of integral weight. For any ψ ∈ J
(n′)

k,M[(N 0
0 1 )]

we define the function

ψ|U∗
(N 0
0 1 )

:= N−2n′
∑

λ1,µ1∈(Z/NZ)(n′ ,1)

ψ|U(

N−1 0
0 1

)|k,M[((λ1, 0), (µ1, 0)), 02].

Lemma 6.1. We obtain a map

U∗
(N 0
0 1 )

: J
(n′)

k,M[(N 0
0 1 )]

→ J
(n′)
k,M.

Moreover, if ψ ∈ J
(n′) cusp

k,M[(N 0
0 1 )]

, then ψ|U∗
(N 0
0 1 )

∈ J
(n′) cusp
k,M .
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Proof. One can check the first statement by a straightforward calculation. For the
second statement we need to show that ψ|U∗

(N 0
0 1 )

is a Jacobi cusp form. It is shown by

the expression of the Fourier coefficients of ψ|U∗
(N 0
0 1 )

by using the Fourier coefficients of

ψ. ⊓⊔

Lemma 6.2. The map U∗
(N 0
0 1 )

is the adjoint map of U(N 0
0 1 )

with respect to the Petersson

inner product. It means that we have

〈ψ1|U(N 0
0 1 )

, ψ2〉 = 〈ψ1, ψ2|U∗
(N 0
0 1 )

〉

for any ψ1 ∈ J
(n′) cusp
k,M and any ψ2 ∈ J

(n′) cusp

k,M[(N 0
0 1 )]

.

Proof. We fix a fundamental domain Fn′,2 of ΓJn′,2\(Hn′ × C(n′,2)). And we put

Fn′,2(N) =
{
(τ, z ( N 0

0 1 )) ∈ Hn′ × C(n′,2) | (τ, z) ∈ Fn′,2

}
.

We have vol(Fn′,2(N)) = N2n′

vol(Fn′,2). Here vol(∗) is the volume with the measure
det(v)−n

′−3du dv dx dy. Let X = [((λ1, 0), (µ1, 0)), 02] ∈ Z(n′,2)×Z(n′,2)×Z(2,2). We write
z = x+

√
−1y = (z1, z2) ∈ C(n′,2), zi = xi +

√
−1yi (i = 1, 2). Then, by the substitution

z1 → z1 +
1
N
τλ1 +

1
N
µ1, we have

〈ψ1|U(N 0
0 1 )

, ψ2〉

=

∫

Fn′,2

ψ1(τ, (Nz1, z2))ψ2(τ, z) det(v)
k−n′−3e(

−4π

2πi
M [( N 0

0 1 )] v
−1[y]) du dv dx dy

=

∫

Fn′,2

ψ1(τ, (Nz1 + τλ1 + µ1, z2))ψ2(τ, (z1 +
1

N
τλ1 +

1

N
µ1, z2)) det(v)

k−n′−3

×e(−4π

2πi
M [(N 0

0 1 )] v
−1[y + (

1

N
vλ1, 0)]) du dv dx dy,

and by the substitution z1 → 1
N
z1,

=

∫

Fn′ ,2(N)

N−2n′

ψ1(τ, (z1 + τλ1 + µ1, z2))ψ2(τ, (N−1(z1 + τλ1 + µ1), z2)) det(v)
k−n′−3

×e(−4π

2πi
Mv−1[y + (vλ1, 0)]) du dv dx dy

=

∫

Fn′ ,2(N)

N−2n′

ψ1(τ, z)(ψ2(∗, ∗
(
N−1 0
0 1

)
)|X)(τ, z) det(v)k−n

′−3e(
−4π

2πi
Mv−1[y]) du dv dx dy.
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Thus we have

〈ψ1|U(N 0
0 1 )

, ψ2〉

= N−2n′
∑

λ1,µ1∈Z(n′,1)

∫

Fn′ ,2(N)

N−2n′

ψ1(τ, z)(ψ2(∗, ∗
(
N−1 0
0 1

)
)|X)(τ, z)

× det(v)k−n
′−3e(

−4π

2πi
Mv−1[y]) du dv dx dy.

= N−2n′

∫

Fn′,2(N)

ψ1(τ, z)(ψ2|U∗
(N 0
0 1 )

)(τ, z) det(v)k−n
′−3e(

−4π

2πi
Mv−1[y]) du dv dx dy

=

∫

Fn′,2

ψ1(τ, z)(ψ2|U∗
(N 0
0 1 )

)(τ, z) det(v)k−n
′−3e(

−4π

2πi
Mv−1[y]) du dv dx dy

= 〈ψ1, ψ2|U∗
(N 0
0 1 )

〉.

Thus we conclude this lemma. ⊓⊔
Lemma 6.3. For any natural numbers N and M , we have

(1)

ψ1|U(N 0
0 1 )

|U∗
(N 0
0 1 )

= ψ1,

(2)

ψ2|U∗
(N 0
0 1 )

= ψ2|U(M 0
0 1 )

|U∗
(NM 0

0 1 )

for any prime p and for any ψ1 ∈ J
(n′)
k,M and any ψ2 ∈ J

(n′)

k,M[(N 0
0 1 )]

. Moreover, if a natural

number d is coprime to N , then

(3)

ψ2|U( d 0
0 1 )

|U∗
(N 0
0 1 )

= ψ2|U∗
(N 0
0 1 )

|U( d 0
0 1 ),

(4)

ψ3|U∗
( d 0
0 1 )

|U∗
(N 0
0 1 )

= ψ3|U∗
(N 0
0 1 )

|U∗
( d 0
0 1 )

for any ψ2 ∈ J
(n′)

k,M[(N 0
0 1 )]

and any ψ3 ∈ J
(n′)

k,M[(Nd 0
0 1 )]

.

Proof. The identity (1) is obvious because of the definitions. The identity (2) follows
from the definitions of U(N 0

0 1 )
and U∗

(N 0
0 1 )

, since

ψ|U(M 0
0 1 )

|U(

(NM)−1 0
0 1

)|k,M[(λ1 +Nλ′1, 0), (µ1 +Nµ′
1, 0), 02]

= ψ|U(

N−1 0
0 1

)|k,M[(λ1, 0), (µ1, 0), 02]
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for any λ1, λ
′
1, µ1, µ

′
1 ∈ Z(n′,1). The identities (3) and (4) also follow from straightforward

calculations. ⊓⊔
6.2. Adjoint map U∗ for Jacobi forms of half-integral weight.

Definition 6.4. By combining Proposition 5.2 and Lemma 6.2 we define the adjoint

map U∗
N of UN with respect to the Petersson inner product. For φ ∈ J

+(n′)

k− 1
2
,mN2 we define

φ|U∗
N := ιM((ι−1

M[(N 0
0 1 )]

(φ))|U∗
(N 0
0 1 )

).

Then, due to Proposition 5.2 and Lemma 6.2, we have φ|U∗
N ∈ J

+(n′)

k− 1
2
,m
. And if φ ∈

J
+(n′) cusp

k− 1
2
,mN2 , then φ|U∗

N ∈ J
+(n′) cusp

k− 1
2
,m

.

Lemma 6.5. The map U∗
N is the adjoint map of UN with respect to the Petersson inner

product. It means that we have

〈φ1|UN , φ2〉 = 〈φ1, φ2|U∗
N〉

for any φ1 ∈ J
(n′) cusp

k− 1
2
,m

and any φ2 ∈ J
(n′) cusp

k− 1
2
,mN2.

Proof. Due to Lemma 5.3, Lemma 5.4 and Lemma 6.2, we have

〈φ1|UN , φ2〉 = 2−2n′(k−1)〈ι−1

M[(N 0
0 1 )]

(φ1|UN), ι−1

M[(N 0
0 1 )]

(φ2)〉

= 2−2n′(k−1)〈ι−1
M(φ1)|U[(N 0

0 1 )]
, ι−1

M[(N 0
0 1 )]

(φ2)〉

= 2−2n′(k−1)〈ι−1
M(φ1), ι

−1

M[(N 0
0 1 )]

(φ2)|U∗
[(N 0

0 1 )]
〉

= 〈φ1, φ2|U∗
N 〉.

⊓⊔
Lemma 6.6. For any natural numbers N and M , we have

(1)

φ1|UN |U∗
N = φ1,

(2)

φ2|U∗
N = φ2|UM |U∗

NM

for any φ1 ∈ J
+(n′)

k− 1
2
,m

and any φ2 ∈ J
+(n′)

k− 1
2
,mN2. Moreover, if a natural number d is coprime

to N , then

(3)

φ2|Ud|U∗
N = φ2|U∗

N |Ud,
(4)

φ3|U∗
d |U∗

N = φ3|U∗
N |U∗

d
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for any φ2 ∈ J
+(n′)

k− 1
2
,mN2 and any φ3 ∈ J

+(n′)

k− 1
2
,mN2M2.

Proof. This lemma follows from Definition 6.4, Lemma 5.4 and Lemma 6.3. ⊓⊔
Lemma 6.7. If (N, 2) = 1, then the map U∗

N is given by

φ|U∗
N = (2N)−2n′

∑

λ∈(Z/NZ)n′

∑

µ∈(Z/4NZ)n′

(
φ|U 1

N

)
|m
[
(λ,

1

4
µ), 0

]

for any φ ∈ J
+(n′)

k− 1
2
,mN2.

Proof. By comparing the Fourier coefficients of the both side, we obtain the identity. ⊓⊔
6.3. Adjoint map V ∗ for Jacobi forms of integral weight. Let X ∈ GSp+

n (Z) be a
matrix such that the similitude of X is n(X) = N2 with a natural number N . For any

ψ ∈ J
(n′)

k,M[(N 0
0 1 )]

we define the function

ψ|V ∗(X) := N2k−4n′
∑

λ1,µ1∈(Z/N2Z)(n′,1)

∑

λ2,µ2∈(Z/NZ)(n′ ,1)

∑

M∈Γn′\Γn′XΓn′

×ψ|k,M
(
M ×

(
1 0 0 0
0 N 0 0
0 0 N2 0
0 0 0 N

)
, [((λ1, λ2), (µ1, µ2)), 02]

)
,

where (λ1, λ2), (µ1, µ2) ∈ (Z/N2Z)(n
′,1) × (Z/NZ)(n

′,1). See §2.1 for the symbol of the

matrix

(
M ×

(
1 0 0 0
0 N 0 0
0 0 N2 0
0 0 0 N

)
, [(λ, µ), 02]

)
. The above summations are finite sums and do

not depend on the choice of the representatives (λ1, λ2), (µ1, µ2) and M .
Let V (X) be the index-shift map for Jacobi forms of matrix index defined in §2.7.

Lemma 6.8. We have

ψ|V ∗(X) = ψ|V (X)|U∗
(

N2 0
0 1

)

In particular, the function ψ|V ∗(X) belongs to J
(n′)
k,M. It means that V ∗(X) is a map:

V ∗(X) : J
(n′)

k,M[(N 0
0 1 )]

→ J
(n′)
k,M.

Moreover, if ψ ∈ J
(n′) cusp

k,M[(N 0
0 1 )]

, then ψ|V ∗(X) ∈ J
(n′) cusp
k,M

Proof. The fist identity follows from the definitions of V ∗(X), V (X) and U∗
(

N2 0
0 1

). The

other statements follow from this identity. ⊓⊔
Lemma 6.9. The map V ∗(X) is the adjoint map of V (X) with respect to the Petersson
inner product. It means that we have

〈ψ1|V (X), ψ2〉 = 〈ψ1, ψ2|V ∗(X)〉
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for any ψ1 ∈ J
(n′) cusp
k,M and any ψ2 ∈ J

(n′) cusp

k,M[(N 0
0 1 )]

.

Proof. The proof is similar to the one of Lemma 6.2. ⊓⊔
For the sake of simplicity we set

V ∗
α,n′−α(p

2) := V ∗(diag(1α, p1n′−α, p
21α, p1n′−α))

for any prime p and for any α (0 ≤ α ≤ n′).

6.4. Adjoint map Ṽ ∗ for Jacobi forms of half-integral weight. We define the
index-shift map Ṽ ∗

α,n′−α(p
2) for Jacobi forms of half-integral weight.

Definition 6.10. For any prime p and for any φ ∈ J
+(n′)

k− 1
2
,mp2

we define

φ|Ṽ ∗
α,n′−α(p

2) := pk(2n
′+1)−n′(n′+ 7

2
)+ 1

2
αιM

((
ι−1

M
[(

p 0
0 1

)](φ)

)
|V ∗
α,n′−α(p

2)

)
.

Lemma 6.11. For any prime p, for any φ1 ∈ J
+(n′) cusp

k− 1
2
,m

and for any φ2 ∈ J
+(n′) cusp

k− 1
2
,mp2

, we

have

〈φ1|Ṽα,n′−α(p
2), φ2〉 = 〈φ1, φ2|Ṽ ∗

α,n′−α(p
2)〉.

Proof. This is due to Lemma 5.3, Lemma 5.5 and Lemma 6.9. ⊓⊔
Lemma 6.12. We have

φ|Ṽ ∗
α,n′−α(p

2) = φ|Ṽα,n′−α(p
2)|U∗

p2

for any prime p and for any φ ∈ J
+(n′) cusp

k− 1
2
,mp2

.

Proof. This lemma follows from Lemma 6.8, Definition 6.4, Lemma 5.5 and Defini-
tion 6.10. ⊓⊔
6.5. Adjoint map D∗ for Jacobi forms of half-integral weight. Let n′ = 2n − 2
and let the symbol Dn′(N2) be as in §4.

In this section we will give the adjoint map of Dn′(N2) with respect to the Petersson
inner product.

Proposition 6.13. The adjoint map D∗
n′(N2) of Dn′(N2) with respect to the Petersson

inner product is given by

φ|D∗
n′(N2) = φ|Dn′(N2)|U∗

N2 .

for any φ ∈ J
+(n′)

k− 1
2
,mN2. It means we have

〈ψ1|Dn′(N2), ψ2〉 = 〈ψ1, ψ2|Dn′(N2)|U∗
N2〉

for any ψ1 ∈ J
+(n′) cusp

k− 1
2
,m

and any ψ2 ∈ J
+(n′) cusp

k− 1
2
,mN2 .
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Proof. For a prime p we write Vn′(p2) = Ṽ1,2n−3(p
2) and V ∗

n′(p2) = Ṽ ∗
1,2n−3(p

2) for the
sake of simplicity. Due to Lemma 6.11, Lemma 6.12, Lemma 6.5 and Lemma 6.6, for
Jacobi cusp forms ψ1 and ψ2 with suitable indices, we have

〈ψ1|Up2δ |Vn′(p2), ψ2〉 = 〈ψ1|Up2δ , ψ2|V ∗
n′(p2)〉 = 〈ψ1|Up2δ , ψ2|Vn′(p2)|U∗

p2〉
= 〈ψ1, ψ2|Vn′(p2)|Up2δ |U∗

p4δ+2〉 = 〈ψ1, ψ2|Up2δ |Vn′(p2)|U∗
p4δ+2〉.

Since Dn′(N) is generated by a linear combination of compositions of Vn′(p2) and
Up2 , and since {Vn′(p2)}p and {UN}N are compatible, we conclude 〈ψ1|Dn′(N2), ψ2〉 =
〈ψ1, ψ2|Dn′(N2)|U∗

N2〉 by similar arguments as above. ⊓⊔

7. Jacobi-Eisenstein series and index-shift maps

Let n′ be a natural number. In this section we introduce Fourier-Jacobi coefficients
{e(n′)

k− 1
2
,m
}m of a generalized Cohen-Eisenstein series. Here e

(n′)

k− 1
2
,m

∈ J
+(n′)

k− 1
2
,m
. Moreover,

we shall give a formula for e
(n′)

k− 1
2
,mN2 |U∗

N , where U
∗
N is the adjoint map introduced in §6.2.

7.1. Jacobi-Eisenstein series. In this subsection we review some Jacobi-Eisenstein
series and their Fourier-Jacobi coefficients.

Let r > 0 be an integer and let M ∈ L+
r . For an even integer k > n′ + r + 1, the

Jacobi-Eisenstein series of weight k of index M of degree n′ is defined by

E
(n′)
k,M :=

∑

M∈Γ(n′)
∞ \Γn

∑

λ∈Z(n′,r)

1|k,M([(λ, 0), 0r],M).

We take M = 1 ∈ Z>0. We define

H(n′)

k− 1
2

:= ι1(E
(n′)
k,1 ),

where the linear map ι1 : J
(n′)
k,1 →M

+(n′)

k− 1
2

is defined in §5. The form H(n′)

k− 1
2

belongs to the

plus-space M
+(n′)

k− 1
2

. In this article we call H(n′)

k− 1
2

a generalized Cohen-Eisenstein series,

since H(1)

k− 1
2

has been introduced by Cohen [Co 75]. (See also [Ar 98]).

Form ∈ Z we denote by e
(n′)

k− 1
2
,m

them-th Fourier-Jacobi coefficient ofH(n′+1)

k− 1
2

, it means

H(n′+1)

k− 1
2

((
τ z
tz ω

))
=

∑

m∈Z
e
(n′)

k− 1
2
,m
(τ, z)e(mω),

for τ ∈ Hn′, z ∈ Cn′

and ω ∈ H1. We remark that e
(n′)

k− 1
2
,m

= 0 unless m ≡ 0, 3 mod 4,

since H(n′+1)

k− 1
2

belongs to the plus-space M
+(n′+1)

k− 1
2

. Remark also that e
(n′)

k− 1
2
,m

is a Jacobi

form which belongs to J
+(n′)

k− 1
2
,m
.



A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE 25

On the other hand, we take a Fourier-Jacobi expansion of E
(n′+1)
k,1 :

E
(n′+1)
k,1

((
τ z1
tz1 ω1

)
,

(
z2
ω2

))
e(ω3) =

∑

M∈L∗
2

M=( ∗ ∗
∗ 1 )

e
(n′)
k,M(τ, (z1, z2))e(M

(
ω1 ω2
tω2 ω3

)
),

where



τ z1 z2
tz1 ω1 ω2
tz2

tω2 ω3


 ∈ Hn′+2, τ ∈ Hn′, ω1 ∈ H1 and ω3 ∈ H1. The form e

(n′)
k,M is a

Jacobi form which belongs to J
(n′)
k,M.

Lemma 7.1. For M =

(
∗ ∗
∗ 1

)
∈ L+

2 we put m = det(2M). Then we have

ιM(e
(n′)
k,M) = e

(n′)

k− 1
2
,m
.

Proof. From the definition of two linear maps ι1 and ιM and from the definition of the
Fourier-Jacobi expansions, the diagram

J
(n′+1)
k,1

ι1−−−→ M
+(n′+1)

k− 1
2y
y

J
(n′)
k,M

ιM−−−→ J
+(n′)

k− 1
2
,m

is commutative, where two down arrows are given by the Fourier-Jacobi expansions.

Thus this lemma follows from the definitions of e
(n′)

k− 1
2
,m

and e
(n′)
k,M. ⊓⊔

We now describe e
(n′)
k,M as a linear combination of the Jacobi-Eisenstein series {E(n′)

k,M′}M′.
We denote by hk− 1

2
(m) the m-th Fourier coefficient of the Cohen-Eisenstein series

H(1)

k− 1
2

. It means H(1)

k− 1
2

(τ) =
∑

m

hk− 1
2
(m)e(mτ).

Let m be a natural number such that −m = D0f
2 with a fundamental discriminant

D0 and with a natural number f . It is obvious that m ≡ 0, 3 mod 4. We define

gk(m) :=
∑

d|f
µ(d) hk− 1

2

(m
d2

)
,

where µ is the Möbius function.
We will use the following lemma for the proof of Proposition 7.8.

Lemma 7.2. Let m′ be a natural number such that −m′ ≡ 0, 1 mod 4. Then for any
prime p we have

gk(p
2m′) =

(
p2k−3 −

(−m′

p

)
pk−2

)
gk(m

′).
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Proof. See [H 16, Lemma 3.2]. ⊓⊔

Lemma 7.3. For M =

(
∗ ∗
∗ 1

)
∈ L+

2 we set m = det(2M). Let D0 and f be as above.

If k > n′ + 3, then

e
(n′)
k,M(τ, z) =

∑

d|f
gk

(m
d2

)
E

(n′)

k,M[Wd
−1]

(τ, ztWd),

where we chose a matrix Wd ∈ Z(2,2) for each d which satisfies the conditions det(Wd) =

d, M
[
Wd

−1
]
∈ L+

2 and M
[
Wd

−1
]
=

(
∗ ∗
∗ 1

)
. If Wd satisfies these conditions, the right

hand side of the identity does not depend on the choice of Wd.

Proof. The reader is referred to [H 16, Proposition 3.3]. This formula has originally been
given in [Bo 83, Satz 7]. ⊓⊔

Definition 7.4. For M =

(
∗ ∗
∗ 1

)
∈ L+

2 we set m = det(2M). We define

E
(n′)

k− 1
2
,m

:= ιM(E
(n′)
k,M).

Lemma 7.5. Let the symbols M, m and f be as above. Then we have E
(n′)

k− 1
2
,m

∈ J
+(n′)

k− 1
2
,m

and

e
(n′)

k− 1
2
,m
(τ, z) =

∑

d|f
gk

(m
d2

)
E

(n′)

k− 1
2
, m
d2
(τ, dz).

Proof. This lemma follows from Proposition 5.2, Lemma 7.1 and Lemma 7.3. ⊓⊔
Lemma 7.6. Let the symbols be as above. We have

E
(n′)

k− 1
2
,mN2 |U∗

N = N−n′

E
(n′)

k− 1
2
,m

for any natural number N , where U∗
N is the adjoint map of UN introduced in §6.2.

Proof. Since

E
(n′)

k− 1
2
,mN2 |U∗

N = ιM

(
ι−1

M[(N 0
0 1 )]

(E
(n′)

k− 1
2
,mN2)|U∗

[(N 0
0 1 )]

)

= ιM

(
E

(n′)

k,M[(N 0
0 1 )]

|U∗
[(N 0

0 1 )]

)
,

it is enough to show

E
(n′)

k,M[(N 0
0 1 )]

|U∗
[(N 0

0 1 )]
= N−n′

E
(n′)
k,M.
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From the definition we have

E
(n′)

k,M[(N 0
0 1 )]

(τ, z) =
∑

M∈Γ(n′)
∞

∑

λ∈Z(n′,2)

Jk,M(N 0
0 1 )

(([(λ, 0), 02],M) , (τ, z))−1

=
∑

M∈Γ(n′)
∞

∑

λ∈Z(n′,2)

Jk,M (([(λ (N 0
0 1 ) , 0), 02],M) , (τ, z (N 0

0 1 )))
−1
.

We write Xλ′,µ′ = [((λ′, 0), (µ′, 0)), 02] with λ
′, µ′ ∈ Z(n′,1). Then

(
E

(n′)

k,M[(N 0
0 1 )]

|U(

N−1 0
0 1

)|k,MXλ′,µ′

)
(τ, z) =

∑

M∈Γ(n′)
∞

∑

λ∈Z(n′ ,2)

Jk,M (γ, (τ, z))−1 ,

where we write γ = ([(λ (N 0
0 1 ) + (λ′′, 0), (µ′′, 0)), 02],M) and where

(
λ′′

µ′′

)
= tM−1

(
λ′

µ′′

)
.

Thus we obtain

E
(n′)

k,M[(N 0
0 1 )]

|U∗
[(N 0

0 1 )]
= N−2n′

∑

λ′,µ′∈(Z/NZ)(n′ ,1)

(
E

(n′)

k,M[(N 0
0 1 )]

|U(

N−1 0
0 1

)|k,MXλ′,µ′

)

= N−n′

E
(n′)
k,M.

⊓⊔

Definition 7.7. Let N be a natural number and let ν = ordpN be the largest integer
such that pν |N . We define

Ψ(n′)
p (N,X) := Ψ

(n′)
p,D0

(N,X) =
Xν+1 −X−(ν+1)

X −X−1
−
(
D0

p

)
p−

n′

2
− 1

2
Xν −X−ν

X −X−1
.

Proposition 7.8. Let the symbols m, D0 and f be as in Lemma 7.3. Recall D0 is
the fundamental discriminant such that f =

√
m/|D0| is a natural number. If natural

number N is coprime to f , then we obtain

e
(n′)

k− 1
2
,mN2 |U∗

N = N (k−n′

2
− 3

2
)
∏

p|N
Ψ(n′)
p (pν , pk−

n′

2
− 3

2 )e
(n′)

k− 1
2
,m
,

where ν = ordpN .
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Proof. We assume that f and p are coprime. Due to Lemma 7.5, Lemma 7.2, Lemma 6.6
and Lemma 7.6, we have

e
(n′)

k− 1
2
,mp2ν

|U∗
pν =

∑

d|f

ν∑

i=0

gk

(m
d2
p2(ν−i)

)
E

(n′)

k− 1
2
,m
d2
p2(ν−i) |Udpi|U∗

pν

=
∑

d|f
gk

(m
d2

)

{
ν−1∑

i=0

(
p(2k−3)(ν−i) −

(
D0

p

)
pk−2+(2k−3)(ν−i−1)

)
E

(n′)

k− 1
2
,m
d2
p2(ν−i) |Ud|U∗

pν−i

+E
(n′)

k− 1
2
,m
d2
|Ud
}

=
∑

d|f
gk

(m
d2

)
E

(n′)

k− 1
2
, m
d2
|Ud

{
1 +

ν−1∑

i=0

(
p(2k−3)(ν−i) −

(
D0

p

)
pk−2+(2k−3)(ν−i−1)

)
p−n

′(ν−i)

}

= e
(n′)

k− 1
2
,m

{
p(k−

n′

2
− 3

2
)ν p

(k−n′

2
− 3

2
)(ν+1) − p−(k−n′

2
− 3

2
)(ν+1)

p(k−
n′

2
− 3

2
) − p−(k−n′

2
− 3

2
)

−
(
D0

p

)
pk−2−n′+(k−n′

2
− 3

2
)(ν−1) p

(k−n′

2
− 3

2
)ν − p−(k−n′

2
− 3

2
)ν

p(k−
n′

2
− 3

2
) − p−(k−n′

2
− 3

2
)

}
.

Thus we have

e
(n′)

k− 1
2
,mp2ν

|U∗
pν = p(k−

n′

2
− 3

2
)νΨ(n′)

p (pν , pk−
n′

2
− 3

2 )e
(n′)

k− 1
2
,m
.

By induction with respect to m and p, we obtain this proposition. ⊓⊔

8. Proof of main theorem

In this section we shall prove Theorem 1.1. Let the symbols G and φm be as in §1
and §3. The adjoint map U∗

N was introduced in Definition 6.4. The index-shift map

D2n−2(N
2) was denoted in §4. The adjoint map D̃2n−2(N

2)∗ of D2n−2(N
2) was obtained

in Proposition 6.13.
We write −m = D0f

2 with a fundamental discriminant D0 and with a natural number
f .

Lemma 8.1. We assume that f and N are coprime. Then we have

φmN2 |U∗
N = Nk−n− 1

2

∏

p|N
Ψ(2n−2)
p (pν , αp)φm.
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Proof. Due to Proposition 7.8 we have

e
(2n−2)

k′− 1
2
,mN2 |U∗

N = Nk′−n− 1
2

∏

p|N
Ψ(2n−2)
p (pν , pk

′−n− 1
2 )e

(2n−2)

k′− 1
2
,m

for infinitely many natural number k′. By a standard argument for Ikeda lifts, we obtain
this lemma. ⊓⊔
Lemma 8.2. We assume that f and N are coprime. Then we have

φm|D2n−2(N
2)|D∗

2n−2(N
2)

=
∑

d|N

(
Nd−1

)2k−2n−1
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
d
n− 3

2
1

∏

p| N2

d2d1

Ψ(2n−2)
p (pν , αp)φm.

Proof. By virtue of Proposition 6.13, Lemma 4.4(4), Proposition 4.3, Lemma 6.6(2) and
Lemma 8.1, we obtain

φm|D2n−2(N
2)|D∗

2n−2(N
2)

= φm|D2n−2(N
2)|D2n−2(N

2)|U∗
N2

= φm|
∑

d|N
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
dk−2
1 Ud2d1 |D2n−2

(
N4

d4d21

)
|U∗

N2

=
∑

d|N
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
dk−2
1 φmN4

d4d2
1

|Ud2d1 |U∗
N2

=
∑

d|N
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
dk−2
1 φmN4

d4d2
1

|U∗
N2

d2d1

=
∑

d|N
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
dk−2
1

(
N2d−2d−1

1

)k−n− 1
2
∏

p| N2

d2d1

Ψ(2n−2)
p (pν , αp)φm

=
∑

d|N

(
Nd−1

)2k−2n−1
d2k−3

∑

d1|Nd

µ(d1)

(
D0

d1

)
d
n− 3

2
1

∏

p| N2

d2d1

Ψ(2n−2)
p (pν , αp)φm.

⊓⊔
We shall now prove Theorem 1.1. We have

∑

m∈Z>0

−m≡0,1 mod 4

〈φm, φm〉
ms+k−n− 1

2

=
∑

D0

1

|D0|s+k−n−
1
2

∞∑

N=1

〈φ|D0|N2 , φ|D0|N2〉
N2(s+k−n− 1

2
)

,

where D0 runs over all negative fundamental discriminants. Due to Proposition 4.3, we
have φ|D0|N2 = φ|D0||D2n−2(N

2) for any natural number N . Here D2n−2(N
2) is defined
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for a fixed |D0|. Thus, by virtue of Lemma 8.2, we have
∞∑

N=1

〈φ|D0|N2, φ|D0|N2〉
N2s

=
∞∑

N=1

〈φ|D0||D2n−2(N
2), φ|D0||D2n−2(N

2)〉
N2s

=

∞∑

N=1

〈φ|D0||D2n−2(N
2)D∗

2n−2(N
2), φ|D0|〉

N2s

= 〈φ|D0|, φ|D0|〉
∞∑

N=1

∑

d|N

(
N

d

)−2s+2k−2n−1

d−2s+2k−3

×
∑

d1|Nd

µ(d1)

(
D0

d1

)
d
n− 3

2
1

∏

p| N2

d2d1

Ψ(2n−2)
p (pν , αp)

= 〈φ|D0|, φ|D0|〉ζ(2s− 2k + 3)

×
∞∑

N=1

N−2s+2k−2n−1
∑

d1|N
µ(d1)

(
D0

d1

)
d
n− 3

2
1

∏

p|N2

d1

Ψ(2n−2)
p (pν , αp)

= 〈φ|D0|, φ|D0|〉ζ(2s− 2k + 3)

×
∏

p

{
1 +

∞∑

δ=1

pδ(−2s+2k−2n−1)

(
Ψ(2n−2)
p (p2δ, αp)−

(
D0

p

)
pn−

3
2Ψ(2n−2)

p (p2δ−1, αp)

)}

= 〈φ|D0|, φ|D0|〉 ζ(2s− 2k + 3)

×
∏

p

{
(1− α2

pp
−2s+2k−2n−1)(1− α−2

p p−2s+2k−2n−1)
}−1

×
{
1 + p−2s+2k−2n−1 −

(
D0

p

)
p−2s+2k−3n− 1

2 (αp + α−1
p )

+

(
D0

p

)2

p−2s+2k−2n−2(1 + p−2s+2k−2n−1)−
(
D0

p

)
p−2s+2k−n− 5

2 (αp + α−1
p )

}

= 〈φ|D0|, φ|D0|〉 ζ(2s− 2k + 3)L(2s− 2k + 2n+ 1, f, Ad)

×
∏

p

{
(
1− p−4s+4k−4n−2

)
(
1 +

(
D0

p

)2

p−2s+2k−2n−2

)

−
(
D0

p

)(
1− p−2s+2k−2n−1

) (
1 + p2n−2

)
p−2s+2k−3n− 1

2 (αp + α−1
p )

}

= 〈φ|D0|, φ|D0|〉 ζ(2s− 2k + 3) ζ(4s− 4k + 4n+ 2)−1L(2s− 2k + 2n+ 1, f, Ad)
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×
∏

p∤D0



1 + p−2s+2k−2n−2 −

(
D0

p

)
(1 + p2n−2) p−k+1af(p)

p2s−2k+2n+1 + 1



 .

Therefore we conclude Theorem 1.1.
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