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On supercuspidal representations of SL, (F)
associated with tamely ramified extensions

Koichi Takase *

Abstract

We will give an explicit construction of irreducible suparcuspidal rep-
resentations of the special linear group over a non-archimedean local field
and will speculate its Langlands parameter by means of verifying the
Hiraga-Ichino-Ikeda formula of the formal degree of the supercuspidal rep-
resentations.

1 Introduction

Although the L-packets of the irreducible supercuspidal representations of the
special linear group over a non-archimedean local field are well-understood by
the works of [6], [2], [7] or of [4], little is known for the explicit determination of
the Langlands parameter of an individual explicitly constructed supercuspidal
representation.

In this paper, we will construct quite explicitely some supercuspidal represen-
tations, associated with tamely ramified extensions, of the special linear group
over a non-dyadic non-archimedean local field and will speculate its Langlands
parameter by showing the formula of the formal degree established by Hiraga,
Ichino and Tkeda [4] (see the subsection 24 for the conclusions).

The main results of this paper are Theorem 2Tl (a construction of super-
cuspidal representations associated with a tamely ramified extension of the base
field), Theorem (an explicit formula of the formal degree of the supercus-
pidal representation) and Theorem 2.3.1] (showing Hiraga-Ichino-Tkeda formula
of the formal degree in the form of Gross and Reeder [3]).

The first theorem is proved in Section [Bl Basic ideas and arguments are
these of Shintani [9] with a small modification to our case of the special linear
group (the original Shintani’s paper treats the subgroup of the general linear
group of unit determinant).

The second theorem is proved in Section @l Our argument is based upon a
general theory, developed by [10], of explicit description of irreducible represen-
tations of hyperspecial open compact subgroups associated with regular adjoint
orbits.

The third theorem is proved in Section [l under the assumption that the
tamely ramified extension is Galois extension.
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2 Results

2.1 Let F be a non-dyadic non-archimedean local field. The integer ring of
F is denoted by O with the maximal ideal p = pr generated by w = wp. The
residue class field F = Op/p is a finite field of g elements. Fix a continuous
unitary additive character 7 : F — C* such that

{x € F|7(z0p) =1} = Op.

Then 7(Z) = 7 (w ™ 'z) (z € Op) gives a non-trivial unitary additive character
7T:F— C*.

The special linear group G = SL,, of degree n is a smooth connected semisim-
ple group scheme over Op whose Lie algebra is denoted by g = sl,,. For any
commutative Op-algebra A, the group and the A-Lie algebra of the A-valued
points are

G(A) = {g € Ma(A) | detg =1}

and
0(4) = {X € Mo(A4) | tr X = 0}

where M, (A) if the A-algebra of the square matrices of size n with entries in A.
Throughout this paper, except the subsection [5.3] we will assume that the
characteristic p of F does not divide n so that the trace form

g(F) x g(F) = F (X,Y) = tr(XY))

is non-degenerate.
For any integers 0 < [ < r, the canonical group homomorphism

G(Or/p") = G(O/p")

is surjective, and its kernel is denoted by G(p'/p"). If r =1 +1' with 0 < I’ </,
then we have a group isomorphism

9(0/") GG (X o T+ =X).

Fix an integer v > 2 and put r = [ + !’ with the minimum integer [ such that

0 <l <1, that is
l,_{q_ l dif r =21,
L2l -1 ciftr=20-1.

Let K/F be a field extension of degree n. The ramification index and the inertial
degree of K/F are denoted by

e=e(K/F)and f = f(K/F)

respectively. Since n is prime to p, the extension K/F is tamely ramified and
there exists a prime element wx € Ok such that w$ € Ok, where K is the
maximal unramified subsextionsion of K/F.

We will identify K with a F-subalgebra of the matrix algebra M, (F) by
means of the regular representation with respect to an Op-basis of Ok. Take a
generator 3 of Ok as an Op-algebra. Then Shintani [9] shows that the modulo
p reduction of the characteristic polynomial xg(t) € Oplt] of 8 € M,,(OF) gives



the minimal polynomial of 5 (mod p) € M, (FF), that is 5 € gl,,(Op) is smoothly
regular with respect to GL,, in the terminology of [I0]. We can assume that
Tx/p(B) = trp = 0 so that 3 € g(OF) is smoothly regular with respect to
G = SL,,. Define a character

¥g: G(p'/p") — C*

by ¥s(h) =T (w‘l/tr(Xﬂ)) for all h = 1,, + @' X € G(p'/p"). Let & be an irre-
ducible representation of G(Or/p") such that d|g(,t/p) contains the character

3. We will regard 0 as a representation of G(Op) via the canonical surjection
G(Or) = G(Op/p"). Then our first result is

Theorem 2.1.1 Ifr > 2e, then the compactly induced representation indggg;)(;
is an irreducible supercuspidal representation of G(F).

2.2 The general theory developed in [I0] says that the irreducible represen-
tation 0 of G(Op/p") as above is parametrized by the character

0: Gg(OF/pT) — C*

such that 6 = ¢5 on G(Op/p")NG(p'/p"). The explicit realization of §, which
is recalled in the subsection 1] gives

Proposition 2.2.1

qrn(n—l)/Q . HZ:l(l _ qfk)

dimd =
(OF : Nxyp(Og))  1-g¢77

Let d(p)(z) be the Haar measure on G(F') with respect to which the volume
of G(Or) is 1. Then the Euler-Poincaré measure pg(py on G(F) is

n—1
dugm (@) = ()" "R [T —a") - dawy (@)
k=1

(see [8, 3.4, Theoréme 7]). Since the formal degree of the supercuspidal repre-
sentation indgggwé (assuming r > 2e) with respect to dg () () is the dimension
of 0, Proposition 2:2.1] gives our second result

Theorem 2.2.2 Assume r > 2e. Then the formal degree of the supercuspidal
representation indgggl)(; with respect to the Euler-Poincaré measure on G(F')
18

q(r—l)n(n—l)/Q 1— q—n

(OF : Niyp(0%) 1—q 7

2.3 Now suppose that the field extension K/F is Galois. Let
St KX S WP = Wy /Wi, W]

be the isomorphism of the local class field theory with the Weil group Wx of
K. We assume that

Sx(wr) € Wi C Gal(K*?/K)



induces the geometric Frobenius automorphism of K" /K where K" and K"
are the maximal abelian and the maximal unramified extension of K respec-
tively. Then the relative Weil group

Wi /p = Wp/[Wk, Wk] C Gal(K*/F)

sits in a group extension
1— KX 25 Wi p 22 Gal(K/F) — 1 (1)

corresponding to the fundamental class [k /r] € H*(Gal(K/F), K*) of the
local class field theory.

Let 6 : Gg(Op/p") — C* be the character which parametrizes the irre-
ducible representation § of G(Op/p"). Since we have

GaOx ) = {7 € Oxc/oit)" | Nirnl) =1 (mod )}

take an extension of  to a character of (Ox /p$ )™ and consider it as a char-

acter of O via the canonical surjection O% — (O /p5%)”™ and extend it to a
character of K, which is denoted also by 6, by fixing any value 8(wg) € C*.
Then the group homomorphism

Indf:i(/F canonical

(V is the representation space of the induced representation Indg(vf/ 70) is inde-
pendent, up to the conjugate in PGLc(V), of the choice of the extension 6 (see
Proposition [.4.]). Note that

dimcV = (WK/F K*)=n
and that PGL¢ (V) is the dual group of G = SL,,. Put

canonical

0 We Wi p <> PGLe(V)

and define a representation of the Weil-Deligne group

projection

@ : Wg x SLy(C) Wr & PGLc(V). (2)

Let us denote by A, the centralizer of the image of ¢ in PGLc(V). Then we
will show that

|Apl = (OF : Nkyr(Og)) - f (3)
(see Proposition [.43]). Our third result is

Theorem 2.3.1

r—1)n(n—1)/2 n

1
A

(OF : Ngyp(OF)) 1—q77f

7(p)
v(o0)




Here v(p) = v(p, Ad, 0) is the special value of the gamma factor

L((p, Ada 1- S)

A - Ad, s) -
(e, Ad, 5) = e(p, Ad, s) Lo Ads)

associated with the representation

Adog: Wg x SLo(C) & PGLe(V) 2% GLe(3)

of the Weil-Deligne group, where g = pgle(V) = slc(V) is the Lie algebra of
PGLc(V). Another representation

Sym,, _,

0o : W x SLy(C) 225 §1,(C) 2% GL,(C) <% PGL,(C)

of the Weil-Deligne group, with the symmetric tensor representation Sym,,_,, is
the principal parameter (that is, corresponding to the Steinberg representation,
see the subsection [£.2]).

2.4 Since G = SL, is split over F, the L-group of G is PGL,,(C). Theorem
2:22/and Theorem 23 TIshows that the formula due to Hiraga-Ichino-Tkeda [5] of
the formal degree of the suparcuspidal representation indggg;)(S is valid with the

representation of Weil-Deligne group given by ([2)). So we can speculate that the
representation (2) is the Langlands (or Arthur) parameter of the supercuspidal

representation indgggl)(S .

3 Construction of supercuspidal representation

3.1 In this section we will prove Theorem BTl Tt is sufficient to show the

following two propositions on the compactly induced representation indgggl)é ;

Proposition 3.1.1 If K/F is unramified or r > 4, then indggg;)é is admissible
representation of G(F).

Proposition 3.1.2 If r > 2e, then indggg;)é is irreducible representation of
G(F).

We will prove these two propositions in the following subsections.

3.2 The field extension K/F is tamely ramified. Fix a prime element wg €
Og such that wf € Ok, where e is the ramification index of K/F and K is the
maximal unramified subextension of K/F. The field K is identified with a F-
subalgebra of the matrix algebra M, (F') by means of the regular representation
with respect to an Op-basis of Og.

Take a generator 3 of Ok as an Op-algebra, and let us denote by x3(t) €
Op[t] the characteristic polynomial of 5 € Ox C M, (Op). Then Shintani [9]
shows the following proposition

Proposition 3.2.1 1) xg(t) (mod p) € F[t] is the minimal polynomial of
(mod p) € M, (F),



2) xs(t) (mod p) = p(t)® with a polynomial p(t) € F[t] irreducible over F,
3) xs(t) (mod p?) is an irreducible polynomial over the ring Op /p*.
Remark 3.2.2 The first statement of Proposition [3.21] implies that

1) for anym >0 and X € M, (Op), if X8 = X (mod p™), then there exists
a polynomial f(t) € Op[t] such that X = f(B) (mod p™),

2) {X € M,(Or) | XB =X} = Ok,

3) for any X € M, (Or), if xx(t) = xs(t), then there exists g € GL,(Op)
such that X = gBg~* .

We have the Cartan decomposition

G(F) = | | G(OF)=™G(OF) (4)

meM

where

M = {m: (my,ma, -+ ,my,) €Z"

my 2 mg 2+ 2 Mp,
miy+mao+---+my =0

and

w™ = form = (mq, -+ ,my) € M.

Mn

w

Since the restriction to G(p'/p") of our irreducible representation § of G(Or /p")
contains the character 15, we have

b

Slap ) = | D oxvs (5)
g

with some integer b > 0. Here (g * ¥5)(z) = 15(g~ 'zg) is the conjugate of 13
and @ is the direct sum over g € G(Op/p")/G(OF/p",¢p) where
g
G(Or/p",4vp) ={9 € G(Or/p") | g% g = s}
={gecOrN) | Adg)s=5 modp)} ()

is the isotropy subgroup of 93. The second equality is due to that fact g* 15 =
"/)Ad(g),(i’ for g € G(0F>

3.3  The proof of Proposition B.I.Il For any integer a > 0, put G(p®) =
G(Or)N (1, + @w*M,(OF)). We will prove that the dimension of the space of
the G(p®)-fixed vectors is finite. The Cartan decomposition [ gives

G(F) = | | G(»r*)sG(Or)

seS



with
S = {kw™ | k € G(p®)\G(OF), m € M}.

Then we have

G(F) G(p*)
1ndc;(o ‘G @lndG(p )ﬁsG(Op)s*lé

seS

with §%(h) = 0(s 'hs) (h € G(p*) N sG(Or)s~'). The Frobenius reciprocity
gives

Homg(pa) (1 lndG(o ) ) = @Homs*lc(pa)smc(op)(la5)-
ses

Here 1 is the one-dimensional trivial representation of G(p®). If

F)
Homg(pa) (l,deEO )5) #0

then there exists a
s=kw™eS (ke GOr),m=(my--,my,) €M)
such that Hom-1G(pe)sna(or)(1,9) # 0. If
Max{m; —m;t1 |1 <i<n}=m; —mit1 > a

then @w™U;(Op)w™™ C G(p®) where

1, B
{1

is the unipotent part of the maximal parabolic subgroup

B e Mi,ni}

A B
Pi{[o D] EG‘AEGLi,DGGLnl}-

So we have U;(Or) C s7'G(p*)s N G(OF) so that
HOHlUi(pl)(l, (5) > H0m571g(pa)smg(oF)(1, (5) #0

where U;(p') = U;(Or) N G(p'). Then the decomposition (&) implies that there
exists a g € G(Op) such that 1aqg)s(h) = 1 for all h € U;(p'), that is

(v 2))-

for all B € M; ,—1(Op). This means

989" = [61 D} (mod p")

with A € M;(Or),D € M,,_;(OF), that is

Ys(t) = det(t1; — A) - det(t1,_; — D) (mod p*).



If K/F is unramified, this is contradict against 2) of Proposition B21l If K/F
is ramified, then r > 4 and I’ > 2 and a contradiction to 3) of the proposition.
So we have

Max{m; —m;41 |1 <i<n} <a.

This implies that the number of s € S such that Hom,-1g(pe)sna(o,)(1,9) # 0
is finite, and then

dime Homg (pe) (1,indgggl)5) < 00.
This proves Proposition B.T.11

3.4 In this subsection, we will prove Proposition [3.1.21 To begin with, we
will prove the following proposition

Proposition 3.4.1 If r > 2e, then
1) dime Home (o, (5, indgggl)a) -1,

2) if A is an irreducible representation of G(Op) which factors through the
canonical surjection G(Op) — G(Op/p") such that

Home oy (A, mdggg;)(s) £ 0,
then A = 6.

[Proof] Cartan decomposition () gives

. G(F) . . 1CG(Op) om
1ndG(OF)6‘6‘(01?) N glndc(oi)ﬂme(oFﬁU*mé ’

Then Frobenius reciprocity gives

Homg (o, (A,indggg;)é) = @ Hom - m (0 )omnG(0r) (Aw7m76) .
meM

Now take a m = (mq,--- ,m,) € M such that

Homg-mG(op)wmnG(or) (Awimﬁ) # 0.
Suppose Max{m; — m;+1 |1 <i<n} =m; —miy1 > 2. Then
Ui(Op) =w "U;(Op)w™ NU;(Or) C w "G(Op)w™ NG(OF)
and we have
Homy, pr-2) (A% ",6) 5 Home - ng(opwmnaior (A7 "16) #0.
Because G(p") C Ker A and w™U;(p" " 3)ow™™ C Us(p"), we have

HOmUi(pr—k)(]_, 5) D HOmUi(prfz)(]_, 5) 7é 0.



Here 1 is the trivial one-dimensional representation of U;(p"~2). On the other
hand r > 2e implies r—e > [ and U;(p”~2) C G(p'). Then due to the decomposi-
tion (@), there exists a g € G(Or) such that ¢aq(g)3(h) =1 for all h € Ui(p™™")

with
Jo— 1 te=1,
2 e>1.

989" = [61 ;} (mod p*)

with some A € M;(Op) and D € M,,_;(Op). Then

This means

x5(t) = det(t1; — A) - det(t1,_; — D) (mod p*)

which contradicts to Proposition B.2.1l So, if

Hom g -m(0p)mmnG(0r) (Awfmﬁ) #0

then 0 < m; —myyq1 <1 forall 1 <i<n. If there exists 1 < i < n such that
m; —m;+1 = 1, then we have as above

9By~ = {jg ;} (mod p)

with some g € G(Of), A € M;(Or) and D € M,,_;(Or), and hence
xp(t) = det(tl; — A) - det(tl,—; = D) (mod p).

Then 2) of Proposition B.2.1] implies that ¢ = degdet(t1l; — A) is a multiple of
f. So we have m; —m,, < e <!'. We can take a v € g(Op) such that

(&

A|G(pl/p7‘) = @h*’l/},y
h

with some integer ¢ > 0. Here @ is the direct sum over i € G(Or /p")/G(OF /p", ).

h
Then we have

@ @ Homg(puml—mn) ((h * 1/)7)W7WL, g * 1/1[3) 7£ 0

h g

because G(pT™ =) C w "G (Or)w™NG(OF) and w™G (p' ™ ™)™ C
G(p'). Hence there exist g, h € G(Op) such that

Vad(g)s (@) = Yaam)y (@ rw™™)
for all z € G(p'™™~™=). This means

989~ =@ "hyhT'@w™ (mod p),



that is @™ gBg 'w ™ € M,(Or). Then there exists a ¢’ € GL,(Or) such that
@ gBg tw™™ = ¢'Bg’~! and hence ¢’ 'w™g € K due to 2) and 3) of Remark
On the other hand we have

Nig/r(g 'w™g) = det(g'w™g) € OF

so that ¢ '@w™g € O C GL,(Of). Hence m = (0,---,0). Now we have
proved

. 1G(F
Homg(oF) (A, deEOl)(S) = HOmg(OF)(A, 5)

which implies the two statements of the proposition. l

The proof of Proposition Let W C indggglfs be a non-trivial G(F)-

stable subspace. Then we have by Frobanius reciprocity

. G(F) . G(F)
0 # Homg(p) (W, de(OF)(S) C Homg (o) (W, de(OF)(S)
= Homg 0, (W, 9),

and hence W contains § as G(Op)-module. On the other hand, also by Frobenius
reciprocity, we have

0 # Homg ) (V, V/W) = Homg (o, (6, V/W)

with V = indgggl)é, and hence V/W contains 6 as a G(Op)-module. Since the

admissible representations of G(F') are semi-simple over the compact subgroup
G(Or), this means that indggg;)5 contains § with multiplicity as least two,
which contradicts to 1) of Proposition B4l So the G(F)-stable subspace of

indg (o) 4 is trivial,

4 Formal degree of supercuspidal representations
In this section, we will prove Proposition Z.2.1]
4.1  We assume that n is prime to p so that
I) the trace form
gF) x g(F) = F ((X,Y)— tr(XY))
is non-degenerate.
For any X € M, (OF), we have
det(1, + @' X) =1+ w'tr X (mod p?).
On the other hand we have
detg=1+ rX +2"'w? 2 (tr X)> (mod p*1)

for g =1, + @' ' X + 27 'w?2X? € GL,(Or) so that

10



IT) for any r =1+’ with 0 <1’ <1, we have a group isomorphism
8(Or/p") G /p") (X (mod p") = 1, + &' X (mod p)),
II) if r =20 — 1 > 1 is odd, then we have a map

ag(Op) = G /p") (X =1, + &' X +27'0?72X?% (mod p")).

Then the general theory developed by [10] is applicable to our case. Let us recall
the general theory by writing down explicitly the irreducible representation ¢ of
G(Op/p") corresponding to the character

0: Gg(OF/pT) — C*
such that 6 = ¢35 on G(Or/p") N G(p'/p"). The general theory of [I0] says
that

L G(Or /P
0 =Tndg O iy 76,6 (7)

with an irreducible representation og ¢ of the isotropy subgroup G(Or/p", 1¥s)
of g such that

di 1 11 is even, (8)
imogg =
p.o q"("_l)/2 ;7 is odd.

Because the canonical group homomorphism G(Op/p") — G(Op/p') is surjec-
tive, (@) implies

G(Or/p".0s) = Ga(Or/p") - G(" /p"). (9)
If r = 21 is even, then o3¢ is defined by
op,0(gh) = 0(g) - ¥s(h)

for g € G5(Op/p") and h € G(p'/p").

If r = 21— 1 is odd, then og ¢ is realized on the complex vector space L*(W')
of the complex valued functions on W’ where we fix a polarization Vg = W W’
of the symplectic space Vg over F. The first statement of Remark implies

95(F) = {X € F[B] C My(F) [ tr X =0}
={X € Ox/p% | Tx/r(X) =0 (mod p)}

with 8 = 8 (mod p) € M, (F). Then we have
dimp Vg =(n*—-1)—(n—1)=n(n—1)

so that dime L2(W') = ¢"("~Y/2. Let Hj be the Heisenberg group associated
with the symplec space Vg over F, that is Hg = Vg x C* with a group operation

(u,5) - (v,t) = (u+v,st7 (27 {u,v)p))
and g the Schrodinger representation of Hg on L*(W’), that is

(ma(u, 8).f) (w) = s+ 7 (27 u—, up)p + (w,ug)p) - f(w+u-)

11



for (u,s) € Hg and f € L* (W) with u = u_ +uy (u— € W,uy € W).

A representation mg 9 of G(p'~!/p") on L*(W') is defined as follows. Take a
h=1,4+@' T (mod p") € G(p'~'/p") with T € M,,(Or). Then T (mod p'~1) €
a(Op/p'~1) and the image of it under the canonical surjection g(Or/p'~1) —
g(F) is denoted by 7. Put v = T (mod g3(F)) e Vgand Y = T[] e g5(F).
Then

mao(h) =T (w_ltr(Tﬂ) — 27w r(T°B)) - p(Y) - ms(v, 1).

Here an additive character p : gg(F) — C* is defined as follows. Since the Op-
group scheme Gpg is smooth, the canonical map gg(Or) — gg(F) is surjective.
So for any Y € gg(F), we can take a X € gg(Op) such that Y = X (mod p).
Then

g=1,+ @' 1 X + 271w 2X?% (mod p") € Gs(p'~/p")

and we will define
p(Y) =7 (-w 'tr(XB)) - 0(g)-
There exists a group homomorphism U : G3(Op/p") — GLc(L*(W')) such that
m5,0(9” hg) = U(g)~' o mge(h) o U(g)
for all g € G(Op/p") and h € G(p'~!/p"). Now the representation o4 4 of
G(Or/v" ws) = Ga(Or /p") - G(3'™' /p")

is defined by
Uﬁ,e(gh) =0(g) -U(g) omp,6(h)
for g € Gg(Op/p") and h € G(p'~'/p").

4.2 The proof of Proposition 2211 By (), we have
dimé = (G(OF/}JT) : G(Op/pr,wﬂ)) 'dimdﬂ,g. (10)
Because of (@), we have

o 1GHOR GG )
OB 00l = 161000 A G o)

G(p" /p") is the kernel of the canonical surjection G(Op /p") = G(Op/p'), and
Gg(Or/p") N G(p" /p") is the kernel of the canonical surjection Gg(Op/p") —
GB(OF/pl,). Hence we have

-~ oy 1GOr/pY)]
(G(OF/p") : G(OR/p",¢p)) = 1G3(On /80| (11)
We have .
G(Or/p") =gV =a7h). (12)
k=2

On the other hand Gg (Op/p") is the kernel of
’ X ’
(Ox /i) = (08/P") (e = Nigsr(2)),

12



and 1 +p = Ng/p(1l +px) (see [I, p.32, Prop.2]). Then we have
1—q/
1—gq 1"

Combining the equations &), (1), (), (I2)) and [@3J), the proof of Proposition
2.21lis completed.

|Gﬁ(OF/Pl/)| = (OIX; : NK/F(OIX()) . ql’(n71) .

(13)

5 Induced representations of Weil group

In this section, we will assume that K/F is a tamely ramified Galois extension
and will prove Theorem 2311

The algebraic extensions of F are taken within a fixed algebraic closure F
of F. Define a group homomorphism

I/F:FX*)@

by vp(z) = (F(z) : F) rordp(Np)r(z) (0 # 2 € F) and put vp(0) = oco.
For an algebraic extension L/F, put

Op={xeL|vp(x) >0}, pr={zxe€Ll|vp(z)>0}

Then L. = O, /py, is an algebraic extension of F = Op/p. Let us denote by F*P
the separable closure of F'.

5.1 To begin with, we will recall the definition of the L-factor, the e-factor
and the ~-factor of a representation of a Weil group (or Weil-Deligne group,
more precisely). See [3] for the details.
The Weil group Wg of F is the inverse image by the canonical restriction
mapping
Gal(F*P/F) — Gal(F™ /F)

of the cyclic subgroup (Fr) C Gal(F""/F) generated by the geometric Frobanius
automorphism Fr which induces the inverse of the Frobanius automorphism in
Gal(F/F). Fix an extension Fr € Gal(F*P?/F) of Fr. Put

Ir = Gal(F* /F"™)

which is a normal subgroup of Wr and we have Wr = (fr) X Ip. Weil group
Wr is endowed with the topology such that I, with the usual Krull topology,
is an open compact subgroup of Wg.

Take a complex linear algebraic group G such that its connected component
G° is reductive. There is a bijective correspondence between the conjugacy
classes of the triplets (p, G, N) such that

1) p: Wg — G is a group homomorphism which is continuous on I,
2) p(f‘r) € G is a semi-simple element,

3) N € Lie(G) is a nilpotent element such that p(c)N = |o|pN foralloc € Wg

13



and the conjugacy classes of the continuous group homomorphisms
©:Wgp x SLy(C) = G
such that
1) Ker(p) N Ip is an open subgroup of Ip,
2) o(Fr) € G is semi-simple element,
3) ¢|sL,(c) is a morphism of complex algebraic group

defined by

—1/2
~ ~ q 0 0 1
plir = @lre,  p(Fr) = o(Fr) - ¢ < 0 q1/2> , N=dp <0 0>

where dp : 5I5(C) — Lie(G) is the differential of ¢|gz,c). The triplet (p,G, N)
or the group homomorphism ¢ is called a representation of Weil-Deligne group
on G.

Take an algebraic complex representation (r,V') of G, that is V is a finite
dimensional complex vector space and 7 : G — GL¢ (V) is a morphism of com-
plex algebraic group. Since the kernel Viy of dr(N) € Lie(GLc(V)) = Endc(V)
is r o p(IF)-stable, we will put

~ —1
L(p,r ) = det (1 g7 o p(F)] 11 )
N

where VZ{,F is the subspace of Viy of the Ip-fixed vectors. The e-factor is defined
by

e(p,r,8) =eo(rop,s)-det (7(1757, o p(ﬁr)|V1F/V§F)
where V¥ is the subspace of V' of the Ip-fixed vectors and
go(rop,s) =w(rop)-q orer(s=1/2)
is the e-factor of the representation
rop: Wrp— GLc(V)

of Weil group. Here w(r o p) is a complex number of absolute value one (the
root number) and a(rop) is the Artin conductor defined as follows. There exists
a finite extension L/F"" such that Gal(F®* /L) C Ir NKer(p). Put

Dy = Dy(L/F™)
={o€Gal(L/F") | 2" =z (mod p} ) forvz € O}

for t =0,1,2,---. Then a(r o p) is defined by

a(rop) = Z(DO : D)~ dime (V/VP?)
t=0

14



where V¢ is the subspace of V of the r o p(D;)-fixed vectors with the inverse
image D; of D; by the restriction mapping Ir — Gal(L/F"). Finally the
~-factor is defined by

L((p’ Tva 1- S)

o) =elens) =P

where ¥ is the dual of r.
In the following discussions, the complex algebraic group G is the L-group
of G = SL,, over F, that is G = PGL,(C) since SL,, is split over F,

5.2 Let Sym,,_; be the symmetric tensor representation of SLs(C) on the
space of the complex coefficient homogeneous polynomials of XY of degree
n — 1, which gives the group homomorphism

Sym,,_; : SL2(C) = GL,(C)
with respect to the C-basis
{xn1 x""2y, ... Xy"—2y" 1}
Then

dSym,, _, (8 1) =Ny = .
0 1
0

is the nilpotent element in pgl,(C) = sl,(C) associated with the standard
épinglage of the standard root system of s, (C). Then

Sym,, _,

w0t W x SLy(C) 22y §1,(C) 2=t L, (C) <220, pGr, (C)

is a representation of Weil-Deligne group with the associated triplet (pg, PG L, (C), Ny)
such that polz, is trivial and

g~ (D72
g~ (=3)/2

po(Fr) = € PGL,(C).
q(n—3)/2

q(nfl)/Q

Let Ad : PGL,(C) — GLc(g) be the adjoint representation of PGL,(C) on
g = sl,(C). Then
{Ny | k=1,2,---,n—1} (14)

is the C-basis of gy,. The representation matrix of Ad o po(Fr) on gy, with
respect to the C-basis (4] is

q—l

q—(n—l)

15



so that we have

L(po,Ad, s) = H( s+k) 1.

On the other hand [3] p.448] shows
E(SDOa Ada 0) = qn(n_l)/2'

Since the symmetric tensor representation Sym,,_; is self-dual, we have

1—q_1

1—qg™"

Y(po) = v(po, Ad, 0) = g"("=D/2. (15)

5.3 In this subsection, we will compute L(yp,Ad,s) for a representation ¢
induced from a character of K> in the situation a little more general than that
of subsection

Let K/F be a tamely ramified Galois extension of degree n and

0: K* —C*~

is a continuous character such that x ~ (2 ') is the trivial character of K*
only if o € Gal(K/F) is 1. Based upon the group extension (1), we have an
identification Wy p = Gal(K/F) x K* with group operation

(o,2) - (1,y) = (01,27 -y - ag/p(o,T))

with the fundamental class [oge/p] € H*(Gal(K/F),K*). Then the induced

representation Ind ¥/¥ 9 is realized on the complex vector space V of the com-
plex valued funct1ons on Gal(K/F') with the action of Wi, defined by

(o -¥)(7) :9(041(/}«“(070717')) '1/1(0717), a1 =041

for (0,a) € Wi p and ¥ € V with 0, € V defined by 0,(7) = 6(a”). Take the
standard basis {5 }seqai(x/F) of V where

1 :7=o0,
1/10(7'){0 1T # o

Then
P wo =0 (QK/F(P, U)) : wpa
for p,o € Gal(K/F). In particular o - ¥; = ¥,. We have

Proposition 5.3.1 Ind, WKIT is an irreducible representation of W .

[Proof] Take a T' € Endw,,, (V). If (T%1)(7) # 0 with 7 € Gal(K/F), then,
forany a € K*, a-T%1 = T(a-11) implies (o) = 0(«), and hence 7 = 1. This
means T1; = c; with a ¢ € C. Then we have T, = ¢, for all o € Gal(K/F)
and hence T'=rc-idy. R

Put
IndWK/F .
KX canonical
0 : Wy/p —— GLc(V) S5 PGLe(V)
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and
canonical

p: Wr Wi p 2> PGLe(V).

Then the representation of Weil-Deligne group corresponding to the triplet
(p, PGLc(V),0) is

projection

@ : Wp x SLy(C) Wr & PGLc(V).

Let A, be the centralizer of Im(p) in PGLc(V).

Let us denote by Ag the set of the group homomorphism X : Wy ,p — C*
whose restriction to K * is a character a — 6(a” ') with some 7 € Gal(K/F)
which is uniquely determined by A. Let us call it associated with A. If 7 €
Gal(K/F) is associated with A € Ag, then we have

0 a('rfl)) _ 9(047'71)

(a
for all @« € K™ and 0,7 € Gal(K/F), because
Ma”) = A(e, )7 (1, 0)(0, 1)) = Aa).

This implies that Ay is in fact a subgroup of the character group of Wy /p.
Take a T € A, with T € GLc(V). Then we have a character

)\ZWK/F—>(C><

such that gT' = \(g)T'g for all g € Wi/p. If (T91)(7) # 0 with 7 € Gal(K/F')
then a - T(¢1) = Ma)T(a - 11) for @ € K™ implies 8(a”) = A«)0(a) for all
a € K*. Hence we have T = cip, with ¢ € C*. Then we have

Ty, =c- )\(0‘)_10‘ Y =c- )\(0)_19 (aK/F(U, 7')) “or
for all 0 € Gal(K/F). We have
Proposition 5.3.2 T — \ gives a group isomorphism of A, onto Ag.

[Proof] It is clear that T + ) is injective group homomorphism, because

Indg(vf/FO is irreducible. Take any A € Ay and the 7 € Gal(K/F) associated
with it. Define a T' € GL¢(V) by

T = No)™'0 (aK/F(U, 7')) “or

for all o € Gal(K/F'). Then we have gT' = A(g) - T'g for all g € Wi /. B

From now on, we will suppose that z — 6(z° ')

only if 0 € Gal(K/F) is 1.

The 2-cocycle ag,/r can be chosen so that aK/F(U, 7) € Of for all 0,7 €
Gal(K/Ky) where Ko = K N F" is the maximal unramified subextension of
K/F. Then the image of Ir C Wg by the canonical surjection Wr — Wk/r
is Gal(K/Ko) x O C Wg,p. Since K/F is tamely ramified, the Galois group
Gal(K/Ky) = (1) is a cyclic group of order e = e(K/F). Then Gal(K/F) is
generated by o¢g = ]j:v‘r| x and 79. We have

is a trivial character of O

007000_1 =7 (16)
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with some 0 < m < e such that GCD{e,m} = 1. Put
ij =0 €V with 0<i<e, 0<j<f.
Then the C-basis {t);;}i,; gives the identification
GLc(V) = GL,(C) and PGLe(V) = PGL,(C).
We have, for all « € K*
04'1/)ij:9(07368)'1/1ij (0<i<e0<j<f) (17)
so that ©(a) € PGL,(C) is diagonal. On the other hand we have

0 O‘K/F(TOaTOiUg))'Q/%-H,j 0<i<e—1,

To - Yij = , )
0ok r(m0,7, 108)) oy i=e—1
hence
Jo
Ji
O(ro) = € PGL,(C) (18)
Jro1
with
0 1
1 0 0| |%oj
ai;
Ji=| 1 !
0 O Qo1 i
10 N

(ai; = 0 (OéK/F(TQ,TOiO’g))). So the space of the Ad o ¢(Ir)-fixed vectors in
g =pgl,(C) = s, (C) is

alle
GAdow(lr) _ azle a; € C,
ar+az+---+ap=0
asle
A C-basis of it is given by
pP 0e Oe
0 P
Xy = _ , Xo= ) gy X1 =
., o Oe
0 Oc
(19)

with P = {16 _ ] The relation (I6]) gives

i mmeptt 0<i<f-1,

j_

07000 =\ _i+m =t .
O . —_ - .
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Puti+m =i’ (mod e) for 0 < i,4i’ < e and let [m]. € GL.(Z) be the permutation
matrix associated with the element

0 1 2 -+ e—1
o 1 2 - (e—1)

of the symmetric group of degree e. Then we have

0 0 -~ 0 I;,
Iy O 0

@(0’0): Il
0 0
Ir s 0

with
boj
blj
Iy = [m].

be—l,j

(bi; = 0 (OéK/F(O’o,TOiO‘g))). So the representation matrix of Ad o (Fr) on
gAdeeIr) with respect to the basis ([IJ) is

~11 0 - 0
-1 0 0 1
-1 0 0 0

Hence we have

- 1
L(p, Ad, s) = det (1 —q ®Ado <P(F1")|9Adw<ﬁr))

-1
— (1+q75+q725+“.+q7(f71)5)

and
L(@vAdal) 7](‘ 17(]_1

S — 2
L((,D,Ad, 0) 1- q_f ( 0)

5.4 In this subsection, we will prove Theorem 231l To begin with, we will
prove

Proposition 5.4.1 The group homomorphism

Indwf/F

canonical

PGL¢(V)

is independent, up to the conjugate in PGLc(V), of the choice of the extension
0: K* — C* from the character 6 of Gg(Op/p").
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[Proof] Take another extension 6’ : K* — C* from the character 6 of

Go(0r/v7) = {2 € (0w foie)” \ Nigel©) =1 (mod )}
Then 6 = ¢’ on the subgroup

Uk/p =1{e € Ok | Ng/p(e) = 1}

of K* because the canonical group homomorphism Ug/p — Gg(Or/p") is
surjective. So there exists a character x : OF — C* such that

0'(e) = 0(c) - x (Ni/r(e))
for all € € O). We can extend x to a character of F* so that
0'(x) = 0(z) - x (Ni/r(2))

for all x € K*. The induced representations Indz(vf/ £ and Indgf/ "9 are real-
ized on the complex vector space of the complex valued functions on Gal(K/F).

For any ¢’ € Indgfﬂpﬁ’, put (1) = x(v(7)) - ¢’ (1) (1 € Gal(K/F)), where

~v(r) = H ag/p(r,0) € F*.
oeGal(K/F)

Note that we have
Ny p(agp(o,7)) =y(0)y(or) " (1)

for all 0,7 € Gal(K/F). Then the direct calculations show that the C-linear
map T : 1’ — 1) satisfies the relations

oT = x(4(0))™ - To,  oT = x(Niyp()) - Ta

for all 0 € Gal(K/F) and a € K*. B

We have also

Proposition 5.4.2 Take a 7 € Gal(K/F) and an integer 0 < k < er. Then
0(a™) = 0(a) for all a € 1+ p%=" if and only if

Gal(K/F) :ifk<e,
T e Gal(K/Ky) :ifk=e,
{1} tift k> e

[Proof] We can assume that 0 < k < el’. Then we have
I+ o) 1+ o whs) ! =1+ @ (w7 2™ — wiz) (mod pf)
for all z € Ok. So 0(a”) = 0(a) for all @ € 14 p%*~F if and only if

Tx/p(w- @i (87— B)) € OF
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for all z € Og. This means that w* (8™ — ) € D(K/F)~' = pl=°. Here
D(K/F) = p; ! is the different of K/F because K/F is tamely ramified. Since
Ok = Og|[f], the condition is ordi (x™ — z) > k — e+ 1 for all © € Ok which
means that
D_(K/F)=Gal(K/F) :k—e<0,
7€ { Do(K/F) = Gal(K/K,) :k—e=0,
Dy(K/F)={1} tk—e>0

where
Dy(K/F)={c € Gal(K/F) | ordg(z° —xz) >t+1Vx € Ok}
for —1 <t € R is the ramification groups of K/F. B

In particular 6(a) = 6(a) for all @ € O only if 7 € Gal(K/F) is 1, and
hence the results of the preceding subsection are applicable to our case.

Proposition 5.4.3 Ay is equal to the group of the character \ of W p which
1s trivial on K*. In particular

|A,| = |Ag| = (Ok : Nk,r(Of)) - f. (21)

[Proof] Let A : Wg/p — C* be a group homomorphism such that A(a) =
0(a™"1) for all @ € K* with some 7 € Gal(K/F). We have 0(a”""Y) =
0(a” ') for all ¢ € Gal(K/F) and a € K*, and hence

e(a‘r—l)n — H e(aa(‘r—l)) -1

c€Gal(K/F)

for all &« € K*. This means that the group index (O : Ker(A|OIx()) is finite and
a divisor of n, and hence prime to p. 1+ p% C Ker(/\|OIX() with some integer
m > 0. On the other hand we have O = (w) x (1 + px) with a primitive
¢’ — 1-th root of unity w € K and (14 pg : 1+ p) = ¢’ is a power of p.
This implies that m = 1, that is 8(a”) = 0(a) for all « € 1 + pg. Then 7 =1
by Proposition 5421 So A is trivial on K*. Now we have

[Agl = (K1 : F) = (K1 : Ko) - f

where K7 is the maximal abelian subextension of K/F. On the other hand we
have N/ p(Ok) = Nk, /r(Of, ), and hence we have

because K is the maximal unramified subextension of K/F. B

The image of Ir C Wr under the canonical surjection
Wr — Wr/[Wik,Wk] = Wi/r C Gal(K*"/F)
is Gal(K®"/F") which sits in the group extension

1 — 0% 25 Gal(K*P/FYr) 2% Gal(K/Ko) — 1.
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Let us denote by Ky = Kopo x (k= 1,2,---) the field of wh-th division points
of Lubin-Tate theory. Then we have an isomorphism

5 1+ ph = Gal(K*P /K, K™).
Because the character 6 : K* — C* comes from a character of
Gs(Orp/p") C (O /p%)”"
O is trivial on Gal(K*"/K.,.K"™). Note that
Kep K" = Kep B
is a finite extension of F"*. Let us use the upper numbering
D* = Dy(K. F" /F)

of the higher ramification group, where ¢t — s is the inverse of Hasse function
whose graph is

Then dx induces the isomorphism
(1+p5)/ (1 +p5) = Gal(Kep K™ /K K) = D
fork—1<s<k(k=1,2,---), and hence

o deaT=a") t=0,
Dl = qmﬂ*fk :qf(kfl)—1<t§qfk—1.

The explicit actions () and ([I8) and Proposition (.42 shows that the space
of Ad o ©(D;)-fixed vectors in g is

azle aie(C,
ar+azx+---+ap=0
asle
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ift =0,

aj
G2 a; € C,
: a1 +ax+---+a,=0
an
if0 <t <gftetr=b-1 1
Ay
Az A; € M,(C),
: tr(A; + Ao+ -+ A4,) =0
Af

if M ler=D=1 1 ¢ < gfer=D _1and gif ¢f*Y —1 <t < ¢ — 1. So we
have

f—1 1t =0,

n—1 :0<t< et 1

fe2 =1 cgftelr=D=1 1 cp<gfelr=D _q 7
n?—1 ¢/ _1<t<glr—1

dim¢ aDt =

Hence we have

(Do : Dy)~ " dimc (g/g"")
=0

¢
1 1
=n’ = f4n*=n)- = {e(r—1) = 1} + (n* = fe*) - -
=rn(n —1).
Combined with (20]), we have

—n

l1—¢q
1—qgf°

v(w, Ad,0) = qT"(”fl)/Q - f- (22)

The equations (I3)), [2I) and (22) prove Theorem [Z3.1]

References

[1] J.W.S.Cassels, A.Frohlich : Algebraic Number Theory (Academic Press,
1967)

[2] S.S.Gerbart, A W.Knapp : L-indistinguishability and R group for the spe-
cial linear group (Adv. in Math. 43 (1982), 101-121)

[3] B.H.Gross, M.Reeder : Arithmetic invariants of discrete Langlands param-
eters (Duke Math. J. 154 (2010), 431-508)

[4] K.Hiraga, H.Saito : On L-Packets for Inner Forms of SL, (Memoirs of
AMLS. 1013 (2012))

23



[5] K.Hiraga, A.Ichino, T.Ikeda : Formal degrees and adjoint ~-factors
(J.Amer. Math. Soc. 21 (2008), 283-304; Correction J.Amer. Math.Soc. 21
(2008) 1211-1213)

[6] J-P.Labesse, R.P.Langlands : L-indistinguishability for SL(2) (Can. J.
Math. 31 (1979), 726-785)

[7] AMoy, P.J.Sally, Jr. : Supercuspidal representations of SL,, over a p-adic
field: the tame case (Duke Math. J. 51 (1984), 149-161)

[8] J.-P. Serre : Cohomologies des groupes discrets (Ann. of Math. Stud. 70
(1971), 77-169)

[9] T.Shintani : On certain square integrable irreducible unitary representa-
tions of some p-adic linear groups (J. Math. Soc. Japan, 20 (1968), 522—
565)

[10] K.Takase : Regular irreducible representations of classical reductive groups
over finite quotient rings (arXiv:1905.02542v1)

Sendai 980-0845, Japan
Miyagi University of Education
Department of Mathematics

24



	1 Introduction
	2 Results
	2.1 
	2.2 
	2.3 
	2.4 

	3 Construction of supercuspidal representation
	3.1 
	3.2 
	3.3 
	3.4 

	4 Formal degree of supercuspidal representations
	4.1 
	4.2 

	5 Induced representations of Weil group
	5.1 
	5.2 
	5.3 
	5.4 


