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Abstract

We calculate higher-order quantum contributions in different Lorentz-violating parameters to the gauge

sector of the extended QED. As a result of this one-loop calculation, some terms which do not produce

first-order corrections, contribute with nontrivial gauge-invariant second-order quantum inductions.
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I. INTRODUCTION

An important issue when the impacts of a possible violation of Lorentz symmetry are studied

consists in the investigation of Lorentz-breaking extensions of known field-theory models [1, 2].

A great list of various extensions of Quantum Electrodynamics (QED), scalar field theory and

gravity is presented in [3]. A very important subject of study is the quantum dynamics of such

theories, since the inclusion of these parts in the classical action may cause the radiative induction

of new terms. The most well-known result is the perturbative generation of the Carroll-Field-

Jackiw (CFJ) term [4] when an axial term is included in the fermionic sector of the extended QED,

which was discussed for the first time in [5]. Further, many aspects of calculations of the quantum

induction of the CFJ term have been discussed in dozens of papers. The articles treated issues like

the ambiguity of the induced term, its finite-temperature aspects, its non-Abelian generalization,

the proper-time approach of the calculation and many implications (see f.e. [6]-[12] and references

therein). Further, the nonminimal interaction has been used to generate the CPT-even aether-like

term [13] as well as the CFJ one [14].

At the same time, it is well-known that the number of possible Lorentz-breaking extensions,

even after imposing the restrictions of renormalizability and absence of higher derivatives, is very

large [3]. It is to be noted, however, that only a small part of these corrections was considered

at the perturbative level (see also [15]). Besides, in most cases the investigation was restricted to

the first order in Lorentz-breaking parameters. While it is reasonable (remind that the Lorentz-

breaking parameters are very small [16]), the problem of possible higher-order Lorentz-breaking

corrections certainly deserves attention. This point of view is reinforced by the observation that

the first-order correction is null for some of these Lorentz-breaking tensors, see f.e. [17]. It is

relevant to investigate if this behavior is preserved to all orders due to a deeper reason or if this

null value is only eventual.

In this paper, we consider the second-order corrections in the parameters eµ, fµ, aµ, gµνλ and

Hµν of the extended Quantum Electrodynamics, which were not calculated up to now [3]. The

paper is organized as follows: in section II, we write down a generic Lorentz-breaking extension of

QED and review the first-order quantum corrections. In section III, we calculate the second-order

quantum corrections in the Lorentz-breaking tensors. The section IV is left for the summary, in

which the results are discussed.
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II. A GENERIC LORENTZ-BREAKING EXTENSION OF QED AND FIRST-ORDER

QUANTUM CORRECTIONS

The most generic Lorentz-breaking renormalizable extension of QED containing no higher

derivatives is given by the following Lagrangian [17]:

L = ψ̄(iΓνDν −M)ψ −
1

4
FµνF

µν −
1

4
κµνλρF

µνF λρ +
1

2
ǫµνλρk

µAνF λρ, (1)

in which

Γν = γν + cµνγµ + dµνγµγ5 + eν + if νγ5 +
1

2
gλµνσλµ (2)

and

M = m+ aµγ
µ + bµγ

µγ5 +
1

2
Hµνσµν . (3)

Besides, Dµ = ∂µ − iqAµ is the simplest covariant derivative, being q the coupling constant, and

κµνλρ, k
µ, aµ, bµ, cµν , dµν , eµ, fµ, gλµν andHµν are constant (pseudo)tensors, which are responsible

for the Lorentz-symmetry violation.

We are interested in the study of the quantum corrections to the gauge sector of this theory. To

consider quantum corrections to the gauge sector, it is sufficient to treat the photon as an external

field, and to integrate out the spinorial field. The corresponding fermionic determinant is evaluated

up to the necessary order in the couplings, and, in the Lorentz-breaking context, to the necessary

order in Lorentz-breaking parameters. For our purpose, the most interesting constant vector and

tensor parameters are those ones contributing to Γν and M .

Some of these vectors or tensors have been intensively studied, such as bµ, used to generate the

CFJ term (see f.e. [4, 5]). Besides, cµν and dµν were discussed in the context of the extension of the

ABJ-anomaly in [18] (their all-order one-loop contributions to this anomaly have been obtained),

and, in [19], the aether-like contributions up to the third order in cµν were calculated. Considering

the first-order correction in dµν , it can be non-null only if one has dµν = Cηµν . Indeed, in the

induction of the aether-like term, the obtained tensor κµνλρ has only one possible structure in

first order in dµν , given by κµνλρ = dαµǫανλρ (the Levi-Civita symbol emerges due the fact that

dµν is accompanied by a γ5 matrix). However, this form of the κµνλρ possesses the necessary

symmetry only if dνµ ∝ δνµ, and this case yields a trivial result. Concerning the tensor gµνλ its lower

(first-order) non-zero impact in the gauge sector was calculated in [15].

Therefore, we are left with problem of the evaluation of quantum corrections involving the

remaining parameters, eµ, fµ, aµ and Hµν . It is not difficult to show that their first-order contri-

butions vanish (some preliminary discussions on this fact are presented in [20]). Indeed, eµ and aµ
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are vectors and, hence, cannot substitute the axial vector bµ in the first possible gauge invariant

contribution, that is, in the CFJ term, ǫµνλρbµAνFλρ. Considering the first-order contribution

proportional to Hµν , it would have the form HµνF
µαF ν

α, which identically vanishes.

On the other hand, the first-order contribution proportional to fµ yields

Γf =
iq2

2
Aµ(−p)Π

µν
f (p)Aν(p), (4)

where

Πµν
f (p) = tr

∫

d4k

(2π)4

[

γµ
1

k/ −m
γ5(f · k)

1

k/ −m
γν

1

k/+ p/−m
+

+ γµ
1

k/−m
γν

1

k/+ p/−m
γ5(f · (k + p))

1

k/ + p/−m

]

. (5)

The contributions come from the two possible bubble graphs with one insertion of fµ. For per-

forming the evaluation of the two terms, one will have to deal, respectively, with the traces,

tr{γµ(k/ +m)γ5(k/ +m)γν(k/ + p/+m)} (6)

and

tr{γµ(k/ +m)γν(k/+ p/+m)γ5(k/+ p/+m)}, (7)

which are null, as one can easily verify.

Concerning the contributions in which eµ, fµ and aµ are contracted not to the derivative but

to the Aµ field, we note that the results of first-order in these parameters, proportional to (e · A)

(or f · A or a · A), are forbidden by gauge invariance. All these arguments match the conclusions

of [3].

III. SECOND-ORDER QUANTUM CORRECTIONS

Now, we go to the key point of our paper. Being the first order contribution in some parameters

null, a natural question is whether these results will be maintained at higher orders or not. Besides,

if not, it is relevant to obtain the lowest order non-null contributions in these parameters. Hence,

we now perform the calculation of the one-loop second-order corrections in these Lorentz-breaking

tensors.

We first discuss the second-order correction in aµ. We have three ways to perform two insertions

of aµ in the bubble diagram: two possibilities of two insertions in the same internal line; and one
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possibility of one insertion in each internal line. Then, we have

S
(a)
AA(p) =

ie2

2

∫

d4l

(2π)4
tr
(

γµ
1

l/−m
γν

1

l/+ p/−m
a/

1

l/+ p/−m
a/

1

l/+ p/−m
+

+ γµ
1

l/−m
a/

1

l/−m
γν

1

l/+ p/−m
a/

1

l/+ p/−m
+

+ γµ
1

l/−m
a/

1

l/−m
a/

1

l/−m
γν

1

l/+ p/−m

)

Aµ(−p)Aν(p). (8)

This expression is similar to that one studied in [14], but involves a/ instead of b/γ5. It must be

expanded up to the second order in the external momentum p. Straightforward calculations show

that the result for this contribution is zero. From the formal viewpoint, it is related with the fact

that if we consider the action (1), the gauge transformation Aµ → Aµ + aµ allows to rule out

the vector aµ already at the classical level. Besides, this transformation has no implications in

the quantum computations, since the corresponding Jacobian is 1. Hence, we can go beyond and

affirm that the corrections in all orders in aµ are null.

Let us consider now the second-order contribution in Hµν . Again, we have three possibilities of

two insertions of Hµν in the internal lines of a bubble diagram. Then, we have

S
(H)
AA (p) =

ie2

2

∫

d4l

(2π)4
tr
(

γµ
1

l/ −m
γν

1

l/ + p/−m
(
1

2
Hαβσαβ)

1

l/+ p/−m
(
1

2
Hγδσγδ)

1

l/+ p/−m
+

+ γµ
1

l/−m
(
1

2
Hαβσαβ)

1

l/−m
γν

1

l/+ p/−m
(
1

2
Hγδσγδ)

1

l/+ p/−m
+

+ γµ
1

l/−m
(
1

2
Hαβσαβ)

1

l/−m
(
1

2
Hγδσγδ)

1

l/−m
γν

1

l/+ p/−m

)

Aµ(−p)Aν(p). (9)

Expanding this expression up to the second order in the external momentum p and performing

straightforward calculations, one finds that this contribution also yields zero result. This fact can

be explained by the following argument. First, the only gauge invariant contributions of second

order both in Hµν and in derivatives have the form (HµνFµν)
2 and HµνHρσFµρFνσ. However, it is

simple to see from the calculations that these terms do not arise. Besides, all other contributions

of second order in Hµν , to be consistent with the gauge invariance, should have the structure

AµP
µνHναH

αβPβνA
ν , where Pµν = ηµν� − ∂µ∂ν is a transverse projector. However, this term

is already of fourth order in derivatives and, since our spinors are massive, this order will not be

reduced by factors of �−1. Hence, gauge invariant terms of second-order both in derivatives and

in Hµν cannot arise in one-loop order.

The second-order contributions in eµ, fµ and gµνλ are a little more complicated, since they

involve insertions into the vertices in addition to the modification of the propagators. The graphs

which illustrate these corrections are depicted below.
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FIG. 1: The second-order contributions to the two-point function.

Let us first treat the second-order correction in eµ, which yields:

S
(ae)
AA (p) =

iq2

2

∫

d4l

(2π)4
tr
(

γα
1

l/−m
γβ

1

l/+ p/−m
(e · (l + p))

1

l/ + p/−m
(e · (l + p))

1

l/+ p/−m
+

+ γα
1

l/−m
(e · l)

1

l/ −m
γβ

1

l/ + p/−m
(e · (l + p))

1

l/+ p/−m
+

+ γα
1

l/−m
(e · l)

1

l/ −m
(e · l)

1

l/−m
γβ

1

l/+ p/−m
+

+ eα
1

l/−m
eβ

1

l/ + p/−m
+

− eα
1

l/−m
(e · l)

1

l/ −m
γβ

1

l/+ p/−m
+

− eα
1

l/−m
γβ

1

l/+ p/−m
(e · (l + p))

1

l/+ p/−m
+

− γα
1

l/−m
(e · l)

1

l/ −m
eβ

1

l/+ p/−m
+

− γα
1

l/−m
eβ

1

l/+ p/−m
(e · (l + p))

1

l/+ p/−m

)

Aα(−p)Aβ(p). (10)

A lengthy but straightforward calculation gives the gauge-invariant total result

S
(ae)
AA (p) =

q2

3

{

e2
(

p2ηµν − pµpν
)

(

Ilog(m
2)−

1

2π2

)

−2Ilog(m
2)
[

(e · p)2ηµν + p2eµeν − (e · p)(eνpµ + eµpν)
]}

Aµ(−p)Aν(p), (11)

in which

Ilog(m
2) =

∫ Λ d4k

(2π)4
1

(k2 −m2)2
(12)

is the basic logarithimically divergent one-loop integral defined in Implicit Regularization (see

[21] and references therein). The upper index Λ in the integral is to indicate that the integral

is regularized. Only to illustrate, if Dimensional Regularization is used, one obtains Ilog(m
2) =

i
16π2Γ(

ǫ
2)(

4πm2

µ2 )ǫ/2.
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For the second order in fµ the expression looks like

S
(af)
AA (p) =

ie2

2
×

×

∫

d4l

(2π)4
tr
(

γµ
1

l/−m
γν

1

l/+ p/−m
(f · (l + p))γ5

1

l/ + p/−m
(f · (l + p))γ5

1

l/+ p/−m
+

+ γµ
1

l/−m
(f · l)γ5

1

l/−m
γν

1

l/+ p/−m
(f · (l + p))γ5

1

l/+ p/−m
+

+ γµ
1

l/−m
(f · l)γ5

1

l/−m
(f · l)γ5

1

l/−m
γν

1

l/+ p/−m
+

+ fµγ5
1

l/−m
f νγ5

1

l/+ p/−m
−

− fµγ5
1

l/−m
(f · l)γ5

1

l/−m
γν

1

l/+ p/−m
+

− fµγ5
1

l/−m
γν

1

l/+ p/−m
(f · (l + p))γ5

1

l/+ p/−m
+

− γµ
1

l/−m
(f · l)γ5

1

l/−m
f νγ5

1

l/+ p/−m
+

− γµ
1

l/−m
f νγ5

1

l/+ p/−m
(f · (l + p))γ5

1

l/+ p/−m

)

Aµ(−p)Aν(p). (13)

It is obtained a purely divergent gauge-invariant result, given by

S
(af)
AA (p) =

q2

3
Ilog(m

2)
{

−f2
(

p2ηµν − pµpν
)

+ 2
[

(f · p)2ηµν + p2fµf ν − (f · p)
(

f νpµ + fµpν
)]}

Aµ(−p)Aν(p) (14)

Following the same steps, we calculate the second-order correction in gµνλ, given by

S
(ag)
AA (p) =

ie2

8

∫

d4l

(2π)4
tr
(

γµ
1

l/−m
γν

1

l/+ p/−m
×

× (gαβγσαβ(lγ + pγ))
1

l/ + p/−m
(gρσκσρσ(lκ + pκ))

1

l/ + p/−m
+

+ γµ
1

l/−m
(gαβγσαβ lγ)

1

l/ −m
γν

1

l/ + p/−m
(gρσκσρσ(lκ + pκ))

1

l/+ p/−m
+

+ γµ
1

l/−m
(gαβγσαβ lγ)

1

l/ −m
(gρσκσρσlκ)

1

l/−m
γν

1

l/+ p/−m
+

+ gρσµσρσ
1

l/−m
gαβνσαβ

1

l/+ p/−m
−

− gρσµσρσ
1

l/−m
(gαβγσαβ lγ)

1

l/ −m
γν

1

l/+ p/−m
−

− gρσµσρσ
1

l/−m
γν

1

l/+ p/−m
(gαβκσαβ(lκ + pκ))

1

l/ + p/−m
−

− γµ
1

l/−m
(gαβγσαβ lγ)

1

l/ −m
gρσνσρσ

1

l/+ p/−m
−

− γµ
1

l/−m
gρσνσρσ

1

l/+ p/−m
(gαβκσαβ(lκ + pκ))

1

l/ + p/−m

)

Aµ(−p)Aν(p). (15)

7



Again, we have to deal with a lengthy calculation. We use the particular form of this Lorentz-

breaking tensor given by gµνα = ǫµναλhλ. The result is given by

S
(ag)
AA (p) =

q2

3

{

4h2Ilog(m
2)
(

p2ηµν − pµpν
)

+

+

(

−8Ilog(m
2) +

i

π2

)

[

(h · p)2gµν + p2hµhν − (h · p)
(

hνpµ + hµpν
)]

}

Aµ(−p)Aν(p), (16)

which, again, have a divergent part.

These second-order contributions in the parameters eµ, fµ and hµ, as well as in the derivatives,

are composed by the sum of the usual Maxwell term and the aether-like form κµνλρFµνFλρ, in

which the κµνλρ tensor is written as

κµνλρ = Q
(

uµuληνρ − uµuρηλν − uλuνηµρ + uνuρηµλ
)

, (17)

with Q being some dimensionless constant, and the role of uµ being played by eµ, fµ and hµ.

A comment is in order. Since these second-order corrections are divergent, the Lorentz-breaking

terms with eµ, fµ and gµνλ should come along with the aether term already in the classical action.

It is interesting to discuss the reason why these contributions are divergent, unlike the result

obtained in [13], but in a way which is similar to the result in [22]. This is related with the fact

that the parameters eµ, fµ and gµνλ are dimensionless, and, unlike in [13], in the present case

there is no unexpected cancelation of the divergence. We note that by dimensional reasons, the

higher-derivative contributions from this sector will be explicitly finite.

Although it is out of the scope of this paper, we comment on the second-order corrections in dµν ,

which are aether-like. The second-order correction for a particular form of cµν have been explicitly

found in [19]. Indeed, the second-order contributions in dµν , can explicitly be shown to yield exactly

the same divergences as in the case of cµν . For example, for two adjacent dµν vertices, one has a

contribution proportional to dµνγµγ5kν(k/−m)dαβγαγ5kβ(k/−m), which, after commutation of the γ5

matrices, yields dµνγµkν(k/+m)dαβγαkβ(k/−m). The UV leading contribution of this term is just the

same as in the case we have cµν vertices instead of the dµν ones, that is, cµνγµkν(k/−m)cαβγαkβ(k/−

m). Effectively, we showed that the UV leading (logarithmically divergent) contributions for both

insertions are the same and can be obtained through a simple mapping of cµν → dµν for the

second-order result in [19]. A similar situation occurs if the dµν vertices are inserted into different

propagators, the only difference being that, in this case,the γ5 matrix must be commuted not two

but four times. Hence, we see that the second-order divergent contributions in cµν and dµν are the

same.
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IV. SUMMARY

We considered the one-loop corrections to the gauge sector from the minimal Lorentz-breaking

extension of the standard model. Within our calculation, we succeeded to obtain the results up to

the second-order in Lorentz-breaking parameters. Up to now, this was done only within the context

of the ABJ anomaly [18] and for the bµ axial vector [13]. Although experimental results put several

limits on the magnitude of these parameters and, consequently, in the higher-order contributions,

there are relevant aspects to be observed here. First, since the first-order corrections in some of

the parameters are zero, in case of being non-null, the second-order inductions become the most

important quantum contributions in these tensors. Even if the second-order corrections remain

null, it is important to check if this behavior is preserved at all orders due to a deeper reason, or

if it is only eventual.

Effectively, we found non-null second-order quantum corrections in eµ, fµ and gµνα (which are

null at first-order), with some implications in the classical action. Since they furnish divergent

contributions to the aether-term, we conclude that the aether-term must be introduced from the

very beginning, as it is indeed done [3]. It is also to be noted that it can be extracted from our

calculation the contributions to the renormalization constants of the minimal Lorentz-violating

Standard Model up to the second-order, extending, thus, the result of [3], in which the first-order

contributions were found.
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