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A NEW PROOF OF A VANISHING RESULT DUE TO BERTHELOT, ESNAULT,

AND RÜLLING

ERTL VERONIKA

Abstract. The goal of this small note is to give a more concise proof of a result due to Berthelot,
Esnault, and Rülling in [5]. For a regular, proper, and flat scheme X over a discrete valuation ring of
mixed characteristic (0, p), it relates the vanishing of the cohomology of the structure sheaf of the generic
fibre of X with the vanishing of the Witt vector cohomology of its special fibre. We use as a critical
ingredient results and constructions by Beilinson [2] and Nekovář–Nizio l [16] related to the h-topos over
a p-adic field.

Résumé. Le but de cette brève note est de donner une démonstration plus courte d’un résultat de
Berthelot, Esnault et Rülling dans [5]. Pour un schéma régulier, propre et plat X sur un anneau de
valuation discrète de caractéristique (0, p), il lie la disparition de la cohomologie du faisceau structural
de la fibre générique de X à la disparition de la cohomologie de Witt de sa fibre spéciale. On utilise de
manière critique des résultats et des constructions de Beilinson [2] et Nekovář–Nizio l [16] concernant le
h-topos sur un corps p-adique.
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According to [1] schemes of semistable reduction over a complete discrete valuation ring OK with
perfect residue field form a basis of the h-topology on the category Var(K) of varieties over the fraction
field K of OK . As a consequence, h-sheafification makes it sometimes possible to generalise constructions
or results from schemes of semistable reduction to varieties over a p-adic field.

In this small note we want to illustrate the advantages of this technique and give a shorter and, as we
hope, more conceptual proof of the following vanishing result due to Berthelot, Esnault, and Rülling in
[5, Thm. 1.3].

Theorem (P. Berthelot, H. Esnault, K. Rülling). Let R be a discrete valuation ring of mixed character-
istic with fraction field K and perfect residue field k, and let X be a regular proper flat scheme over R.
Assume that Hq(XK ,O) = 0 for some q > 0. Then Hq(X0,WO)Q = 0 as well.

As a consequence of this result the authors obtain, under the additional assumption that k is finite,
a congruence on the number of rational points of X with values in finite extensions of k. As explained
in [5] this fits into the general analogy between the vanishing of Hodge numbers for varieties over a field
of characteristic 0 and congruences on the number of rational points with values in finite extensions for
varieties over a finite field.

The above theorem itself is an application of p-adic Hodge theory. In [5, Thm. 2.1] the semistable case
is discussed which we recall here briefly as it provides a guideline for our proof.

Thus in the situation of the theorem, let X/R be of semistable reduction. Without loss of generality
one can assume that R is a complete discrete valuation ring. Endow R and X with the canonical log
structure denoted by R× and X×, the special fibre X0 with the pull-back log structure denoted by X×

0 ,
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and the Witt vectors W (k) with the log-structure associated to (1 7→ 0) denoted by W (k)0. Consider the
log crystalline cohomology groups Hq

cris(X
×

0 /W (k)0)). This cohomology is sometimes called the Hyodo–
Kato cohomology. In the case at hand, they can be computed by the logarithmic de Rham–Witt complex
Wω

q

which leads to a spectral sequence

Eij
1 = Hj(X×

0 ,Wωi
Q)⇒ Hi+j

cris (X×

0 /W (k)0)Q

endowed with a Frobenius action. On the left this Frobenius action is induced by piF , where F is the
Witt vector Frobenius, whereas on the right the Frobenius action ϕ is induced by the absolute Frobenii
of X0 and W (k). Similarly to the classical case, it follows that this spectral sequence degenerates at E1

and that Hj(X×

0 ,Wωi
Q) corresponds to the part of Hi+j

cris (X×

0 /W (k)0)Q where Frobenius has slope in

[i, i + 1[. Hence one obtains a canonical quasi-isomorphism

Hq
cris(X

×

0 /W (k)0)<1
Q

∼

−→ Hq(X0,WO)Q.

In other words, this means that Witt vector cohomology, which we want to study, corresponds to the
part of crystalline cohomology of Frobenius slope < 1. The cohomology group Hq

cris(X
×

0 /W (k)0)Q is also
equipped with a monodromy operator N and a Hyodo–Kato isomorphism

ιdR,π : Hq
cris(X

×

0 /W (k)0)⊗W (k) K
∼

−→ Hq
dR(XK),

where the de Rham cohomology on the right hand side is equipped with the Hodge filtration. In particular,
Hq

cris(X
×

0 /W (k)0)Q can be regarded as an admissible filtered (ϕ,N)-module which implies that its Newton
polygon lies above its Hodge polygon. But by assumption Hq(XK ,O) = 0, which means that the part
where the Hodge slope is < 1 vanishes. Hence the same is true for the part where the Newton slope is
< 1, which is as we have seen isomorphic to Hq(X0,WO)Q. This concludes the proof.

The philosophy behind this proof is that the cohomology groups Hq(XK ,O) and Hq(X0,WO)Q, which
are mathematical invariants associated to the generic and the special fibre, respectively, are in a certain
sense part of a more comprehensive theory, namely absolute p-adic Hodge cohomology, which is realised
in the category of admissible filtered (ϕ,N)-modules. The inherent structure provides intricate relations
between invariants of the special and generic fibre.

We realised that it is possible to use a very similar argument to obtain the more general statement
of the theorem. In fact, it allows us to prove the theorem in a slightly more general case, namely for a
proper, reduced and flat scheme over a discrete valuation ring R of mixed characteristic, such that the
generic fibre has at most Du Bois singularities.

Let X be such a scheme. Again, we want to interpret the cohomology groups Hq(XK ,O) and
Hq(X0,WO)Q in terms of absolute p-adic Hodge cohomology. The “right” realisation category in this
more general case is the category of admissible filtered (ϕ,N,GK)-modules. In fact, Déglise and Nizio l
identified absolute p-adic Hodge cohomology for K-varieties (even without integral model) in [8], where
they look at the h-sheafification on K-varieties of a certain presentation of Hyodo–Kato cohomology
introduced by Beilinson. According to their results, the associated cohomology groups Hq

HK,h(XK) of the

generic fibre XK can be seen as admissible filtered (ϕ,N,GK)-module. For these the Newton and Hodge
polygons are related in the same way as for (ϕ,N)-modules, i.e. their Newton polygon lies above their
Hodge polygon.

We need now descent for the h-topology to finish the proof. On the side of de Rham cohomology a
descent result due to Huber and Jörder in [11] shows that in the case of Du Bois singularities the part
where the Hodge slope is < 1 is exactly Hq(XK ,O), which vanishes by assumption. This means that the
part where the Newton slope of Hq

HK,h(XK) is < 1 vanishes as well. We use a descent result for Witt

vector cohomology due to Bhatt and Scholze in [6] to show that this is in fact Hq(X0,WO)Q, which
allows us to conclude.

Note that in our proof, as well as in the original one, descent results play an important role. In
[5], the authors work very explicitly with proper hypercovers over a discrete valuation ring to reduce to
the semistable case. However, as they remark, the special fibre of such a hypercovering might not be a
proper hypercover of the special fibre of the original scheme. This is why they have to show an injectivity
theorem [5, Thm. 1.5] which turns out to be very subtle.
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Our proof relies on the very sophisticated work of Déglise–Nizio l and Nekovář–Nizio l which allows
us to abstractly identify Hq(XK ,O) and Hq(X0,WO)Q as part of a bigger picture. Consequently, we
don’t have to reduce to the semistable case, but nevertheless we have to invoke Bhatt–Scholze’s descent
theorem to extract the desired information about the special fibre.

Notation and conventions. All schemes considered are separated and of finite type over a base S.
For a fixed base scheme S we denote this category by Sch(S), and by Var(S) the category of separated
reduced schemes of finite type. When S = SpecR is affine, we write Sch(R) for Sch(S) and Var(R) for
Var(S).

The general set-up throughout this note is as follows. Let OK be a complete discrete valuation ring
of mixed characteristic (0, p), with fraction field K and perfect residue field k. Furthermore, we assume
the valuation on K normalised so that v(p) = 1. As usual denote by K an algebraic closure of K and
by OK the integral closure of OK in K. Let W (k) be the ring of Witt vectors of k, K0 the fraction field

of W (k), and Knr
0 its maximal unramified extension. Let σ be the absolute Frobenius on W (k). For a

scheme X/OK denote by Xn, for n ∈ N, its reduction modulo pn and let X0 and XK be its special and
generic fibre respectively.

By abuse of notation, we denote by OK , O×

K , and O
0
K the scheme SpecOK regarded as log scheme

with the trivial, canonical (i.e. associated to the closed point) and (N → OK , 1 7→ 0)-log structure
respectively, and similarly for W (k) and k.

Acknowledgements. I would like to thank Shane Kelly and Wies lawa Nizio l for stimulating discussions
related to this paper, and Hélène Esnault for very helpful explanations on her paper Rational points over
finite fields for regular models of algebraic varieties of Hodge type > 1 with Berthelot and Rülling.

1. The logarithmic de Rham–Witt complex

It is common when one studies non-smooth objects to consider log versions of the usual complexes
appearing in the different cohomology theories. In [12, Sec. 2] Hyodo and Kato describe the log crystalline
site for schemes with fine log structure as a generalisation of the usual crystalline site. One case which
is relatively well studied, is the semistable case in positive characteristic p, and the case of semistable
reduction in mixed characteristic (0, p). This is a special case of fine log schemes of Cartier type over k0

or O
×

K .
The Hyodo–Kato complex computes log crystalline cohomology over W (k)0. There are different quasi-

isomorphic presentations of this complex. One that is particularly useful to us is the de Rham–Witt
presentation233 from [12, Sec. 4] (see also [14, Sec. 1]).

For a fine log scheme Y of Cartier type over k0, let (Y/Wn(k)0)cris be its log crystalline site over
Wn(k) endowed with the (1 7→ 0)-log structure, let OY/Wn(k)0 be its crystalline structure sheaf, and let

uY/Wn(k)0 : (Y/Wn(k)0)cris → Yét be the canonical morphism of sites.

Definition 1.1. The logarithmic Witt differentials of Y of degree i and level n > 1 are defined as

Wnω
i
Y := RiuY/Wn(k)0,∗OY/Wn(k)0 .

According to [14, Cor. 1.17] Wnω
i
Y is a coherent WnOY -module. For n fixed Wnω

q

Y is a complex called
the logarithmic de Rham–Witt complex of level n. By [12, Prop. (4.6)] there is a canonical isomorphism
of Wn(k)-algebras

Wnω
0
Y
∼= WnOY .

The Frobenius F , Verschiebung V and projection operators extend from the Witt vectors to the de Rham–
Witt complex, and are subject to certain relations. In particular, Wnω

q

Y is a differentially graded WnOY -
algebra, which computes log crystalline cohomology, i.e. there is by [12, Thm. (4.19)] a canonical quasi-
isomorphism

(1) Wnω
q

Y
∼

−→ RuY/Wn(k)0,∗OY/Wn(k)0

compatible with Frobenius and the canonical projections as n varies. Here the Frobenius on the left hand
side is given by piF in degree i, while on the right hand side, it is induced by the absolute Frobenius of Y
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and the endomorphism σ of Wn(k). The compatibility of this morphism with the canonical projections
was treated properly in [15, § 8].

Finally, for n varying we obtain a projective system {Wnω
q

Y }n>1 differentially graded algebras.

Definition 1.2. We call the limit
Wω

q

Y := lim
←−

Wnω
q

Y

the logarithmic de Rham–Witt complex of Y over W (k)0. It is equipped with operators called Frobenius
and Verschiebung induced by F and V which satisfy the usual relations.

The log crystalline cohomology of Y over W (k)0 is

RΓcris(Y/W (k)0) := holimRΓét(Y,RuY/Wn(k)0,∗OY/Wn(k)0).

and we have by [14, Cor. 1.23] the following statement.

Lemma 1.3 (P. Lorenzon). If Y is a proper fine log scheme of Cartier type over k0, then RΓét(Y,Wω
q

Y )
is a perfect complex and the canonical morphism (1) induces a natural isomorphism

λ : RΓét(Y,Wω
q

)
∼

−→ RΓcris(Y/W (k)0).

In case Y = X0 is the special fibre of a fine log scheme X of Cartier type over O×

K , we write RΓHK(X) :=
RΓcris(Y/W (k)0) and call it the Hyodo–Kato complex of X . In this case, there is yet another presentation
of the rational Hyodo–Kato complex due to Beilinson [2, 1.16.1] denoted by RΓB

HK(X). Without going
into details we remark that there is a natural quasi-isomorphism [16, (28)]

(2) κ : RΓB
HK(X)

∼

−→ RΓHK(X)Q

compatible with Frobenius. The advantage of Beilinson’s definition is that it admits a nilpotent mono-
dromy N as explained in [16, § 3.1]. We will see later why this is of interest for us.

2. Hyodo–Kato complexes for K-varieties

In [16] Nekovář and Nizio l describe how to extend several p-adic cohomology theories for log schemes
over k or OK to K-varieties. This technique is based on observations due to Beilinson in [1] and we start
by recalling some of the relevant notions.

Definition 2.1. For a field K of characteristic 0 a geometric pair is an open embedding i : U →֒ U of
K-varieties such that U is dense in U and U is proper. A geometric pair is called a normal crossings
pair, if U is regular and U\U is a divisor with normal crossings. It is said to be strict, if the irreducible
components of U\U are regular.

This definition can be adjusted to the arithmetic setting as follows.

Definition 2.2. An arithmetic K-pair is an open embedding i : U →֒ U of a K-variety U with dense
image in a reduced proper flat OK-scheme U . Such a pair is called a semistable pair if U is regular,
U\U is a divisor with normal crossings, and the closed fibre U0 is reduced. It is said to be strict, if the
irreducible components of U\U are regular.

As explained in [16, 2.3] one can regard a semistable pair (U,U) as a log scheme U over O×

K equipped

with the log structure associated to the divisor U\U . As such it is a proper log smooth fine log scheme
of Cartier type over O

×

K . In particular, its special fibre U0 equipped with the pull back log structure is
a proper log smooth fine log scheme of Cartier type over k0.

Following [16] we denote by P
ar
K , Pss

K and P
nc
K respectively the category of arithmetic, semistable and

normal crossings pairs over K respectively. Moreover, we denote by P
log
K the subcategory of Par

K of log

schemes (U,U) which are log smooth over OU (U)×.

A key point in Beilinson’s work is that the categories Par
K , Pss

K , Plog
K , and P

nc
K respectively form a base

for the h-site (V ar/K)h of K-varieties in the sense that there is an equivalence between the associated
h-topoi [1, 2.5 Prop.]. Keeping in mind that alterations are h-morphisms, Beilinson uses the following
formulation of de Jong’s alteration theorem [1, 2.3 Thm.].
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Theorem 2.3 (A.J. de Jong). Every geometric pair admits a strict normal crossings alteration. Every
arithmetic pair over K or K admits a strict semistable alteration. Alterations can be chosen in such a
way that V is projective.

Nekovář and Nizio l explain how to h-sheafify the rational Hyodo–Kato and the Beilinson–Hyodo–Kato
complexes on Var(K) [16, Sec. 3.3]. Denote the resulting sheaves by AHK and A

B
HK. The same procedure

can be done to the logarithmic de Rham–Witt complex Wω
q

defined above.

Definition 2.4. Let AdRW be the h-sheafification of the presheaf

(U,U) 7→ RΓét((U,U)0,Wω
q

)Q

on the category P
log
K of proper log smooth fine log schemes of Cartier type over O

×

K . This results in an
h-sheaf of commutative dg K0-algebras on Var(K).

The canonical maps κ : RΓB
HK(U,U) → RΓHK(U,U)Q [16, Sec. 3.3] and λ : RΓét((U,U)0,Wω

q

)Q →

RΓHK(U,U)Q [12, Thm. (4.19)] h-sheafify and we obtain functorial quasi-isomorphisms of h-sheaves

(3) AdRW
∼= AHK

∼= A
B
HK.

Lemma 2.5. For any proper log smooth fine log scheme of Cartier type (U,U) ∈ P
log
K over O

×

K , the
canonical map

RΓét((U,U)0,Wω
q

Q)→ RΓh(U,AdRW)

is a quasi-isomorphism.

Proof. According to [16, Prop. 3.18] analogous statements are true for the Hyodo–Kato and Beilinson–
Hyodo–Kato complexes. Because of the canonical quasi-isomorphism (3) the statement follows. �

3. Admissible filtered (ϕ,N,GK)-modules

The Beilinson–Hyodo–Kato complex has additional structure and as such fits into the theory of p-adic
Galois representations [10]. Indeed, it’s cohomology groups are admissible filtered (ϕ,N,GK)-modules.
Let us explain this.

Definition 3.1. (i) A filtered ϕ-module is a triple (M0, ϕ,Fil
q

), where M0 is a finite dimensional
K0-vector space, with a σ-semi-linear isomorphism ϕ : M0 →M0, called the Frobenius map and
a decreasing, separated, exhaustive filtration Fil

q

on M = M0⊗K0
K called the Hodge filtration.

(ii) A filtered (ϕ,N)-module (M0, ϕ,N,Fil
q

) consists of a filtered ϕ-module (M0, ϕ,Fil
q

) together
with a K0-linear monodromy operator N on M0 satisfying the relation Nϕ = pϕN .

(iii) A filtered (ϕ,N,GK)-module is a tuple (M0, ϕ,N, ρ,Fil
q

) where M0 is a finite dimensional Knr
0 -

vector space, ϕ : M0 → M0 is a Frobenius map, N : M0 → M0 is a Knr
0 -linear monodromy

operator such that Nϕ = pϕN , ρ is a Knr
0 -semi-linear action of GK on M0 factoring through a

quotient of the inertia group and commuting with ϕ and N , and Fil
q

is a decreasing, separated,
exhaustive filtration of M = (M0 ⊗Knr

0
K)GK .

Denote by

MFad
K (ϕ) ⊂MFad

K (ϕ,N) ⊂ MFad
K (ϕ,N,GK)

the categories of admissible filtered ϕ-modules, (ϕ,N)-modules and (ϕ,N,GK)-modules, where admissible
is meant in the sense of [10]. They are equivalent to crystalline, semistable, and potentially semistable
Galois representations [7, 3]. The categories of admissible filtered ϕ-, (ϕ,N), and (ϕ,N,GK)-modules
are known to be Tannakian (c.f [10, § 4.3.4]). Thus it makes sense to consider their respective bounded

derived dg categories denoted by D
♭(MFad

K (ϕ)), D♭(MFad
K (ϕ,N)) and D

♭(MFad
K (ϕ,N,GK)) respectively.

A filtered ϕ-, (ϕ,N)-, or (ϕ,N,GK)-module M0 has both, a Newton polygon, associated to the eigen-
values of the Frobenius morphism ϕ on M0, and a Hodge polygon, associated to the filtration Fil

q

on M .
If the Newton polygon lies above the Hodge polygon, M0 is weakly admissible (c.f. [10, 4.4.6 Rem.]).

It turns out that this is the critical piece of information that will allow us to relate Hq(XK ,OXK
) and

Hq(X0,WO)Q = 0. This is possible because the Beilinson–Hyodo–Kato complex RΓh(ZK ,AB
HK) of a
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K-variety is an object in D
♭(MFad

K (ϕ,N,GK)). By definition it is equipped with a Frobenius ϕ, and a
nilpotent monodromy operator N . Note that this is a difference from the usual Hyodo–Kato complex,
where the monodromy is at best homotopically nilpotent. This is crucial to h-sheafify the Hyodo–Kato
morphism, relating the (Beilinson–)Hyodo–Kato complex to the de Rham complex, which provides the
filtration.

For a proper log smooth fine log scheme of Cartier type (U,U) ∈ P
log
K over O

×

K there is a morphism
(c.f. [16, (22)], [12, Sec. 5])

ιdR,π : RΓHK(U,U)Q → RΓdR(U,UK)

called the Hyodo–Kato morphism which becomes a K-linear functorial quasi-isomorphism after tensoring
with K. However, it depends on the choice of a uniformiser π of OK and is therefore not suitable for
h-sheafification. By contrast, there is a morphism [2, 1.16.3]

ιBdR : RΓB
HK(U,U)→ RΓdR(U,UK)

independent of the choice of a uniformiser which is also a K-linear functorial quasi-isomorphism after
tensoring with K. For more details see [16, Ex. 3.5(1)]. The two morphisms are compatible with the
comparison map (2)

RΓHK(U,U)Q
ιdR,π // RΓdR(U,UK)

RΓB
HK(U,U)

κ ∼

OO

ιB
dR

66
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

as explained in [16] after Ex. 3.5.
The map ιBdR can be h-sheafified. For this we also have to h-sheafify the de Rham complex on Var(K).

Thus, consider the presheaf

(U,U) 7→ RΓ((U,U),Ω
q

)

of filtered K-algebras on P
nc
K and let AdR be its h-sheafification. This results in an h-sheaf of commutative

filtered dg K-algebras on Var(K). It can be identified with Deligne’s de Rham complex equipped with
Deligne’s Hodge filtration Fil

q

(c.f. [11, Prop. 7.4 and Thm. 7.7]). Moreover, Beilinson showed in [1, 2.4]
that for (U,U) ∈ P

nc
K the canonical map

RΓdR(U,U)
∼

−→ RΓh(U,AdR)

is a quasi-isomorphism.
There are analogous statements over K, and for Z ∈ Var(K) the projection ε : ZK,h → Zh of sites

induces pull-back maps

ε∗ : RΓh(Z,AB
HK)→ RΓh(ZK ,AB

HK)GK(4)

ε∗ : RΓh(Z,AdR)→ RΓh(ZK ,AdR)GK

(5)

where by [16, Prop. 3.22] the first one is a quasi-isomorphism and the second one is a filtered quasi-
isomorphism. The Beilinson–Hyodo–Kato map extends to RΓh(ZK ,AB

HK) → RΓh(ZK ,AdR), which
induces a quasi-isomorphism

RΓh(ZK ,AB
HK)⊗Knr

0
K → RΓh(ZK ,AdR).

This identification provides the last piece of data necessary and by [8, 2.20] we have the following state-
ment.

Lemma 3.2 (F. Déglise, W. Nizio l). Let Z ∈ Var(K). Then RΓh(ZK ,AB
HK) with the Frobenius ϕ, the

monodromy operator N , the canonical GK-action, and the Hodge filtration on RΓh(Z,AdR) is an object

in D
♭(MFad

K (ϕ,N,GK)).

As a consequence we obtain the promised statement which relates the Hodge and the Newton polygon
of Hq

h(ZK ,AB
HK).
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Lemma 3.3. Let Z ∈ Var(K). For any q ∈ N0, the Newton polygon of Hq
h(ZK ,AB

HK) lies above its
Hodge polygon.

Proof. By the previous lemma Hq
h(ZK ,AB

HK) is an admissible filtered (ϕ,N,GK)-module. Therefore it
is weakly admissible in the sense of Fontaine [10, 5.6.7 Thm. (vi)]. This means as remarked in [10,
4.4.6 Rem.] that for each q the Newton polygon of Hq

h(ZK ,AB
HK) lies above its Hodge polygon. �

4. Two spectral sequences

In this section we consider two spectral sequences, one for de Rham cohomology and one for Hyodo–
Kato cohomology, which are very similar in spirit for they are related to the Hodge and Newton slope of
a (ϕ,N,GK)-module in a geometric situation. The first one is an h-sheafified version of the Hodge-to-
de Rham spectral sequence.

For this we introduce the h-sheafifications Ai
dR of the differential sheaves Ωi, i > 0, on Var(K). To be

consistent with the constructions in the previous sections, we can think of Ai
dR as the h-sheafification of

the presheaf
(U,U) 7→ Γ((U,U),Ωi)

on the category P
nc
K of normal crossing pairs. It gives a coherent h-sheaf on Var(K).

Now the Hodge filtration of AdR induces a spectral sequence for which Huber and Jörder in [11,
Thm. 7.7] prove the following.

Lemma 4.1 (A. Huber, C. Jörder). Let Z ∈ Var(K) be proper. Then the Hodge-to-de Rham spectral
sequence

Ers
1 = Hs

h(Z,Ar
dR)⇒ Hr+s

h (Z,AdR)

degenerates at E1.

It becomes immediately clear that the Hodge filtration on AdR induces Deligne’s Hodge filtration as
mentioned above.

Corollary 4.2. Let Z ∈ Var(K). Then for any q > 0 the Hodge-to-de Rham spectral sequence yields an
isomorphism

Hq
h(Z,AdR)<1 ∼

−→ Hq
h(Z,A0

dR),

where on the left hand side we mean the part of Hq
h(Z,AdR) with Hodge slope < 1.

We come now to an analogous statement for the Hyodo–Kato cohomology. Thus for i > 0 consider
the h-sheafification A

i
dRW of the presheaf

(U,U) 7→ Γ((U,U)0,Wωi)Q

on the category P
log
K of proper log smooth fine log scheme of Cartier type over OK . This is a quasi-

coherent h-sheaf on Var(K).

Lemma 4.3. Let Z ∈ Var(K). There is a spectral sequence

Ers
1 = Hs

h(Z,Ar
dRW)⇒ Hr+s

h (Z,AdRW)

which is Frobenius equivariant and degenerates at E1.

Proof. The existence of the spectral sequence follows as in the classical case, meaning it is induced
from the naive filtration of the complex AdRW. As mentioned earlier, the Frobenius F induces an
endomorphism of the de Rham–Witt complex, which in each degree r is given by prF . It h-sheafifies
well. Thus we can use the same argumentation as in [13, III.3.1] to see that the spectral sequence is

Frobenius equivariant. Namely, the Frobenius endomorphism of AdRW fixes A
>r
dRW for all r > 0 and thus

it induces an endomorphism of the spectral sequence. On the abutment Hr+s
h (Z,AdRW), it coincides

with the Frobenius action ϕ. On Hs
h(Z,Ar

dRW) it is given by prF .
To see that the spectral sequence degenerates, we will show that Hs

h(Z,Ar
dRW) is a finite rank K0-vector

space for all r, s > 0. More precisely, we will show that (Hs
h(Z,Ar

dRW), prF ) is canonically isomorphic

to the part of (Hr+s
h (Z,AdRW), ϕ) which has slopes in [r, r + 1[, denoted by (Hr+s

h (Z,AdRW), ϕ)[r,r+1[.
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The statement then follows from the fact that the cohomology groups Hr+s
h (Z,AdRW) are finite rank

K0-vector spaces [16, p. 5].
Let (U q, U q) → Z by an h-hypercover of Z by semistable pairs over K which exists by de Jong’s

alteration theorem. For every n, let KUn
:= Γ(Un,K ,OUn

) which is a finite product of finite extensions

of K labelled by the connected components of Un, that is KUn
=

∏

Kn,i. As we may assume that all
the fields Kn,i are Galois over K, we choose a finite Galois extension (OK′ ,K ′)/(OK ,K) with residue
field k′ such that K ′ is Galois over all the fields Kn,i for fixed n (c.f. proof of [16, Prop. 3.20]). Then

(U ′

n, U
′

n) := (Un, Un) ×OK
OK′ is a proper log smooth fine log scheme of Cartier type over O

×

K′ . Base
change for crystalline cohomology implies that one has isomorphisms

Hs((U ′

n, U
′

n)0,Wωr
Q) ∼= Hs((Un, Un)0,Wωr

Q)⊗K0
K ′

0

where K ′

0 denotes the fraction field of W (k′). As the left hand side is a finite dimensional K ′

0-vector
space, it follows that Hs((Un, Un)0,Wωr

Q) is a finite dimensional K0-vector space. We can do this for all
n separately. It follows, that the spectral sequence

Ers
1 = Hs((Un, Un)0,Wωr

Q)⇒ Hr+s((Un, Un)0,Wω
q

Q),

which is again induced by the naive filtration of the logarithmic de Rham–Witt complex, degenerates at
E1, and that we have canonical isomorphisms

(

Hs((Un, Un)0,Wωr
Q), prF

)

∼=
(

Hr+s((Un, Un)0,Wω
q

Q), ϕ
)[r,r+1[

for all n. Accordingly, there is a canonical isomorphism
(

Hs((U q, U q)0,Wωr
Q), prF

)

∼=
(

Hs+q((U q, U q)0,Wω
q

Q), ϕ
)[r,r+1[

.

of finite dimensional K0-vector spaces.
But as mentioned before, ϕ and F sheafify well with respect to the h-topology, so that we may take

the limit over all h-hypercovers of Z by semistable pairs over K and obtain a canonical isomorphism

(Hs
h(Z,Ar

dRW), prF ) ∼= (Hr+s
h (Z,AdRW), ϕ)[r,r+1[

where the right hand side is the part of (Hr+s
h (Z,AdRW), ϕ) with slope in the interval [r, r + 1[. In

particular, the Hs(Z,Ar
dRW) s > 0, are finite rank K0-vector spaces and the spectral sequence from the

statement degenerates. �

For obvious reasons this spectral sequence is called the slope spectral sequence.

Corollary 4.4. Let Z ∈ Var(K). For any q > 0 the slope spectral sequence yields an isomorphism

Hq
h(Z,AdRW)<1 ∼

−→ Hq
h(Z,A0

dRW),

where on the left hand side we mean the part of Hq
h(Z,AdRW) where Frobenius acts with slope < 1.

This allows us to transfer the descent statement from Lemma 2.5 to differentials of degree zero.

Corollary 4.5. For any proper log smooth fine log scheme of Cartier type (U,U) ∈ P
log
K over O

×

K , the
canonical map

RΓét((U,U)0,Wω0)Q → RΓh(U,A0
dRW)

is a quasi-isomorphism.

Proof. For any q > 0 we have a commutative diagram

Hq((U,U)0,Wω
q

)<1
Q

∼ //

∼

��

Hq((U,U)0,Wω0)Q

��
Hq

h(U,AdRW)<1 ∼ // Hq
h(U,A0

dRW)

where the horizontal isomorphisms are induced from the classical and the h-sheafified slope spectral
sequence respectively and the vertical maps are the canonical morphisms. Since the left vertical map is
an isomorphism by Lemma 2.5, the right one is as well. �
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We can take this a bit further.

Lemma 4.6. Let X be a reduced, proper and flat OK-scheme of finite type. Then there is a quasi-
isomorphism

RΓh(XK ,A0
dRW) ∼= RΓét(X0,WO)Q.

Proof. Since (XK , X) forms an arithmetic pair in the sense of Beilinson (see Definition 2.2), it has
by de Jong’s theorem a strictly semistable alteration (U,U) → (XK , X). This gives rise to an h-cover
U → XK of the generic fibre, and an h-cover U0 → X0 of the special fibre. Denote by (U q, U q)→ (XK , X)
its Čech nerve. In particular U q→ XK is an h-hypercover of the generic fibre of X and U q,0 → X0 is an
h-hypercover of its special fibre.

Using Corollary 4.5 we have

RΓh(XK ,A0
dRW)

∼

−→ RΓh(U q,A0
dRW)

∼

←− RΓét((U q, U q)0,Wω0)Q ∼= RΓét(U q,0,WO)Q.

However, by [6, Prop. 11.41] rational Witt cohomology satisfies cohomological h-descent and hence the
right most expression is just RΓét(X0,WO)Q. �

Therefore we can rewrite Corollary 4.4.

Corollary 4.7. Let X be a reduced, proper and flat OK-scheme of finite type. For any q > 0 the slope
spectral sequence yields an isomorphism

Hq
h(XK ,AdRW)<1 ∼

−→ Hq(X0,WO)Q.

5. A vanishing theorem

We can now put the pieces together to give a simplified proof of the vanishing theorem due to Pierre
Berthelot, Hélène Esnault and Kay Rülling. We will use the following statement about de Rham co-
homology groups. Note that h-sheafifying the de Rham complex results in Deligne’s de Rham complex
[11, Thm. 7.4], i.e. Hq

h(Z,AdR) = Hq
dR(Z).

Lemma 5.1. Let Z ∈ Var(K) be proper with only Du Bois singularities, and assume that Hq(Z,O) = 0
for some q > 0. Then the smallest Hodge slope of Hq

dR(Z) is at least 1.

Proof. If Z has only Du Bois singularities Hq
h(Z,A0

dR) = Hq(Z,O) by [11, Cor. 7.17]. As the h-sheafified
Hodge-to-de Rham spectral sequence from Lemma 4.1 degenerates for a proper K-variety at E1, the
hypothesis Hq(Z,O) = 0 implies that the smallest Hodge slope of Hq

h(Z,AdR) ∼= Hq
dR(Z) is at least

1. �

Remark 5.2. In general we can say that for a proper K-variety Z ∈ Var(K) such that Hq
h(Z,Oh) = 0 for

some q the smallest Hodge slope of Hq
dR(Z) is at least 1.

We obtain now the desired vanishing theorem in a slightly more general form than originally stated.

Theorem 5.3. Let X be a proper, reduced and flat scheme over OK , such that XK has at most Du Bois
singularities. Fix q ∈ N0. If Hq(XK ,O) = 0, then Hq(X0,WO)Q = 0.

Proof. Consider the cohomology group Hq
h(XK ,AB

HK). By Lemma 3.3 its Newton polygon lies above
its Hodge polygon. Because XK has only Du Bois singularities Lemma 5.1 applies, which means that
the smallest Hodge slope of Hq

dR(XK) is > 1. Therefore the part of Hq
h(XK ,AB

HK), where the Newton
slope is < 1 vanishes. By definition this is exactly the part where Frobenius acts with slope < 1. Via
the first quasi-isomorphism of (4) and the fact that the action of GK commutes with ϕ we deduce the
same for Hq

h(XK ,AB
HK). Finally, the quasi-isomorphisms (3) imply Hq

h(XK ,AdRW)<1 = 0 and hence, by
Corollary 4.4

Hq
h(XK ,A0

dRW) = 0.

But according to Lemma 4.6 this means that Hq(X0,WO)Q = 0 as well. �

Remark 5.4. As pointed out in [5] one easily generalises this result to a scheme X as in the theorem, but
over a discrete valuation ring V which is not necessarily complete.
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[5] P. Berthelot, H. Esnault and K. Rülling: Rational points over finite fields for regular models of algebraic varieties

of Hodge type > 1. Ann. Mat. 176, pp. 412–508, (2012).
[6] B. Bhatt and P. Scholze: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209, no. 2, pp. 329–423,

(2017).
[7] P. Colmez and J.-M. Fontaine: Construction des représentations p-adiques semi-stables. Invent. Math. 140, pp. 1–

43, (2000).
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