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MONOCHROMATIC SOLUTIONS TO x+ y = z2 IN THE INTERVAL

[N, cN4]

PÉTER PÁL PACH†

Abstract. Green and Lindqvist proved that for any 2-colouring of N, there are infini-
tely many monochromatic solutions to x+ y = z2. In fact, they showed the existence of
a monochromatic solution in every interval [N, cN8] with large enough N . In this short
note we give a different proof for their theorem and prove that a monochromatic solution
exists in every interval [N, 104N4] with large enough N . A 2-colouring of [N, (1/27)N4]
avoiding monochromatic solutions to x + y = z2 is also presented, which shows that in
104N4 only the constant factor can be reduced.

1. Introduction

Csikvári, Gyarmati and Sárközy [1] proved that the equation x+y = z2 is not partition

regular. Indeed, they gave a 16-colouring of N with no monochromatic solutions to

x+ y = z2 other than the trivial one x = y = z = 2. Recently, Green and Lindqvist [2]

have shown that such a colouring also exists with only 3 colours, but for any 2-colouring

of N there are infinitely many monochromatic solutions to x+ y = z2. In fact, from their

proof it also follows that for every large enough N there is a monochromatic solution in

the interval [N, cN8] (where c is a huge constant that can be explicitly given). The proof

of Green and Lindqvist uses several tools from additive combinatorics.

In this paper we give another, shorter proof for this theorem. The proof is elementary

and involves several combinatorial ideas. Our result is the following:

Theorem 1. Every 2-colouring of N has infinitely many monochromatic solutions to

x + y = z2. Moreover, for every large enough N there is a monochromatic solution in

[N, 104N4].

This strengthens the result of Green and Lindqvist, in the sense that it verifies the

existence of a monochromatic solution in a much shorter interval, [N, 104N4] instead of
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[N, cN8]. Note that the exponent 4 in 104N4 can not be further improved, since colouring

[N,N2/3] with the first colour and (N2/3, N4/27] with the second colour avoids any

monochromatic solution for x+ y = z2.

The proof of Theorem 1 is given in Section 2. Throughout the paper we use the notion

[n] := {1, 2, . . . , n} and by an interval [a, b] we mean the set of integers that are at least

a and at most b.

Finally, we shall mention two related works. Khalfallah and Szemerédi [3] have shown

that for any finite colouring of N there is a monochromatic solution to x + y = z2 with

x and y having the same colour (but not necessarily z).

Lindqvist [4] considered the modular version and showed that if p > p0(k) is a prime

and if Z/pZ is k-coloured, then there are ≫k p
2 monochromatic solutions to x+ y = z2.

2. Proof

It suffices to prove the second statement of Theorem 1.

Let c : [N, 104N4] → {−1, 1} be an arbitrary 2-colouring.

If all elements of [9N, 80N2] are coloured with the same colour, then x = N2, y =

80N2, z = 9N is a monochromatic solution.

Otherwise, let k ∈ [9N, 80N2] be such that c(k) 6= c(k+1). Without loss of generality

we shall assume that c(k) = 1 and c(k + 1) = −1.

If there exists some i ∈ [N, k2−N ] with c(i) = c(k2−i) = 1, then x = i, y = k2−i, z = k

is a monochromatic solution. Therefore, we can assume that

c(i) + c(k2 − i) ≤ 0 (1)

holds for every i ∈ [N, k2 −N ].

Similarly, if there exists some i ∈ [N, (k + 1)2 − N ] with c(i) = c((k + 1)2 − i) = −1,

then x = i, y = (k + 1)2 − i, z = k + 1 is a monochromatic solution. Therefore, we can

also assume that

c(i) + c((k + 1)2 − i) ≥ 0 (2)

holds for every i ∈ [N, (k + 1)2 −N ].

Now, let j ∈ [N, k2 −N ]. By taking i = j in (1) and i = j + 2k + 1 in (2) we obtain

c(j) + c(k2 − j) ≤ 0 (3)

and

c(j + 2k + 1) + c(k2 − j) ≥ 0. (4)

Inequalities (3) and (4) yield that c(j) ≤ c(j + 2k + 1) holds for every j ∈ [N, k2 − N ].

That is, for every j ∈ [N,N + 2k] we have

c(j) ≤ c(j + (2k + 1)) ≤ c(j + 2(2k + 1)) ≤ · · · ≤ c(j +mj(2k + 1)), (5)
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where mj is the largest integer such that j + (mj − 1)(2k + 1) ≤ k2 − N . Note that

j+mj(2k+1) > k2−N . For j ∈ [N,N+2k] let Hj := {j, j+(2k+1), . . . , j+mj(2k+1)}.

We obtained that restricting the colouring to any mod 2k + 1 residue class Hj it is

monotonic, in the sense that the pattern of colours looks like −1,−1, . . . ,−1, 1, 1, . . . , 1.

Let us introduce a function which tells us where the breaking point is.

For j ∈ [N,N + 2k] let f(j) = ∞, if all elements of Hj are coloured −1, otherwise let

f(j) be the smallest element of Hj which is coloured 1. That is, f(j) = j + l(2k + 1), if

c(j) = · · · = c(j+(l−1)(2k+1)) = −1 and c(j+ l(2k+1)) = · · · = c(j+mj(2k+1)) = 1.

(If c(j) = · · · = c(j +mj(2k + 1)) = −1, then f(j) = ∞.)

The function f is defined on a complete residue system modulo 2k + 1. Let us extend

it to the set of integers, in such a way that for an integer j′ let f(j′) = f(j) with the

unique j ∈ [N,N + 2k] which is congruent with j′ modulo 2k + 1. Similarly, Hj′ := Hj

for the unique j ∈ [N,N + 2k] congruent with j′ modulo 2k + 1.

Assume now that for some j we have f(j) + f(k2 − j) ≤ k2. By taking the sum of an

element from Hj and an element from Hk2−j we always get a number which is congruent

with k2 modulo 2k + 1. Note that those numbers in Hj which are coloured 1 are next

to each other, and so do those numbers in Hk2−j that are coloured 1. Therefore, the set

of such possible sums is also an interval (in the mod 2k + 1 residue class of k2). The

smallest such sum is f(j) + f(k2 − j) and the largest one is at least 2(k2 − N). As

k2 ∈ [f(j) + f(k2 − j), 2(k2 − N)], from the classes Hj and Hk2−j we can choose two

elements coloured 1 whose sum is k2, and we obtain a monochromatic solution, since

c(k) = 1.

From now on, let us assume that f(j)+f(k2−j) > k2 for every j. Note that this implies

that for every j we have f(j) + f(k2 − j) ≥ k2 + 2k + 1. Let A = {j ∈ [N,N + 2k] :

f(j) ≥ (k2 + 2k + 1)/2}. Since f(j) + f(k2 − j) ≥ k2 + 2k + 1 for every j, we have

|A| ≥ k+1. By the pigeon-hole principle A+A contains elements from all of the residue

classes modulo 2k + 1.

Let m ∈ [0.2k, 0.8k] be an integer. (Note that m ≥ 0.2k ≥ N .) We can choose

j1, j2 ∈ A such that m2 ≡ j1 + j2 (mod 2k + 1).

For j ∈ A let g(j) denote the largest element from Hj which is coloured −1. That is, if

f(j) < ∞, then g(j) = f(j)− (2k+1) and if f(j) = ∞, then g(j) = max(Hj). Note that

according to j ∈ A, we have g(j) ≥ (k2− 2k− 1)/2, since either g(j) = f(j)− (2k+1) ≥

(k2 − 2k − 1)/2 or g(j) = max(Hj) > k2 −N > k2 − k.

From the residue class of m2 we can write each element between j1+j2 and g(j1)+g(j2)

as a sum of two numbers coloured −1 (taken from Hj1 and Hj2). Since j1 + j2 ≤

2 · (N + 2k) < 6k < (0.2k)2 and g(j1) + g(j2) ≥ k2 − 2k − 1 > (0.8k)2, the number m2

is also the sum of two integers which are coloured −1. If c(m) = −1, then this results
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a monochromatic solution with z = m. Therefore, we can assume that all integers from

[0.2k, 0.8k] are coloured 1, and so do all the elements from their mod 2k + 1 residue

classes up to k2 − N > k2 − k, according to (5). Note that k2 ≡ 1.5k + 1 or 0.5k + 0.5

(mod 2k + 1) (depending on the parity of k). Since in both cases the modulo 2k + 1

residue of k2 can be expressed as a sum of two residues taken from [0.2k, 0.8k] we obtain

a monochromatic solution with z = k.
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