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Abstract

We start developing a formalism which allows to construct supersym-
metric theories systematically across space-time signatures. Our con-
struction uses a complex form of the supersymmetry algebra, which
is obtained by doubling the spinor representation. This allows one
to partially disentangle the Lorentz and R-symmetry group and gen-
eralizes symplectic Majorana spinors. For the case where the spinor
representation is complex-irreducible, the R-symmetry only acts on an
internal multiplicity space, and we show that the connected groups
which occur are SO(2), SO0(1, 1), SU(2) and SU(1, 1).

As an application we construct the off-shell supersymmetry trans-
formations and supersymmetric Lagrangians for five-dimensional vec-
tor multiplets in arbitrary signature (t, s). In this case the R-symmetry
groups are SU(2) or SU(1, 1), depending on whether the spinor rep-
resentation carries a quaternionic or para-quaternionic structure. In
Euclidean signature the scalar and vector kinetic terms differ by a rel-
ative sign, which is consistent with previous results in the literature and
shows that this sign flip is an inevitable consequence of the Euclidean
supersymmetry algebra.
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1 Introduction and Summary of Results

Non-Lorentzian space-time signatures are relevant for a variety of reasons.

For Euclidean signature this is obvious, since the study of non-perturbative

effects, such as instantons, makes use of the Euclidean functional integral

formalism. Moreover, the stationary sectors of Lorentzian theories can be

studied through effective Euclidean theories obtained by dimensional re-

duction over time. In quantum gravity one might also ask whether the

Lorentzian signature of space-time is to be accepted as ‘given,’ or whether

it needs to be explained, for example within a framework where signature

change occurs dynamically. In string theory the study of the web of dualities

connecting different types of string theories naturally leads to the inclusion

of exotic, multi-time signatures once T-duality transformations with respect

to time are considered [1, 2, 3]. To facilitate such studies, a systematic

way to construct and relate theories, in particular supersymmetric theories,

across space-time signatures is needed. One common approach to changing

space-time signature, is the ad hoc flipping of signs and insertion of factors

of i. A more systematic and well developed way to obtain Euclidean theories

is to start with a supersymmetric theory in Lorentzian signature and then to

dimensionally reduce over time [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. While this
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guarantees one finds a theory invariant under Euclidean supersymmetry, it

excludes theories that cannot be obtained by dimensional reduction. More-

over, only in a few cases [6, 14] have these reductions been carried out in

an off-shell formulation and have fully included the fermions. In most cases

attention has been restricted to on-shell formulations and to bosonic terms,

while the fermions have been neglected or only been considered through

the Killing spinor equations evaluated on bosonic backgrounds. In [13] an-

alytic continuation of the Killing spinor equations were used to obtain the

supersymmetry variations of the fermions, and, by imposing closure of the

algebra, the bosonic terms of the on-shell Lagrangian for five-dimensional

vector multiplets coupled to supergravity for all signatures.

A systematic construction should start with the supersymmetry algebra,

then where possible construct an off-shell representation of the algebra on

fields, and only then proceed to invariant Lagrangians. The natural way to

obtain a universal construction that allows to treat all signatures in a given

dimension simultanously is to work with the complex form of the supersym-

metry algebra, to construct its representations on complexified fields, and

finally a ‘holomorpic master Lagrangian.’ To specialize to particular signa-

tures one imposes suitable reality conditions and obtains the corresponding

field representations and Lagrangians. In this paper we start developing

such a formalism and demonstrate its viability by applying it to the case

of rigid five-dimensional off-shell vector multiplets. Our approach makes

use of the relation between Poincaré Lie superalgebras and real, symmetric,

Spin0-equivariant vector-valued bilinear forms. This allows us to use results

from the mathematical literature, in particular the classification Poincaré

Lie superalgebras in arbitrary dimension and signature [15]. While in spirit

our approach is similar to the treatment of maximal supergravity theories

in dimensions 10 and 11 in [16, 17], one difference is that we do not need to

assume that the supersymmetry algebra arises as a contraction of an ortho-

symplectic Lie superalgebra. This is important since it is not clear a priori
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whether all Poincaré Lie superalgebras (in all signatures) can be obtained

as contractions. BPS-charges, also called polyvector charges, or, by abuse

of terminology, central charges, which in the ortho-symplectic framework

arise through different contractions, can be added to our formalism using

the work of [18], though we will leave this aspect to future work.

The core piece of formalism that we develop in the first part of this paper

is what we call the doubled spinor module. This accounts for the doubling, or

complexification, of the supercharges and fermionic fields that characterizes

the complex form of the theory. As we will explain in more detail in the

paper, the essential part of defining a supersymmetry algebra is to choose

a so-called admissible bilinear form on the spinor module S of the Poincaré

Lie superalgebra sp(V ) = V + so(V ) + S, where V = R
t,s is a space-time

with signature (t, s). In short, the admissible bilinear form determines the

superbracket between the supercharges of the theory. The complex form of

the theory is defined using the doubled spinor space S⊕S, which is equipped

with a complex, symmetric vector-valued bilinear form, which is equivariant

with respect to the complex Spin group, and thus gives rise to a superbracket

for the complex form of the supersymmetry algebra. Real forms are obtained

by picking a Spin(V )-invariant real structure on S⊕S and restricting to the

real points (S ⊕ S)ρ ≃ S. The restriction of the complex bilinear form

gives rise to the real bilinear form associated to the real superbracket. A

well known example of reformulating spinors by first doubling and then

imposing a reality condition are symplectic Majorana spinors, which are

naturally included in our formalism. One advantage of the doubling is that

part of the R-symmetry group becomes manifest when writing the doubled

spinor module as a complex tensor product, S⊕S ≃ S⊗C
2. In this product

form, the Lorentz Lie algebra only acts on the first factor, whereas the R-

symmetry acts in general on both S and on the multiplicity space C2. In the

simplest case, where S is complex irreducible, that is for Dirac spinors on

odd dimensions, Schur’s lemma implies that the R-symmetry group can be
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taken to only act on C
2. In this case the R-symmetry group of the complex

theory is either O(2,C) or Sp(2,C), depending on whether the complex

bilinear form is symmetric or antisymmetric when restricted to C
2. Since

the reality condition selects a real form of the complex R-symmetry group,

it follows that the connected part of the real R-symmetry group must be

SO(2), SO0(1, 1), USp(2) ≃ SU(2) or Sp(2,R) ≃ SU(1, 1). In the general

case, where S is complex reducible, these groups are part of a larger R-

symmetry group. In this paper we will work out the R-symmetry groups

for supersymmetry algebras based on complex irreducible spinor modules,

while the general case will be presented in a separate paper [19].

Having developed the general formalism to this point, we then specialize

to five dimensions and to vector multiplets. In five dimensions the com-

plex spinor module S, that is the representation by Dirac spinors, is both

complex and real irreducible in Lorentzian signature and defines the unique

minimal supersymmetry algebra. Counting supercharges in multiples of the

minimal four-dimensional Lorentzian signature supersymmetry algebra, we

refer to this algebra as the five-dimensional N = 2 supersymmetry algebra.

While for signatures (2, 3) and (3, 2) Dirac spinors are real reducible, that

is, one can define Majorana spinors, we show that there is not correspond-

ing N = 1 supersymmetry algebra with four real supercharges, since the

superbracket is trivial. Thus there is a unique minimal supersymmetry al-

gebra with eight real supercharges for all five-dimensional signatures. We

then carry out the programme outlined above and obtain the off-shell field

representations and invariant Lagrangians of vector multiplets for all signa-

tures (5, 0), . . . , (0, 5). From our results it is manifest that theories which

are space-time mirrors, that is related by t↔ s, are physically equivalent in

the sense that all sign flips and factors i are determined by going between a

mostly plus and a mostly minus convention for the space-time metric, plus

taking into account the signature dependence of the reality properties of

spinor bilinears. Throughout the paper we adopt the convention of referring

6



to the smaller of the numbers t, s as time, so that there are at most two

time-like dimensions. In the Euclidean signatures (0, 5) and (5, 0) we find

that the scalar and vector terms always come with a relative sign. This con-

firms the indirect arguments given in [12] and shows that this relative sign

follows inevitably from the Euclidean supersymmetry algebra. Note that

this is not clear a priori. In particular, it has been argued that a similar

sign flip for four-dimensional vector multiplets can be removed by a field

redefinition [11, 12]. We also compare our results to those of [13], where the

bosonic on-shell Lagrangians for five-dimensional vector multiplets coupled

to supergravity have been obtained for all signature by analytic continuation

of the Killing spinor equations of the Lorentzian theory. We find that all

signature dependent relative signs agree.

The outline of this paper is as follows. In Section 2 we first present

the background on Clifford algebras and spinors needed to make this pa-

per self-contained. Then we review the relation between supersymmetry

algebras and vector-valued bilinear forms. We introduce the doubled spinor

construction and analyse which R-symmetry groups can occur for supersym-

metry algebras based on complex irreducible spinors. In Section 3 we turn

to minimal supersymmetry in five dimensions, where the relevant spinor

representation S is the one by Dirac spinors denoted S. We show explicitly

how the superbrackets formulated on the complex spinor module S and on

the doubled spinor module S ⊗ C
2 are related, and show that while Majo-

rana spinors can be defined for some signatures, the corresponding N = 1

supersymmetry algebras are trivial. In Section 4 we construct an off-shell

representation of the complex supersymmetry algebra by vector multiplets,

and a corresponding invariant off-shell Lagrangian. By imposing reality

conditions, we obtain the transformations and Lagrangians for all signa-

tures from (0, 5) to (5, 0). In Section 5 we give a a brief outlook onto open

problems and future directions. Some material has been relegated to appen-

dices in order not to avoid breaking the flow of the presentation. While we
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suppress spinor indices most of the time, we need to give the details which

allow us to translate between vector-valued bilinear forms and supercharge

anticommutators. This is done in Appendix A. Appendices B and C contain

the relevant background on para-quaternions and quaternions.

2 Supersymmetry and bilinear forms

In this section we work in arbitrary dimension and signature. After pro-

viding the background on Clifford algebras, supersymmetry algebras, and

admissible bilinear forms needed to make this article self-contained, we in-

troduce the formalism based of doubled spinors, which allows to define a

complex form of the supersymmetry algebra and then to specialize to any

signature by imposing reality conditions. We review the useful concepts

of the Schur algebra and Schur group, and investigate how the choice of a

reality condition determines the R-symmetry group of the real superalgebra.

2.1 Clifford algebras and spinors

We work on a ‘space-time’ V = R
t,s of signature (t, s) with metric

η = diag(−1 ,−1 . . . ,
︸ ︷︷ ︸

t

+1 ,+1 , . . .
︸ ︷︷ ︸

s

)

and isometry Lie algebra p(V ) = V + so(V ), where V = R
t,s are the

translations1 and so(V ) = so(t, s) the linear transformations preserving η.

Space-time indices are denoted µ, ν = 1, . . . , t+ s. The real Clifford algebra

Cl(V ) = Clt,s has generators γµ, with defining relations

{γµ, γν} = 2ηµν . (1)

Lorentz indices on Clifford generators are raised and lowered using η, that

is γµ = ηµνγν . Our conventions are the same as in [6]. Note that they differ

1We do not distinguish by notation between the vector space with inner product V =
R

t,s = (Rt+s, η), the associated affine space, and the translation group (Rt+s,+) acting
on the affine space.
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from the conventions in [20] by a relative sign in the definining relation and

another sign in the definition of η. The combined effect of both relative signs

is that Clt,s refers to the same associative real algebra. While our notation

is adapted to the ‘mostly plus’ convention for Minkowski space-time, we will

interpret min{t, s} as the number of time-like directions, because we expect

that theories related by an overall sign change, t ↔ s of the metric are

physically equivalent. Thus, for example, in four and five dimensions there

are at most two time-like directions.

We use a representation of the Clifford generators in terms of complex

square matrices of size 2[(t+s)/2], with the following Hermiticity properties:

(γµ)† =

{

−γµ , for µ = 1, . . . , t ,

γµ , for µ = t+ 1, . . . , t+ s .

This fixes the γ-matrices up to unitary equivalence. The γ-matrices provide

an irreducible representation of the complex Clifford algebra Clt+s = Clt,s⊗

C. By restriction to a representation of the real group Spin(t, s) ⊂ Clt,s ⊂

Clt+s one obtains a complex spinor representation of the Lorentz group, the

representation by Dirac spinors. The corresponding representation space

will be referred to as the complex spinor module S. Dirac spinors provide

an irreducible complex Spin(t, s)- representation for odd t+s, while for even

t+ s Dirac spinors decompose into Weyl spinors, S = S+ ⊕ S−.

The γ-matrices can be related to the Hermitian conjugate, complex con-

jugate and transposed matrices by relations of the form [6]2

(γµ)† = (−1)tAγµA−1 , (2)

(γµ)∗ = (−1)tτBγµB−1 , (3)

(γµ)T = τCγµC−1 , (4)

where τ = ±1. For A we make the explicit choice

A = γ1 · · · γt ,

2See also [21] for a comprehensive review. Note that the parameters ǫ and η used there
are related to our parameters by σ = −ǫ and τ = −η.
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which implies

A† = (−1)
t(t+1)

2 A , A−1 = (−1)tγt · · · γ1 .

The matrix A generalizes the ‘Γ0-matrix’ familar from Lorentz signature and

enters into the definition of Dirac spinor bilinears, and of the Dirac conjugate

of a spinor, ψ̄(D) = ψ†A. The matrix C is the charge conjugation matrix,

which relates particle and anti-particle states, and defines the Majorana

conjugate ψ̄ = ψTC of spinors. It can be chosen to satisfy (see for example

[21])

C−1 = C = C† .

C is either symmetric or antisymmetric,

CT = σC ,

where σ = ±1. Which values of σ and τ can occur depends on the dimension.

For each value of τ there is always precisely one corresponding value of σ. In

even dimensions, t+ s = 2n, both τ = 1 and τ = −1 are possible, and there

are two inequivalent choices for C, denoted C−τ . In odd dimensions, t+ s =

2n + 1, the matrix C is unique up to equivalence, and τ = (−1)(t+s−1)/2).

Given A and C, the matrix B can be chosen as

B = (CA−1)T .

Then B is unitary, B†B = 1, and

BB∗ = ±1 ,

where the sign depends on the signature, and, in even dimensions, on the

choice of the charge conjugation matrix C = C±. In signatures where it is

possible to choose BB∗ = +1, the matrix B can be used to impose a reality

condition and to define Majorana spinors. Mathematically, B defines a

family of real structures on the complex spinor module S,

ρ
(α)
S

(λ) = α∗B∗λ∗ , (ρ
(α)
S

)2 = 1 ,
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where α ∈ C is a phase, |α| = 1. The presence of this phase reflects that

multiplying B by a phase does not change the relations BB† = 1 and BB∗ =

±1. We have made an explicit choice for B in terms of A and C, but will

use the freedom represented by α later to choose our reality conditions such

that the resulting formulae are uniform for all signatures. The real structure

defined by B is Spin0-invariant:
3

ρ
(α)
S

(γµλ) = α∗B∗(γµ)∗λ∗ = (−1)tτγµB∗λ∗ ,

and therefore

ρ
(α)
S

(γµνλ) = α∗B∗(γµν)∗λ∗ = (−1)2tτ2γµνα∗B∗λ∗ = γµνρ
(α)
S

(λ) .

Majorana spinors λ ∈ SM ⊂ S are by definition the spinors which are in-

variant under the real structure,

ρ
(α)
S

(λ) = λ⇔ λ∗ = αBλ .

In signatures where BB∗ = −1, the matrix B defines a family of Spin0-

invariant quaternionic structures,

j
(α)
S

(λ) = α∗B∗λ∗ , (j
(α)
S

)2 = −1 .

The Spin0-invariance holds for the same reason as for the real structure:

we have j
(α)
S

(γµλ) = ±γµj
(α)
S

(λ), and therefore j
(α)
S

(γµνλ) = γµνj
(α)
S

(λ).

While a quaternionic structure cannot be used to define a reality condition

on S itself, it can be used to impose a reality condition on complex spaces

of the form S ⊗ VC, where VC is a complex vector space equipped with a

quaternionic structure. Symplectic Majorana spinors are one example of

such a construction and will be discussed later.

We remark that the complex spinor module S ≃ C
2n can always either

be viewed as a vector space S ≃ H
n over the skew field H of quaternions, or

3That is, it is invariant under the Lie algebra so(V ), and hence under the connected
component of the Spin group.
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as a module H
′n over the ring of para-quaternions H

′.4 The reason is that

the Spin0-invariant endomorphism defined by

J =

{

j
(α)
S

, if S has an invariant quaterionic structure ,

ρ
(α)
S

, if S has an invariant real structure ,

anti-commutes with the natural complex structure I, which acts through

multiplication by the complex unit, I : λ 7→ iλ. Therefore K = IJ = −JI

is another Spin0-invariant endomorphism which anti-commutes with I and

J . If BB∗ = ε1, ε = ±1 then the three endomorphisms I, J,K satisfy

I2 = εJ2 = εK2 = −1 , I, J,K pairwise anticommuting,

which is the quaternionic algebra for ε = 1 and the para-quaternionic algebra

for ε = −1.

2.2 Bilinear Forms, Supersymmetry, and R-Symmetry Groups

2.2.1 Supersymmetry algebras and bilinear forms

Supersymmetry extends the Poincaré Lie algebra p(V ) = V + so(V ) to a

Poincaré Lie superalgebra sp(V ) = g0 + g1, where the even part g0 is the

Poincaré Lie algebra, and the odd part g1 is a spinor module S of so(V ),

which may be reducible or irreducible. The Poincaré Lie superalgebra is

completely determined once we specify the supersymmetry algebra (super-

translation algebra)

{Qα, Qβ} = K
µ
αβPµ , (5)

where the translation generators Pµ span V , while the supercharges Qα span

S. Since the bracket {·, ·} is symmetric, the structure constants Kµ
αβ can be

interpreted as representing a real Spin0-equivariant symmetric vector-valued

bilinear form on the spinor module S:

K : Sym(S⊗ S) → R
t,s : (λ, χ) 7→ Kµ(λ, χ) = Kµ(χ, λ) .

4We refer to the appendices for brief reviews of the relevant facts about quaternions
and para-quaternions.
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Conversely, any real Spin0-equivariant, symmetric vector-valued bilinear

form defines a superbracket. The anti-commutation relations (5) are ob-

tained by expanding spinors in the basis provided by the supercharges Qα:

{λαQα, χ
βQβ} = Kµ(λ, χ)Pµ = λαχβK

µ
αβPµ .

Note that in this approach there is no need to explicitly check the super

Jacobi identity, because it holds automatically. It was shown in [15] how

all supersymmetry algebras in all dimensions and signatures can be con-

structed from vector-valued bilinear forms. In the following we draw on

results of this work to explain how such vector-valued bilinear forms can be

constructed using so-called admissible bilinear forms. We will not consider

central charges and other BPS charges, which correspond to polyvector ex-

tensions of Poincaré Lie superalgebras, but remark that these extensions

have likewise been constructed and classified using the language of admissi-

ble bilinear forms [18].

Starting from a bilinear form

β : S⊗ S → R

on a spinor module S, one can define a vector-valued bilinear form by in-

serting a Clifford generator,

Kµ(λ, χ) := β(γµλ , χ) .

One defines the symmetry σ(β) = ±1 and type τ(β) = ±1 of a bilinear form

as follows:

σ(β) : β(λ, χ) = σ(β)β(χ, λ) , (6)

τ(β) : β(γµλ, χ) = τ(β)β(λ, γµχ) .

Note that the quantities σ, τ introduced earlier are the symmetry σ(C) and

type τ(C) of the complex bilinear form defined by the charge conjugation

matrix C.
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A bilinear form is called admissible if it has a definite symmetry and

type. Note that this implies that it is Spin0-invariant, since the genera-

tors of infinitesimal Lorentz transformations are γµν . The Spin0-equivariant

vector-valued bilinear form associated to an admissible bilinear form β is

symmetric if and only if σ(β)τ(β) = +1.5 We will call such vector-valued

forms, and the underlying bilinear forms, super-admissible.6 Superbrack-

ets, and the corresponding real, symmetric, Spin0-equivariant vector-valued

bilinear forms form a vector space, and it was shown in [15] that one can

always choose a basis consisting of super-admissible vector-valued bilinear

forms. Hence we can restrict ourselves to super-admissible bilinear forms in

the following.

So far the spinor module S has been arbitrary. In the following we focus

on the case of the complex spinor module S, that is on supersymmetry alge-

bras where the supercharges form a single Dirac spinor. In odd dimensions,

where Dirac spinors are complex irreducible, this covers all the minimal su-

peralgebras, except in signatures where one can obtain a smaller algebra by

imposing a Majorana condition. In even dimensions, where Dirac spinors

decompose into complex semi-spinors (Weyl spinors) one can also obtain

smaller supersymmetry algebras by imposing a chirality condition. Gen-

eral extended superalgebras are obtained by taking multiple copies of real

irreducible spinor modules. We will leave these more complicated cases to

future work [19, 22], and focus on the case where the supercharges form a

single Dirac spinors. Moreover, when determining R-symmetry groups, we

will restrict to the case where Dirac spinors are complex irreducible, that is

to odd dimensions.

5Note that so far we work with commuting spinors. Spinor fields with anti-commuting
components will be introduced later when we construct representations of the supersym-
metry algebra on fields.

6This is a new terminology not used in [15] which we find convenient.
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2.2.2 Standard Bilinear Forms

The matrices A and C introduced previously naturally define admissible real

bilinear forms on the complex spinor module S. Associated with the matrix

A we first have the Spin0-invariant sesquilinear form

A(λ, χ) = λ†Aχ , λ, χ ∈ S ,

which is either Hermitian or anti-Hermitian. By decomposition of A into its

real and imaginary part we obtain two admissible real bilinear forms, one

symmetric, the other antisymmetric.

We can also define a Spin0-invariant complex bilinear form

C(λ, χ) = λTCχ

on S using a charge conjugation matrix C. This form has symmetry σ(C) =

σ and type τ(C) = τ . By decomposition of C into its real and imaginary

part we obtain two admissible real bilinear forms, which, depending on σ,

are either both symmetric or both antisymmetric.

2.2.3 R-symmetry groups

The R-symmetry group of a supersymmetry algebra is the group of all auto-

morphisms of the superbracket which commute with the Spin representation.

Thus for a Poincaré Lie superalgebra sp(V ) = V +so(V )+S this is the group

of all automorphisms which act trivially on the even part V + so(V ). We

first define the Schur algebra C(S), which consists of all endomorphisms of

S which are invariant under the infinitesimal action of the Spin group:

C(S) = {Z ∈ End(S)|[Z, so(V )] = 0} .

The invertible elements of the Schur algebra form the Schur group C(S)∗.

The R-symmetry group can then be defined as the subgroup of the Schur

group which leaves the vector-valued bilinear form β(γµ·, ·) defining the

superbracket invariant:

GR = {Z ∈ C(S)∗|β(γµZ·, Z·) = β(γµ·, ·)} .
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2.3 Doubled Spinors

We now introduce doubled spinors which will allow us to define complex

supersymmetry algebras in terms of complex vector-valued bilinear forms.

We take the spinor module S to be the complex spinor module S, deferring

the general case to a separate publication [19]. We also assume that S is

complex irreducible, which is true in odd dimensions. We do not impose

that S is irreducible as a real representation, that is, in signatures where

Majorana spinors are possible one needs to analyze separately whether one

can define a smaller supersymmetry algebra. While we show that this does

not happen in five dimensions, the general case is left to [19].

Taking the spinor module to be S, the doubled spinor module is S ⊕ S.

Since these are two copies of the same Spin0(t, s) representation we can

write this space as a complex tensor product between S and an internal

‘multiplicity space’ C2:

λ = (λi)i=1,2 = (λ1, λ2) ∈ S⊕ S ≃ S⊗ C
2 ∋ (λiα) ,

where α = 1 . . . dimS. This product form is convenient since now the Spin

group only acts on the first factor, while, as we will show, the R-symmetry

group only acts on the second factor. Since S is a complex Spin0(t, s) module

it automatically carries a representation of the complex Spin group. By

equipping S ⊗ C
2 with a super-admissible complex vector-valued bilinear

form, we therefore obtain a complex supersymmetry algebra. To pick a real

form for a given signature (t, s), we need to choose a Spin0(t,s) invariant

real structure ρ on S ⊗ C
2 and restrict the complex vector-valued bilinear

form to the real points (S ⊗ C
2)ρ with respect to ρ. This way we obtain a

super-admissible real vector-valued bilinear form on (S⊗C
2)ρ ≃ S. We now

explain this construction in detail.

On any complex spinor module S there exists at least one admissible

complex bilinear form, the one defined by the charge conjugation matrix

C. This bilinear form can be used to define a super-admissible complex

16



vector-valued bilinear form on S⊗C
2. However, since there might be other

admissible complex bilinear forms on S, we use the generic notation

β(λ, χ) = λTQβχ , λ, χ ∈ C

in the following. Given any admissible bilinear form β on S, we obtain

admissible complex bilinear forms on S ⊗ C
2 by tensoring β with any non-

degenerate symmetric or antisymmetric complex bilinear form

M : C2 ∋ (w, z) 7→M(w, z) = wizjMji

on C
2. The resulting bilinear form b = bβ,M = β ⊗M ,

(β ⊗M)(λ, χ) = (λi)TQβχ
jMji

has symmetry σ(bβ,M ) = σ(β)σ(M) and type τ(bβ,M ) = τ(β).

To obtain a complex supersymmetry algebra with associated spinor mod-

ule S⊗C
2, we require that the complex vector-valued billinear form bβ,M is

super-admissible, that is the associated vector-valued form must be symmet-

ric: σ(bβ,M )τ(bβ,M ) = +1. Given a bilinear form β with σ(β)τ(β) = 1, one

can therefore use any symmetric bilinear form on C
2, while for σ(β)τ(β) =

−1 we can use any antisymmetric bilinear form.

Since we want to determine the R-symmetry groups of the real super-

symmetry algebas later, it is useful to define complex versions of the Schur

algebra and of the R-symmetry group. The Schur algebra C(S ⊗ C
2) is

defined as the subalgebra of EndC(S⊗C
2) which commutes with the Spin0-

representation. The invertible elements of the Schur algebra form the Schur

group C∗(S) ⊂ AutC(S ⊗ C
2). Since we assume that S is irreducible as a

complex Spin0-representation, we can apply Schur’s lemma which implies

that such endomorphisms must act on S as a (non-zero) complex multiple of

the unit 1. This implies that C∗(S ⊗ C
2) ≃ GL(C2) ≃ GL(2,C). We define

the complex form of the R-symmetry group to be the subgroup of C∗(S⊗C
2)
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which leaves the complex vector-valued bilinear form (β ⊗M)(γµ·, ·) invari-

ant. Since M is either a symmetric or an antisymmetric non-degenerate

bilinear form, there are only two cases:

GC
R ≃

{

Sp(2,C) , ifM is antisymmetric ,

O(2,C) , ifM is symmetric .

The R-symmetry group of the real theory will then be a real form of GC
R. For

GC
R = Sp(2,C) the real R-symmetry group is locally isomorphic to SU(2)

or to SU(1, 1), while for GC
R = O(2,C) it is locally isomorphic to SO(2) or

to SO(1, 1).

Note that in order to apply Schur’s lemma, we need to assume that

S is complex irreducible. If S is complex reducible, as it happens in even

dimensions, then the R-symmetry group will be extended by transformations

that act non-trivially on the factor S of S⊗ C
2. See for example [6].

2.4 Reality Conditions

We now show how to recover Dirac spinors from doubled spinors by imposing

a Spin0-invariant reality condition. The possible reality conditions depend

on whether S carries a real or quaternionic structure.

2.4.1 Symplectic Majorana spinors

We start with the case BB∗ = −1, where S carries a Spin0-invariant quater-

nionic structure j
(α)
S

. To obtain a Spin0-invariant real structure on S⊗ C
2,

we can take the product with any quaternionic structure jC2 on C
2. For

concreteness, we take the standard quaternionic structure on C
2,

jC2

[(

z1

z2

)]

=

(

−z∗2

z∗1

)

.

The quaternionic structure on S is

jS(λ) = α∗B∗λ∗ .
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The resulting real structure ρ = jS ⊗ jC2 is

ρ

[(

λ1

λ2

)]

=

(

−jSλ
2

jSλ
1

)

=

(

α∗B∗(λi)∗εi1

α∗B∗(λi)∗εi2

)

,

where

ε =

(

0 1

−1 0

)

.

Symplectic Majorana spinors are by definition those doubled spinor which

are real in the sense that they are invariant under ρ:

ρ(λ) = λ⇔ λ2 = jSλ
1 ⇔ (λi)∗ = αBλjεji .

Since we can identify the subspace SSM = (S ⊗ C
2)ρ ⊂ S ⊗ C

2 ≃ S ⊕ S of

real doubled spinors with the graph of jS on S, we obtain an isomorphism

between Dirac spinors and symplectic Majorana spinors

S ∋ λ1 7→ (λ1, jS(λ
1)) ∈ SSM ⊂ S⊗ C

2 .

This is an isomorphism of real Clifford modules and hence of real Spin

modules [6]. The elements φ ∈ GL(2,C) ≃ C∗(S ⊗ C
2) of the Schur group

which commute with the reality condition form a subgroup. Evaluating the

condition

jC2ϕ(λ) = ϕjC2(λ) , where jC2(λi) = (λj)∗εji .

we find

ϕ =

(

u v

−v∗ u∗

)

∈ GL(1,H) ⊂ GL(2,C) , (7)

where GL(1,H) = H
∗ is the group of invertible quaternions. The corre-

sponding R-symmetry will be worked out below.

2.4.2 Real doubled spinors defined by a Majorana condition

In signatures where B∗B = 1, one can define Majorana spinors and possibly

obtain a supersymmetry algebra that is smaller than the one based on Dirac
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spinors. But we can also use the Majorana condition to to describe Dirac

spinors in terms of real doubled spinors. This time the reality condition im-

posed on doubled spinors is the product of the Spin0-invariant real structure

ρS on S defined by the Majorana condition, and a real structure on C
2. For

later convenience we choose

ρC2

[(

z1

z2

)]

=

(

z∗2

z∗1

)

. (8)

The real structure on S is

ρS(λ) = α∗B∗λ∗ .

The resulting real structure on S⊗C
2 is

ρ

[(

λ1

λ2

)]

=

(

ρSλ
2

ρSλ
1

)

=

(

α∗B∗(λi)∗ηi1

α∗B∗(λi)∗ηi2

)

,

where

(ηij) =

(

0 1

1 0

)

.

Real doubled spinors are those doubled spinors which are invariant under ρ:

ρ(λ) = λ⇔ λ2 = ρSλ
1 ⇔ (λi)∗ = αBλjηji .

Similarly to the symplectic Majorana case, we have an isomorphism between

Dirac spinors and real doubled spinors using that the real doubled spinors

lie on the graph of the real structure:

S ∋ λ1 7→ (λ1, ρS(λ
1)) ∈ SDM ⊂ S⊗ C

2 ≃ S⊕ S .

To find the Schur group associated with the real theory we need to identify

those elements ϕ ∈ GL(2,C) ≃ C∗(S ⊗ C
2) which commute with the real

structure ρC2 . The condition is

ρC2ϕ(λ) = ϕρC2(λ) , where ρC2(λi) = (λj)∗ηji .
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which implies

ϕ =

(

u v

v∗ u∗

)

∈ GL(1,H′) ⊂ GL(2,C) , (9)

where GL(1,H′) ≃ GL(2,R) ⊂ GL(2,C) is the group of invertible para-

quaternions.7

2.5 Determination of R-symmetry groups

We have seen that the R-symmetry group of the complex theory is either

isomorphic to O(2,C) or to Sp(2,C) = SL(2,C), depending on whether the

complex bilinear form we choose on C
2 is symmetric or antisymmetric. The

possible real R-symmetry groups are those subgroups which commute with

the reality condition we impose. Therefore the real R-symmetry groups are

real forms of the complex R-symmetry groups. For semi-simple groups, such

as Sp(2,C), this implies that they can be obtained as fixed points under an

involutive automorphism, see for example [23] for background. The group

O(2,C) is abelian, and not semi-simple. Since there are only two connected

real one-dimensional Lie groups, SO(2) and R ≃ SO0(1, 1), we know that

these are the connected components of the real R-symmetry groups. We

will show that both the compact and the non-compact form appear, and

determine the group globally for the standard involutions.

Let us show explicitly how imposing a reality condition on doubled

spinors is related to involutive automorphisms of GC
R. The real R-symmetry

group is defined by

GR = {ϕ ∈ GC
R|ρϕ = ϕρ} ⊂ GC

R ≃ GL(2,C) ,

where ρ is either a real structure ρC2 or a quaternionic structure jC2 on C
2.

Its action takes the form

ρ(zi) = zj∗Nji , i, j = 1, 2 ,

7See Appendix B for the relevant fact about para-quaternions.
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where N = (Nji) is a real invertible matrix which is either symmetric or

antisymmetric, and satisfies N2 = ±1. The choices corresponding to the

two types of real doubled spinors introduced earlier are ηji and εji. We

parametrize the action of a complex R-symmetry transformation ϕ ∈ GC
R as

ϕ(zi) = Ai
jz

j ,

where A = (Ai
j) ∈ GL(2,C). Evaluating the condition ρϕ = ϕρ we find,

taking into account that NT = ±N ,

A = NA∗N−1

This is precisely the action of an involutive automorphism acting by complex

conjugation K composed with conjugation by the matrix N :

A 7→ N ◦K(A) = NK(A)N−1 .

Since we would like to know the R-symmetry groups for all possible types

of reality conditions, we first need to review the relevant facts about real

forms of complex Lie groups. For a connected simple complex Lie group,

all real forms can be obtained as fixed points of involutive automorphisms.

Up to conjugation with inner automorphisms, there are at most three types

of such automorphisms: complex conjugation K, and the conjugation by

matrices of the form

Ip,q =

(

1p 0

0 −1q

)

, Jp,p =

(

0 1p

−1q 0

)

.

For the connected simple group GC
R = Sp(2,C) = SL(2,C), the three basic

involutions are K, I1,1 and J1,1 = ε. We find it convenient to replace I1,1

by the equivalent matrix η, and to use K, η ◦K, ε ◦ K as the independent

involutions. The group GC
R = O(2,C) has two connected components and

is abelian rather than simple. Since there are only two connected one-

dimensional Lie groups, SO(2) ≃ U(1) and SO0(1, 1) ≃ R the subgroup of
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O(2,C) consistent with the reality condition must be locally isomorphic to

one of them.

To determine the real R-symmetry groups, we need to solve the equation

A∗ = N−1AN (10)

for A ∈ Sp(2,C), O(2,C) and N = 1, η, ε. Working infinitesimally, A =

exp(ǫa) = 1+ ǫa+O(ǫ2), we see that the Lie algebra element a must satisfy

the same equation as the group element,

a∗ = N−1aN . (11)

We start with A ∈ Sp(2,C), where

a =

(

α β

γ −α

)

, α, β, γ ∈ C .

• N = 1.

In this case a and A must be real, which implies GR = Sp(2,R) ≃

SU(1, 1).

• N = η.

Equation (11) implies α∗ = −α, β = γ∗. Writing α = α1 + iα2, etc.

we obtain

a =

(

iα2 β1 + iβ2

β1 − iβ2 −iα2

)

.

The Lie algebra spanned by these matrices has two non-compact gen-

erators, and therefore is isomorphic to su(1, 1). By exponentiation we

obtain GR ≃ SU(1, 1).

• N = ε.

Equation (11) implies α∗ = −α, β = −γ∗. Therefore

a =

(

iα2 β1 + iβ2

−β1 + iβ2 −iα2

)

.
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The Lie algebra spanned by these matrices has three compact gen-

erators, and is therefore isomorphic to su(2). By exponentiation we

obtain GR ≃ SU(2).

We remark that the R-symmetry groups SU(2) and SU(1, 1) obtained for

N = ε, η have a natural interpretation in terms of the quaternionic and para-

quaternionic structure on the complex spinor module S. For N = ε the real

Schur group was found to be GL(1,H) ⊂ GL(2,C) and we can obtain the

real R-symmetry group by intersecting this with the complex R-symmetry

group. This reveals that the R-symmetry group

GL(1,H) ∩ Sp(2,C) = U(1,H) = SU(2) ,

is the group of unit norm quaternions, which rotates the Spin0-invariant

quaternionic structures I, J,K on S.

Similarly, for N = η the real Schur group was found to be GL(1,H′) ⊂

GL(2,C). The real R-symmetry group obtained by intersecting with the

complex R-symmetry group,

GL(1,H′) ∩ Sp(2,C) = U(1,H′) = SU(1, 1) ,

is the group of unit norm para-quaternions, which rotates the Spin-invariant

para-quaternionic structure I, J,K on S.

We now turn to GC
R = O(2,C). An element of the complex Lie algebra

o(2,C) is an antisymmetric complex two-by-two matrix
(

0 α

−α 0

)

, α ∈ C .

• N = 1. In this case a and A must be real and we obtain GR = O(2).

• N = η.

In this case (11) implies α∗ = −α, so that

a =

(

0 iα2

−iα2 0

)

, α2 ∈ R .
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This generates a non-compact group, therefore GR ⊃ SO(1, 1)0 ≃ R.

Since GC
R = O(2,C) has two connected components, while the largest

possible real R-symmetry group O(1, 1) has four connected compo-

nents, we need additional work to determine the group globally. We

use the parametrization

(

cos z sin z

− sin z cos z

)

∈ SO(2,C) ,

(

cos z sin z

sin z − cos z

)

∈ O(2,C)\SO(2,C) .

For A ∈ SO(2,C) equation (10) implies

(cos z)∗ = cos z , (sin z)∗ = − sin z .

This has two solutions for z,

z = iχ , z = π + iχ , χ ∈ R .

The resulting matrices A take the form

A = ±

(

coshχ i sinhχ

−i sinhχ coshχ

)

≃ ±

(

coshχ sinhχ

sinhχ coshχ

)

, χ ∈ R ,

where we made an equivalence transformation corresponding to the

map (z1, z2) 7→ (z1, iz2) in the second step. After this transformation

A takes the standard form of an SO(1, 1) matrix, and we see that

the group we obtain by imposing the reality condition on SO(2,C) is

isomorphic to SO(1, 1).

For A ∈ O(2,C)\SO(2,C), equation (10) implies

(cos z)∗ = − cos z , (sin z)∗ = sin z .

This again has two solutions for z:

z =
π

2
+ iχ , z =

3π

2
+ iχ , χ ∈ R .
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The corresponding matrices A take the form

A = ±

(

−i sinhχ coshχ

coshχ i sinhχ

)

These matrices have determinant −1 and extend the R-symmetry

group to O(1, 1).

• N = ε.

At the infinitesmal level equation (11) implies α = α∗, so that

a =

(

0 α1

−α1 0

)

, α1 ∈ R .

This generates a compact group, so GR ⊃ SO(2). To decide whether

the group is O(2) or SO(2), we turn to equation (10). For A ∈

SO(2,C) we obtain:

(cos z)∗ = cos(z) , (sin z)∗ = sin(z)

so that

A =

(

cosφ sinφ

− sinφ cosφ

)

as it must, given the result for the Lie algebra. For A ∈ O(2,C)\SO(2,C)

we obtain

(cos z)∗ = − cos z , (sin z)∗ = − sin z .

These two equations have no common solution, therefore the R-symmetry

group is GR = SO(2).

We note that the differences between the R-symmetry groupsO(2), SO(2), O(1, 1)

can be characterised in terms of their action on R
2 ⊂ C

2. While on C
2 the

signature of a complex bilinear form is not an invariant, the signature of

a real bilinear form on R
2 is an invariant, which distinguishes O(2) and

O(1, 1). Moreover, on R
2 we can choose an orientation, or a complex struc-

ture, which is preserved by SO(2) ⊂ O(2), while the full group O(2) also
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contains transformations which reverse orientation and complex structure.

Similarly, R2 can be equipped by a para-complex structure, which is pre-

served by SO(1, 1) ⊂ O(1, 1) only.

This completes the determination of the R-symmetry groups that can ap-

pear in supersymmetry algebras based a single Dirac spinor of supercharges

in odd dimensions. We now specialize to five dimensions where we will show

explicitly how to relate superbrackets on S and S⊗ C
2 to one another.

3 Minimal Supersymmetry in Five Dimensions

We first collect a few useful facts and relations valid in five dimensions.

The complex spinor module S is irreducible as a complex module. We will

see that for some signatures Majorana spinors exist, which means that S is

reducible as a real module, and that smaller, N = 1 superalgebras might

exist. However, as we show at the end of this section these superalgebras

are trivial in the sense that the supercharges simply anti-commute. From

the tables in [15] we can read off that there the vector space of symmetric

Spin0-equivariant vector-valued bilinear forms is one-dimensional. In other

words, for all signatures the superbracket is unique up to rescaling. We

will provide explicit realizations of the superbrackets both in terms of Dirac

spinors and in terms of doubled Dirac spinors.

The charge conjugation matrix C is unique up to equivalence and has

symmetry σ = σ(C) = −1 and type τ = τ(C) = 1. It is therefore anti-

symmetric, CT = −C. Since C satisfies C−1 = C = C†, it is then purely

imaginary, C∗ = −C. Since τ = 1,

(γµ)T = τCγµC−1 = CγµC−1 .

A straightforward calculation shows that B = (CA−1)T can be re-written

as

B = (−1)t+1CA , (12)

27



and complex conjugation operates on γ-matrices by

(γµ)∗ = (−1)tτBγµB−1 = (−1)tBγµB−1 .

By another straightforward calculation we find

B∗B = (−1)(t
2+3t+2)/21 =

{

−1 , for t = 0, 1, 4, 5 ,

+1 , for t = 2, 3 .

Thus the spinor module S has an invariant quaternionic structure for Eu-

clidean and Lorentz signature, but an invariant real structure for signatures

with two times. For later use we note that

B†C = (−1)(t
2+3t+2)/2A =

{

−A for t = 0, 1, 4, 5

A for t = 2, 3 .
(13)

To define the five-dimensional N = 2 superalgebras in terms of Dirac

spinors, we use the sesquilinear form

A(λ, χ) = λ†Aχ .

A is Hermitian for t = 0, 3, 4 and anti-Hermitian for t = 1, 2, 5. The real and

imaginary part of A define two admissible real bilinear forms, whose symme-

try is determined by the Hermiticity properties of A. The type of A, Re(A)

and Im(A) is +1 if A is a product of an even number of generators and −1

if A is a product of an odd number of generators. The resulting values for

the invariants σ and τ are summarized in Table 1. The superbrackets cor-

responding to the vector-valued bilinear forms bA(γ
µ·, ·) = Re/ImA(γµ·, ·)

are defined by

{λαQα , χ
βQβ} = bA(γ

µλ, χ)Pµ .

Using our spinor conventions summarized in Appendix A, the corresponding

anti-commutation relations are:

{Qα, Qβ} =

{

Re[γµA−1]αβPµ , t = 0, 1, 4, 5

Im[γµA−1]αβPµ , t = 2, 3 .
(14)
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Re[A] Im[A]

(0, 5) (+,+) (−,+)

(1, 4) (−,−) (+,−)

(2, 3) (−,+) (+,+)

(3, 2) (+,−) (−,−)

(4, 1) (+,+) (−,+)

(5, 0) (−,−) (+,−)

Table 1: Invariants, (σ = ±1, τ = ±1), of Dirac bilinear forms in various
signatures

We can also define an admissible complex bilinear form based on the

charge conjugation matrix C,

C(λ, χ) = λTCχ , (15)

which gives rise to two admissible real bilinear forms, Re(C) and Im(C).

Since the charge conjugation matrix is unique (up to equivalence) with σ =

−1, τ = 1, these forms are not superadmissible, see Table 2. However, we

Re[C] Im[C]

All signatures (−,+) (−,+)

Table 2: Invariants, (σ = ±1, τ = ±1), of the charge conjugation bilinear
forms in all five dimensional signatures

can define a complex superbracket on the doubled spinor module S ⊗ C
2

using the admissible bilinear form bC,ε = C ⊗ ε:

bC,ε(λ, χ) = (C ⊗ ε)(λ, χ) = λTCχ = (λi)TCχjεji ,

and the corresponding vector-valued bracket bC,ε(γ
µλ, χ).
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3.1 Real doubled spinors in (0, 5), (1, 4), (4, 1) and (5, 0) - Using

the symplectic Majorana condition

In signatures with no or one time-like dimension, the superbracket on S is

given by the real part of

A(γµλ1, χ1) = (−1)t(λ1)†Aγµχ1 ,

where λ1, χ1 ∈ S. Since B∗B = −1, the complex spinor module S carries

a Spin0-invariant quaternionic structure jC2 . Therefore we can define sym-

plectic Majorana spinors using the real structure ρ = jS ⊗ jC2 . To evaluate

the super-admissible bilinear form bC,ε(γ
µ·, ·) on the space SSM = (S⊗C

2)ρ

of real doubled spinors, we use the reality condition to eliminate the second

components of doubled spinors,

λ2 = α∗B∗(λ1)∗ .

A short calculation shows8

bC,ε(γ
µλ, χ)ρ = [(γµλ2)TCχ1 − (γµλ1)TCχ2]ρ

= α∗
[

(λ1)†B†(γµ)TCχ1 − (λ1)T (γµ)TCB∗(χ1)∗
]

= α∗
[

(−1)(t
2+3+2)/2(λ1)†Aγµχ1 − ((λ1)†Aγµχ1)∗

]

(16)

= (−1)tα∗
(

(−1)(t
2+3t+2)/2((Aλ1)†γµχ1)− ((Aλ1)†γµχ1)∗

)

.

Here we used (12) and (13). Since (−1)(t
2+3t+2)/2 = −1 for t = 0, 1, 4, 5, we

find

(C ⊗ ε)real(γ
µλ, χ) = −2(−1)tα∗Re(A)(γµλ1, χ1) .

Up to a complex overall factor, the super-admissible vector-valued real bi-

linear forms on real doubled spinors and on Dirac spinors agree and define

the same superalgebra.

8From now on we will stop ‘underlining’ doubled spinors, as it should be clear from
context whether λ refers to a Dirac spinor or a doubled spinor.
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We make the conventional choice to rescale the complex bilinear form

on S ⊗ C
2 by a factor −1

2 and to set α = (−1)t. Then the restriction of

b(γµ·, ·) = −1
2(C ⊗ ε)(γµ·, ·) to symplectic Majorana spinors agrees with

Re(A)(γµ·, ·). Using the conventions summarized in Appendix A, the five-

dimensional N = 2 superalgebra takes the form

{Qiα, Qiβ} = −
1

2
(γµC−1)αβPµεij ,

where the doubled spinors Qi = (Qiα) are subject to the reality condition

Q∗
i = (−1)t+1BεijQj ⇔ Qi∗ = (−1)tBQjεji .

Since S is irreducible and the bilinear form ε on C
2 is antisymmetric, the

R-symmetry group is

GR = GL(1,H) ∩ SL(2,C) ≃ SU(2) .

3.2 Real doubled spinors in (2, 3) and (3, 2) - Using the Ma-

jorana condition

In signatures with two time-like dimensions the superbracket on S is given

by the imaginary part of

A(γµλ1, χ1) = (−1)t(λ1)†Aγµχ1 .

In these signature B∗B = 1, so that B defines a Spin0-invariant real struc-

ture ρS on S, which allows us to define Majorana spinors. We show at

the end of this section that the restriction of the superbracket to Majorana

spinors is trivial and does not define a smaller, N = 1 superalgebra with four

real supercharges. Here we focus on rewriting Dirac spinors as real doubled

spinors. By combining the real structure ρS with the real structure ρC2 on

C
2 defined by (8) we obtain the Spin0-invariant real structure ρ = ρS ⊗ ρC2

on doubled spinors. Evaluating the invariant bilinear form bC,ε(γ
µ·, ·) on
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real doubled spinors, we find

bC,ε(γ
µλ, χ)|real = α∗(λ1)†B†Cγµχ1 + α∗(−1)t((λ1)†CBγµχ1)∗

= α∗(−1)t(t+1)/2(A(γµλ1, χ1)−A(γµλ1, χ1)∗)

= α∗(−1)t(t+1)/22iIm(A)(γµλ1, χ1) ,

where we used (12), (13) and that (−1)(t
2+3t+2)/2 = 1 for t = 2, 3. As for

the other signatures, we rescale the bilinear on S ⊗ C
2 by a factor −1

2 , so

that

b(γµλ, χ)|real = −i(−1)t(t+1)/2α∗Im(A)(γµλ1, χ1) .

Then by choosing

α = −i(−1)t(t+1)/2 =

{

i for t = 2 ,

−i for t = 3 ,

the invariant vector-valued bilinear form on S⊗C
2 agrees with the invariant

vector-valued real bilinear form on S when evaluated on real points. Note

that with our conventional choices of α, the five-dimensional supersymmetry

algebra takes the same form for all signatures when expressed using doubled

spinors. The reality conditions which relate doubled spinors to Dirac spinors

are summarized in Table 3. Since we use the antisymmetric bilinear form ε

Reality Condition

(0, 5) (λi)∗ = Bλjεji

(1, 4) (λi)∗ = −Bλjεji

(2, 3) (λi)∗ = iBλjηij

(3, 2) (λi)∗ = −iBλjηij

(4, 1) (λi)∗ = Bλjεji

(5, 0) (λi)∗ = −Bλjεji

Table 3: Reality Condition in each signature, B = (CA−1)T is signature
dependent.
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on C
2, the R-symmetry group is

GR = GL(1,H′) ∩ Sp(2,C) ≃ SU(1, 1) .

3.3 Reality properties of spinor bilinears and R-group ten-

sors

In explicit calculations it is convenient to employ a formalism where R-

symmetry indices i, j = 1, 2 can be raised and lowered. This is always done

using the antisymmetric bilinear form ε on C
2, irrespective of the reality

condition. Spinors form R-symmetry doublets, and the rules for raising and

lowering indices are

λiεij = λj , λi = εijλj ,

where εijεjk = −δik. This rule for raising and lowering indices conforms with

the NW-SE convention. Besides spinors, which transform as R-symmetry

doublets, the only other field in a five-dimensional vector multiplet that

transforms non-trivially under R-symmetry is the auxiliary symmetric tensor

field Y ij . The rules for raising and lowering indices are

Y ij = εikεjlYkl , Y klεkiεlj = Yij .

Spinors and as well the symmetric tensor Y ij are subject to reality condi-

tions, which involve the indices i, j. For spinors we have

(λi)∗ =

{

αBλjεji for t = 0, 1, 4, 5,

αBλjηji for t = 2, 3,
. (17)

For symmetric tensors we then have to take the induced reality conditions

(Y ij)∗ =

{

Y klεkiεlj = Yij , for t = 0, 1, 4, 5,

Y klηkiηlj , for t = 2, 3 .
(18)

These reality conditions are invariant under the respective R-symmetry

groups SU(2) and SU(1, 1), which act by

Y → Y ′ = UY UT ,
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where

U =

(

a b

∓b∗ a∗

)

∈

{

SU(2) , for t = 0, 1, 4, 5,

SU(1, 1), for t = 2, 3.

Note that U satisfies

U∗ = εUεT , U∗ = ηUη ,

respectively.9 From this it follows immediately that Y ′ satisfies the same

reality condition as Y .

Note that for t = 2, 3 (Y ij)∗ 6= Yij. The explicit relations between tensor

components are:

Y 11 = Y22 , Y 12 = ±Y12 , Y 22 = Y11 ,

and

(Y 11)∗ = Y11 , (Y 12)∗ = ±Y12 , (Y 22)∗ = Y22 ,

where the plus sign applies for t = 0, 1, 4, 5 and the minus sign for t = 2, 3.

We also note for later use that Y ijYij is real for all signatures.

The final ingredient we need is to determine the reality properties of

spinor bilinears involving real doubled spinors, as these will appear in the

supersymmetry transformations and supersymmetric Lagrangians. For the

scalar bilinear, we find

(λ̄χ)∗ = (−1)tλ̄χ . (19)

This formula only depends on t and does not depend on whether S carries a

quaternionic or real structure. The reason is that signs which are sensitive to

the type of the reality condition cancel. To see this, write out the expression

(λ̄χ)∗ = ((λi)TCχj)εji)
∗

using the reality condition (λi)∗ = αBλjMji, where Mji = εji or Mji = ηji,

(λ̄χ)∗ = −α2(λk)TBTCBχiMkiMljε
ji .

9These relations show that for both groups the [2] and [2̄] representations are equivalent
as real representations.
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Using the relations for A,B,C given previously, one finds

BTCB = (−1)t+1C .

We also need

εkiεljε
ji = εlk , ηkiηljε

ji = −εlk .

These relations contain a sign which depends on the type of reality condition

we use. However since α = ±1 for t = 0, 1, 4, 5, but α = ±i for t = 2, 3 this

sign cancels against α2 = ±1, and we obtain (19).

Since

(γµ1···µl)∗ = (−1)tlBγµ1···µlB−1 ,

this immediately generalizes to

(λ̄γµ1···µlχ)∗ = (−1)t(l+1)λ̄γµ1···µlχ . (20)

Thus for t = 0 all spinor bilinears are real, while for t = 1 they alternate

between imaginary and real. Note that the vector bilinear, l = 1, is real for

all t, as it must, as this is the bilinear which defines the real supersymmetry

algebra.

We conclude by noting that all expressions with completely contracted

auxiliary indices i, j are R-symmetry invariant: Before imposing the real-

ity condition they are manifestly Sp(2,C)-invariant, and the R-symmetry

group is precisely the subgroup of Sp(2,C) which commutes with the reality

condition.

3.4 No N = 1 superymmetry algebras in signatures (2, 3) and
(3, 2)

For t = 2, 3, the complex spinor module S carries a Spin-invariant real

structure J defined by the matrix B, and we can define Majorana spinors by

imposing λ∗ = αBλ. Thus we might be able to define an N = 1 superalgebra

by restricting the super-admissible bilinear form b = Im(A) to J-invariant
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spinors. However by explicit computation it is straightforward to verify that

the Spin0-invariant endomorphism J : λ 7→ α∗B∗λ∗ satisfies

b(γµJλ, χ) = −b(γµλ, Jχ)

for all signatures, which implies that the bilinear form is identically zero

when restricted to J-invariant spinors. The corresponding supersymmetry

algebra is trivial, that is, supercharges simply anti-commute. Therefore one

cannot define an N = 1 supersymmetry algebra in five dimensions even in

those signatures where Majorana spinors exist. This conclusion can also be

reached by analyzing the tables in [15].

4 Five-dimensional vector multiplets

We will now derive the off-shell supersymmetry transformations and the gen-

eral Lagrangians for five-dimensional vector multiplets in arbitrary signature

(t, s). Since we can build on the results of [6] for signature (1, 4), we proceed

as follows. Initially, we work on the doubled spinor module S⊗ C
2 without

imposing a reality condition. By allowing arbitrary complex coefficients in

the supersymmetry transformations and in the Lagrangian known from [6],

we obtain all conditions on these parameters which are independent of sig-

nature. The resulting transformations and Lagrangian can be viewed as a

common complexification of all the five-dimensional theories. In a second

step we impose the appropriate reality conditions for each signature, and

obtain further signature dependent conditions on the parameters. We will

show that consistent solutions exist for all signatures, and are unique up to

conventional choices. The transformations and Lagrangians vary from sig-

nature to signature only by sign flips or insertion of factors of ±i. Moreover,

theories in signatures (t, s) and (s, t) are related by changing the convention

for the space-time metric from ‘mostly plus’ to ‘mostly minus’, plus taking

into account changes in the reality properties of spinor bilinears. Thus we
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end up with three physically distinct cases: Euclidean theories with signa-

tures (0, 5) and (5, 0), Lorentzian theories with signatures (1, 4) and (4, 1)

and exotic theories with two time-like directions, with signatures (2, 3) and

(3, 2).

4.1 Supersymmetry variations

We have seen that when using doubled spinors the supersymmetry algebra

to takes the form

{Qαi, Qαj} = −
1

2
(γµC−1)αβPµεij .

To show that this algebra is represented on a collection of space-time fields,

we must verify that

[ǭ(1)Q, ǭ(2)Q]Φ(x) = −
1

2
(ǭ(1)γ

µC−1ǫ(2))∂µΦ(x) (21)

for all fields Φ(x) belonging to the given supermultiplet. The supersymme-

try parameters ǫ(i) and the fermionic fields λi are anti-commuting spinor

fields.10 In implementing the supersymmetry algebra, we have chosen that

the translation operator Pµ acts as ∂µ on fields, which is the same convention

as in [24].11

The content of a five-dimensional off-shell vector multiplets is known

from signature (1, 4):

(Aµ, λi, σ, Y ij) , µ = 1, 2, 3, 4, 5 , i = 1, 2 . (22)

Apart from the eponymous vector field, Aµ, a vector multiplet contains a

pair of spinors, λi, a scalar field, σ, and a triplet of auxiliary field combined

into a symmetric tensor, Y ij . At this point no reality conditions are imposed

10Note that so far we have been using commuting spinors. Going from commuting to
anti-commuting spinors is a ‘natural’ (functorial) operation and introduces signs in any
operation which involves changing the order of spinors.

11In the mathematics literature translations are taken to act by −∂µ on functions,
since this is the infinitesimal action of the one-parameter group ϕt : x 7→ x + teµ of
diffeomorphisms on functions.
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on λi and Y ij , and therefore Aµ and σ should be considered as complex fields

in order to balance bosonic and fermionic degrees of freedom.

Since we anticipate that the numerical coefficients of terms in the super-

symmetry variations will depend on the reality conditions we will impose

later, we take the off-shell supersymmetry transformations derived in [6]

for signature (1, 4), but replace the numerical pre-factors of all terms by

complex coefficients:

δAµ = αǭγµλ , δσ = aǭλ , δY ij = uǭ(i✓∂λ
j) , (23)

δλi = βγ · Fǫi + b✓∂σǫ
i + yY ijǫj .

By imposing that the transformations satisfy (21), and therefore realize

the complex supersymmetry algebra, we obtain the following independent

relations between the coefficients:

−
1

2
= −2ab = 4αβ = −uy . (24)

We remark that the calculation leading to these relations is identical to the

one done previously in [6], except that we have replaced numerical coeffi-

cients by parameters.

The relations (24) can be solved for b, β, y in terms of a, α, u:

b =
1

4a
, β = −

1

8α
, y =

1

2u
.

We now impose reality conditions, proceeding signature by signature.

For the scalar σ and the vector Aµ this simply means that they are now

real-valued. The reality conditions imposed on the spinors λi, ǫi were given

in (17) while those imposed on the auxiliary tensor Y ij were given in (18).

With regard to the reality properties of spinor bilinears we need to take

into account that in a field theory realisation spinors are anticommuting

quantities. This leads to extra minus signs when applying operations which

change the order of spinors, such as transposition or Hermitian conjugation.
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Complex conjugation can either be defined to change the order of anticom-

muting fields or not, and both conventions can be mapped to each other

by changing the phase factor in the reality condition [21, 25].12 For us it is

convenient to keep the reality conditions we fixed in the previous section,

and therefore we define the complex conjugation of anti-commuting spinors

such that it does not change the order. Then we can use (20) to work out the

reality properties of the parameters α, a by imposing that δσ and δAµ are

real. Similary, by imposing reality on the variations δY ij and δλi, we obtain

the reality conditions for u, β, b, y. The resulting conditions are summarized

in Table 4.

Parameter Real Imaginary

α t = 0, . . . 5 never

a t = 0, 2, 4 t = 1, 3, 5

β t = 0, . . . , 5 never

b t = 0, 2, 4 t = 1, 3, 5

u t = 0, 1, 4, 5 t = 2, 3

y t = 0, 1, 4, 5 t = 2, 3

Table 4: Reality conditions for the coefficients of the supersymmetry trans-
formations.

These conditions are consistent with (24), because the products ab, αβ, uy

are real for all signatures. For signature (1, 4) the resulting reality properties

of symplectic Majorana spinor bilinears and supersymmetry variations agree

with [25] and [6]. For concreteness, we now make explicit choices for a, α, u,

which then determine b, β, y through (24). For (1, 4) we make a choice which

reproduces [6]. For other signatures we then introduce factors −1,±i, where

needed. We summarize the resulting values for the parameters in Table 5.

12This phase factor was denoted α previously, but is of course distinct from the param-
eter α in the supersymmetry transformations. Since by now the reality conditions have
been fixed according to Table 3 this should not cause any confusion.
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α a u β b y

(0, 5) 1
2

1
2 −1

2 −1
4

1
2 −1

(1, 4) 1
2

i
2 −1

2 −1
4 − i

2 −1

(2, 3) 1
2

1
2 − i

2 −1
4

1
2 i

(3, 2) 1
2

i
2 − i

2 −1
4 − i

2 i

(4, 1) 1
2

1
2 −1

2 −1
4

1
2 −1

(5, 0) 1
2

i
2 −1

2 −1
4 − i

2 −1

Table 5: Explicit choices for the parameters in the supersymmetry transfor-
mations for all signatures.

4.2 Supersymmetric Lagrangians

The representations we have found above are off-shell and therefore indepen-

dent of a choice of field equations or Lagrangian. To specify Lagrangians

we proceed in the same way as with the supersymmetry transformations.

In [6] the general (two derivative) rigid off-shell Lagrangian for vector mul-

tiplets in signature (1, 4) was determined. To adapt this result to other

signatures, we introduce parameters sF , sσ, sλ, sY , θ1, θ2, θ3, which are fixed

later by imposing reality conditions.

The general form of the Lagrangian is

L =

(
sF

4
F I
µνF

Jµν +
sσ

2
∂µσ

I∂µσJ +
sλ

2
λ̄I✓∂λ

J + sY Y
I
ijY

Jij

)

FIJ(σ) (25)

+

(

θ1ε
µνρστAI

µF
J
νρF

K
στ + θ2λ̄

IγµνF J
µνλ

K + θ3λ̄
IiλJjY K

ij

)

FIJK(σ) .

Vector multiplets are labeled by I, J = 1, ..., N . Initially we do not im-

pose reality conditions, so that all quantities are complex. Note that this

Lagrangian is complex-valued, and holomorphic, since it does not involve

complex conjugation. As in [19] it does not seem to have a direct physical

interpretation13 but can be thought of as a ‘holomorphic master Lagrangian,’

13Except possibly in terms of a complexified configuration space which contains the
complex saddle points of a Euclidean functional integral, see for example [26, 27].
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encoding all the possible real forms. Imposing invariance under the super-

symmetry transformations (23) involves the same computational steps as

verifying the supersymmetry invariance of the (1, 4) theory in [6]. Therefore

the essential structural properties carry over to all signatures. In particu-

lar, the scalar field dependent couplings FIJ and FIJK can be expressed as

derivatives of a Hesse potential F(σ):14

FIJ(σ) =
∂

∂σI
∂

∂σJ
F(σ) , FIJK(σ) =

∂

∂σI
∂

∂σJ
∂

∂σK
F(σ) . (26)

Supersymmetry requires that a Chern-Simons term is included, unless the

theory is non-interacting and thus the Hesse potential quadratic. Gauge

invariance of the Chern-Simons term, up to boundary terms, implies that

F(σ) must be a polynomial of degree at most three. As noted in [6] the

spinor term can be written using a partial derivative, rather than using

the covariant derivative with respect to the Levi-Civita connection of the

scalar manifold, because the difference is identically zero due to the prop-

erty λ̄i(I|λj|J)εji = 0 of spinor bilinears, which holds irrespective of reality

conditions.

Invariance of the Lagrangian under the transformations (23) imposes the

following conditions on the coefficients:

sFα = −2sλβ , sσa = −sλb , 2sY u = −sλy ,

3θ1α = ±2itθ2β , 4θ2α = −θ3u , θ2y = θ3β , (27)

αsF = 8bθ2 , asY = yθ3 , asλ = 8αθ2 .

The sign appearing in the relation determining θ1 will be explained below.

The relations (27) are consistent but not independent. Using the rela-

tions (24) we can rearrange the condition imposed on the coefficients si as

follows:

−
1

2
= −2

sF

sλ
α2 = 2

sσ

sλ
a2 = 2

sY

sλ
u2 (28)

14As long as we do not impose reality conditions this is a holomorphic Hesse potential
for a complex-Riemannian metric.
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These relations determine the relative signs of the quadratic terms in the

Lagrangian. The coefficients θ2, θ3 are then determined in terms of any of

the si, say sλ for concreteness, as:

θ2 =
a

8α
sλ , θ3 = −

9

16u
sλ .

Finally, θ1 is determined by

θ1 = ±
2

3
itθ2

β

α
= ±

2

3
it
aβ

8α2
sλ = ±

1

24
,

with a sign that can be adjusted by making conventional choices. In odd

dimensions the volume element ω = γ1 · · · γt+s of the Clifford algebra com-

mutes with the generators γµ and is therefore proportional to the unit 1

on irreducible representations. Since in five dimensions ω2 = (−1)t1, this

implies that ω = ±1 for even t and ω = ±i1 for odd t. The choice of a sign,

together with the definition of the completely antisymmetric tensor εµνρστ

determines the relative factor in the relation γµνρστ ∝ εµνρστ1 for com-

pletely antisymmetrized products of five generators. The choices we make

are ω = 1 for even t, ω = −i1 for odd t and ε01234 = +1 for all signatures.

Then

γµνρστ =

{

εµνρστ 1 , t even ,

−iεµνρστ 1 , t odd .

These choices are relevant when relating the γ and 4–γ terms arising from

the supersymmetry variations of the Chern Simons term and of the term

λ̄IγµνF J
µνλ

K . With our conventions the Lagrangian is supersymmetric for

all signatures if θ1 = + 1
24 .

The values of α2, a2, u2 depend on the signature, leading to sign flips of

the respective terms between signatures. For reference we will now list the

Lagrangians and supersymmetry transformations for all signatures.
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4.3 Overview and discussion of supersymmetry variations

and Lagrangians by signature

4.3.1 Signature (1, 4)

In signature (1, 4), the relations (28) imply: sσ = sλ = sF = −sY =

±1. Thus all physical fields have the same sign in front of their kinetic

terms. While the overall sign of the Lagrangian cannot be fixed by imposing

invariance under supersymmetry, there is a standard choice in Minkowski

signature, namely the choice which makes the kinetic terms of all physical

fields positive definite. Therefore we choose

sσ = sλ = sF = −sY = −1 . (29)

The remaining coefficients can then be determined from (27). We find

θ2 =
i

8
sF = −

i

8
, θ3 = −

i

2
sY = −

i

2
.

Finally, as explained above, we have made conventional choices such that

θ1 =
1
24 for all signatures.

Having determined all coefficients, we now summarize the resulting (1, 4)

signature Lagrangian and supersymmetry transformations:

L(1,4) =

(

−
1

4
F I
µνF

Jµν −
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J + Y I
ijY

ijJ

)

FIJ (30)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

i

8
λ̄IγµνF J

µνλ
K −

i

2
λ̄IiλJjY K

ij

)

FIJK .

δAI
µ =

1

2
ǭγµλ

I , δσI =
i

2
ǭλI , δY ijI = −

1

2
ǭ(i✓∂λ

j)I , (31)

δλiI = −
1

4
γµνF I

µνǫ
i −

i

2
✓∂σ

Iǫi − Y ijIǫj .

These results agree with [6]. Note that in [6] the Chern-Simons terms ap-

pears with the opposite sign, because there the ε-tensor was defined with a

relative minus sign, compared to our definition above.

Since the scalar fields are now real, we recover the well known affine

special real geometry of five-dimensional vector multiplets, where the scalar
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metric is a Hessian metric with a cubic polynomial as Hesse potential. This

cubic potential needs to be chosen such that the resulting metric is positive

definite, a condition that needs to investigated case by case.

4.3.2 Signature (4, 1)

Next consider signature (4, 1), which we interpret as Minkowski signature

with a mostly minus convention for the metric. Now (28) implies

− sσ = sλ = sF = −sY = ±1 . (32)

This time the scalar and vector kinetic have different signs, but this only

reflects that we now use a different convention for the metric. The standard

choice where all physical fields have a positive definite kinetic term is

− sσ = sλ = sF = −sY = −1 . (33)

From this we determine15

θ1 =
1

24
, θ2 = −

1

8
, θ3 = −

1

2
.

The resulting Langrangian and supertransformations are:

L(4,1) =

(

−
1

4
F I
µνF

Jµν +
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J + Y I
ijY

ijJ

)

FIJ (34)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

1

8
λ̄IγµνF J

µνλ
K −

1

2
λ̄IiλJjY K

ij

)

FIJK .

δAI
µ =

1

2
ǭγµλ

I , δσI =
1

2
ǭλI , δY ijI = −

1

2
ǭ(i✓∂λ

j)I , (35)

δλiI = −
1

4
γµνF I

µνǫ
i +

1

2
✓∂σ

Iǫi − Y ijIǫj .

When comparing the signatures (1, 4) and (4, 1) we observe that they differ

by factors ±1 and ±i, which can be interpreted as resulting from changing

from a ‘mostly plus’ to a ‘mosly minus’ convention for the metric. For

15In the following it is always understood that we chosen the convention which makes
θ1 positive, as explained above.
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some of the fermionic terms this involves a factor of i due to the signature

dependence of the reality properties of spinor bilinears. Interpreting the

single distinguished direction as time, both theories are equivalent.

4.3.3 Signature (0, 5)

Now we turn to Euclidean signatures. For signature (0, 5), (28) implies

− sσ = sλ = sF = −sY = ±1 . (36)

We observe that the Euclidean action has a relative sign between the scalar

and vector kinetic term, and therefore cannot be positive definite. In [12]

the existence of five-dimensional Euclidean vector multiplet actions with a

relative sign between scalar and vector term was deduced using dimensional

reduction of the bosonic Lagrangians of higher-dimensional supergravity the-

ories, and of their Killing spinor equations. We have now derived this result

by imposing supersymmetry directly in five dimensions. Our derivation

shows in particular that there is no option, because this relative sign is

required by supersymmetry. We remark that this is a non-trivial insight,

since, for instance, it was argued in [12] that an analogous relative sign for

four-dimensional Euclidean vector multiplets can be changed by a field re-

definition. We will present a full off-shell analysis of the four-dimensional

N = 2 vector multiplet theories in [22].

Since the supersymmetric Euclidean action is not definite, there is no

preferred choice of a sign. We make the conventional choice sλ = −1 which

results in

L(0,5) =

(

−
1

4
F I
µνF

Jµν +
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J + Y I
ijY

ijJ

)

FIJ (37)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

1

8
λ̄IγµνF J

µνλ
K −

1

2
λ̄IiλJjY K

ij

)

FIJK .

δAI
µ =

1

2
ǭγµλ

I , δσI =
1

2
ǭλI , , δY ijI = −

1

2
ǭ(i✓∂λ

j)I , (38)

δλiI = −
1

4
γµνF I

µνǫ
i +

1

2
✓∂σ

Iǫi − Y ijIǫj .
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4.3.4 Signature (5, 0)

For signature (5, 0) we find instead

sσ = sλ = sF = −sY = ±1 . (39)

Taking into account that the space-time metric is negative definite, the

Euclidean action is again indefinite. As for signature (0, 5) we make a con-

ventional choice of the overall sign:

L =

(

−
1

4
F I
µνF

Jµν −
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J + Y I
ijY

ijJ

)

FIJ (40)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

i

8
λ̄IγµνF J

µνλ
K −

i

2
λ̄IiλJjY K

ij

)

FIJK .

δAI
µ =

1

2
ǭγµλ

I , δσI =
i

2
ǭλI , δY ijI = −

1

2
ǭ(i✓∂λ

j)I , (41)

δλiI = −
1

4
γµνF I

µνǫ
i −

i

2
✓∂σ

Iǫi − Y ijIǫj .

4.3.5 Signature (2, 3)

We now turn to the exotic signatures with two time-like directions. In

signature (2, 3), (28) implies

− sσ = sλ = sF = sY = ±1 . (42)

With a conventional choice of overall sign, we obtain:

L(2,3) =

(

−
1

4
F I
µνF

Jµν +
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J − Y I
ijY

ijJ

)

FIJ (43)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

1

8
λ̄IγµνF J

µνλ
K +

i

2
λ̄IiλJjY K

ij

)

FIJK ,

δAI
µ =

1

2
ǭγµλ

I , δσI =
1

2
ǭλI , δY ijI = −

i

2
ǭ(i✓∂λ

j)I , (44)

δλiI = −
1

4
γµνF I

µνǫ
i +

1

2
✓∂σ

Iǫi + iY ijIǫj .

4.3.6 Signature (3, 2)

Finally, in signature (3, 2) we find

sσ = sλ = sF = sY = ±1 , (45)
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and with a conventional choice of overall sign

L(3,2) =

(

−
1

4
F I
µνF

Jµν −
1

2
∂µσ

I∂µσJ −
1

2
λ̄I✓∂λ

J − Y I
ijY

ijJ

)

FIJ (46)

+

(
1

24
εµνρστAI

µF
J
νρF

K
στ −

i

8
λ̄IγµνF J

µνλ
K −

1

2
λ̄IiλJjY K

ij

)

FIJK ,

δAI
µ =

1

2
ǭγµλ

I , δσI =
i

2
ǭλI , δY ijI = −

i

2
ǭ(i✓∂λ

j)I , (47)

δλiI = −
1

4
γµνF I

µνǫ
i −

i

2
✓∂σ

Iǫi + iY ijIǫj .

While the interpretation of relative and overall signs is not obvious for a

theory with multiple time-like directions, we observe that all relative sign

flips between signatures (2, 3) and (3, 2) can be interpreted as going from a

mostly plus to a mostly minus convention for the space-time metric, together

with factors i to account for the reality properties of spinor bilinears.

We finally note that by comparing our results signature by signature to

[13] it is straightforward to check that they agree where comparable, that is

for the bosonic terms of the Lagrangians and the supersymmetry variations

of the fermions.

5 Open problems and Outlook

In this paper we have taken the first step to developing a formalism which

allows us to construct supersymmetric theories simultanously for all space-

time signatures. We have restricted ourselves to supersymmetry algebras

based on complex irreducible spinor representations, where we determined

the possible R-symmetry groups. In a companion paper we will extend this

analysis to the general case [19]. As an application we constructed off-shell

vector multiplets and the associated supersymmetric Lagrangians for the

unique minimal five-dimensional supersymmetry algebra in arbitrary sig-

nature. The five dimensional case is particularly straightforward to fully

analyze, because (i) Dirac spinors are complex irreducible, (ii) Majorana

conditions do not lead to a non-trivial smaller supersymmetry algebra, and
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(iii) the space of superbrackets is one-dimensional. The natural next applica-

tion, rigid four-dimensional N = 2 vector multiplets, to be presented in [22],

is much richer. Four-dimensional Dirac spinors are complex reducible, and

in some signatures a Majorana condition defines a smaller supersymmetry

algebra. Moreover, from [15] one can read off that the space of N = 2 su-

perbrackets is four-dimensional, and it is not clear a priori whether all these

superbrackets define isomorphic Lie superalgebras. The scalar geometry of

four-dimensional vector multiplets depends on the signature: it is special

Kähler in Lorentz signature, but special para-Kähler in Euclidean signature

[6]. This makes the issues concerning relative signs between kinetic terms

in the Lagrangian much more interesting. In [12] it was observed that by

dimensional reduction one can arrive at two different formulations of the

bosonic sector of four-dimensional Euclidean vector multiplets, which differ

by a relative sign flip between the scalar and the vector term. While it was

shown in [12] that both formulations of the bosonic sector are related by

a field redefinition, it remains to be seen whether and how this extends to

the fermionic terms and supersymmetry transformations. Also according to

[13] the reduction of exotic five-dimensional theories to Lorentzian signature

gives rise to non-standard signs for some kinetic terms, similar to type II∗

theories in ten dimensions. In [22] we will provide a complete analysis, based

on a further development of the formalism presented in this paper. Other

directions which we will explore is the application of our formalism to other

multiplets, notably hypermultiplets and the Weyl multiplet. The later will

allow us to construct off-shell realizations of N = 2 supergravity in arbitrary

signature.
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A Spinor conventions

We use the same conventions for spinor indices as in [6]. Dirac spinors

ψ ∈ S have lower indices, ψ = (ψα). γ matrices are endomorphisms on the

spinor module, γµ = (γµ β
α ). The matrices A and C represent a sesquilin-

ear form and a bilinear form on S: A = (Aαβ), and C = (Cαβ). The

inverse matrices are denoted A−1 = (Aαβ), and C−1 = (Cαβ). Note that

the definition A = γ1 · · · γt is an equation between matrices, not between

maps. Therefore this identification holds with respect to a fixed basis for

the spinor module. However, all expressions appearing in the Lagrangian

and in the supersymmetry variations are covariant with respect to Lorentz

transformations, since all spinor and other indices are properly contracted.

Therefore any result obtained in our distinguished coordinate system holds

in all coordinate systems.

Indices on Dirac spinors are raised and lowered using A and A−1:

λα = Aαβλβ ⇔ λα = Aαβλ
β .

Spinor indices on doubled spinors (λiα) ∈ S⊗C
2 are raised and lowered using

C and C−1:

λiα = Cαβλiβ ⇔ λiα = Cαβλ
iβ .

Internal indices i, j = 1, 2 on doubled spinors are raised and lowered accord-

ing to

λi = εijλj ⇔ λi = λjεji ,

where εij = −εji and εijεkj = δik = −εijεjk. Note that (εij) = −(εij)
−1,

which makes raising and lowering SU(2) indices consistent with the NW-

SE convention. In contrast, our convention for raising and lowering spinor

indices α, β, . . . does not comply with the NW-SE convention.
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As an application we extract the structure constants of the supersymme-

try algebra from the associated vector-valued sesquilinear form. The natural

vector-valued sesquilinear form on the spinor module is

A(γµλ, χ) = λ∗α(γ
†)µαβA

βγχγ = λ∗αγµ β
α Aβγχ

β .

Therefore the matrix representing A(γµ·, ·) with respect to the dual (‘upper

index’) coordinates λα, χβ is

K[A]µαβ = (γµA−1)αβ .

The vector-valued real bilinear form defining the supersymmetry algebra in

terms of Dirac spinors is the real or imaginary part of A(γµ·, ·), depending on

signature. Let us take the case where it is the real part, for definiteness. The

anticommutator of a general linear combination of supercharges is defined

using the vector-valued bilinear form by

{λαQα , χ
βQβ} = A(γµλ, χ)Pµ = λαχβRe(γµA−1)αβPµ ,

from which we obtain

{Qα , Qβ} = Re(γµA−1)αβPµεij .

Similarly, the bilinear form on the doubled spinor module is

C(γµλ, χ) = −
1

2
λiα(γ

µT )αβC
βγχj

γεji = −
1

2
λiαχjβ(γµC−1)αβεij .

Substituting this into

{λiαQiα , χ
jβQjβ} = C(γµλ, χ)Pµ

we obtain

{Qiα , Qjβ} = −
1

2
(γµC−1)αβPµεij .
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B Para-quaternions

The para-quaternions q ∈ H
′ are defined by

H
′ = {q = q0 + q1e1 + q2e2 + q3e12|q0, q1, q2, q3 ∈ R} ,

where

e21 = e22 = 1 , e12 := e1e2 = −e2e1 ⇒ e212 = −1 .

They form a four-dimensional real associative algebra. One defines the con-

jugate

q∗ = q0 − q1e1 − q2e2 − q3e12

and the norm

N(q) = qq∗ = q20 − q21 − q22 + q23 .

A para-quaternion is invertible iff its norm is non-zero, with inverse

q−1 =
q∗

N(q)
.

Note that in contrast to the quaternions, the para-quaternions do not form

a skew-field. As a normed algebra, H′ is isomorphic to algebra R(2) of real

2×2 matrices, with the norm provided by the determinant. An isomorphism

is given by

1 7→

(

1 0

0 1

)

, e1 7→

(

0 1

1 0

)

, e2 7→

(

1 0

0 −1

)

, e12 7→

(

0 −1

1 0

)

,

so that

q 7→M(q) =

(

q0 + q2 q1 − q3

q1 + q3 q0 − q2

)

.

Note that detM(q) = qq∗ = N(q).

Therefore the group (H′)∗ of invertible para-quaternions is

(H′)∗ := GL(1,H′) := {q ∈ H|N(q) 6= 0} ≃ GL(2,R) ,
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and the subgroup of unit norm para-quaternions is

U(1,H′) := {q ∈ H
∗|N(q) = 1} ≃ SL(2,R) .

Para-quaternions can be viewed as pairs of complex numbers,

q = (q0 + e12q3) + e1(q1 + e12q2) =: u+ e1v ,

where u, v are interpreted as complex numbers by identifying e12 ≃ i.

The normed algebra H
′ can be represented by complex 2× 2 matrices:

q 7→ M̃(q) =

(

u v

v∗ u∗

)

∈ C(2) .

Note that N(q) = uu∗ − vv∗ = det M̃ . The subgroup of unit norm matrices

is SU(1, 1) ≃ SL(2,R) ≃ U(1,H′).

Matrices of the form M̃(q) are invariant under the real structure on C(2)

defined by

ρ : M̃ 7→ ηM̃∗η , η =

(

0 1

1 0

)

.

Thus matrices of the form M̃(q) form a subalgebra isomorphic to R(2), as

they must:

H
′ ≃ {M̃ ∈ C(2)|ρ(M̃ ) = M̃} ≃ R(2) .

Further note that H′ ≃ Cl1,1 ≃ Cl0,2 as real associative algebras.

C Quaternions

For comparison let us also review standard results about the quaternions H.

The quaternions q ∈ H are defined by

H = {q = q0 + q1i+ q2j + q3k|q0, q1, q2, q3 ∈ R} ,

where

i2 = j2 = −1 , k = ij = −ji⇒ k2 = −1 .
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They form a four-dimensional real associative algebra, One defines the con-

jugate

q∗ = q0 − q1i− q2j − q3k

and the (reduced16) norm

N(q) = qq∗ = q20 + q21 + q22 + q23 .

A quaternion is invertible iff

N(q) 6= 0 ⇔ q 6= 0 ,

with inverse

q−1 =
q∗

N(q)
.

Since only q = 0 does not have an inverse, the quaternions do not only

form an associative algebra, but a skew field. As a normed algebra, H is

isomorphic to the matrix algebra

{(

u v

−v∗ u∗

)

|u, v ∈ C

}

⊂ C(2) .

An isomorphism is provided by

q 7→ M(q) = q01 + q1iσ
1 + q2iσ

2 + q3iσ
3 =

(

q0 + iq3 q2 + iq1

−q2 + iq1 q0 − iq3

)

=

(

u v

−u∗ v∗

)

,

where σi, i = 1, 2, 3 are the Pauli matrices and where u = q0 + iq3 and

v = q2+ iq1. The norm of q is equal to the determinant of the corresponding

complex 2× 2 matrix:

N(q) = a2 + b2 + c2 + d2 = uu∗ + vv∗ = detM(q) .

16For the quaternion one often refers to ||q|| := N(q)1/2 as the norm.
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If we impose unit norm, then

N(q) = uu∗ + vv∗ = 1 ,

and M(q) ∈ SU(2). Therefore the group of unit norm quaternions is

U(1,H) = {q|N(q) = 1} ≃ SU(2) .

Any matrixM(q) with N(q) 6= 0 can be written as a positive scalar multiple

of an SU(2) matrix, and therefore the group of invertible quaternions is

H
∗ = GL(1,H) = {q ∈ H|N(q) 6= 0} = R

>0 × SU(2) .

Further note that H ≃ C2,0 as real associative algebras.
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