
ar
X

iv
:1

80
5.

06
41

4v
4 

 [
m

at
h.

A
G

] 
 3

 M
ay

 2
01

9

ON THE RATIONALITY OF THE MODULI SPACE OF

INSTANTON BUNDLES ON THE PROJECTIVE 3-SPACE

M. HALIC, R. TAJAROD

Abstract. We prove the rationality and irreducibility of the moduli space of—what we
call—the endomorphism-general instanton vector bundles of arbitrary rank on P

3. In partic-
ular, we deduce the rationality of the moduli spaces of rank-2 mathematical instantons. This
problem was first studied by Hartshorne, Hirschowitz-Narasimhan in the late 1970s, and it
has been reiterated within the framework of the ICM 2018.

Introduction

The interest in rank-2 instanton bundles on the three-dimensional projective space (with
Chern classes c1 “ 0, c2 “ n) has its origins in the articles of Atiyah et al. [1, 2, 3], Barth-
Hulek [4, 5], and Hartshorne [9], which in turn were motivated by work of ’t Hooft [11] and
Polyakov [13]. The geometry of their moduli spaces, such as the irreducibility and rationality,
has been intensively investigated, especially during the past decade. So far, it is known
that these quasi-projective varieties are rational for n “ 2, 4, 5, due to works of Hirschowitz-
Narasimhan [10], Ellingsrud-Strømme [7], and Katsylo [12]; for n ě 6, the issue remained
open, in spite of efforts of Tikhomirov et al. (cf. [14, 15]). Let us remark that the techniques
used in these references are specific to the rank-two case. Recently, within the framework of
the ICM 2018 [16], it was reaffirmed the importance and necessity of addressing the rationality
of the moduli space of instanton bundles on P

3.
The first author investigated [8] the geometry of the moduli space of semi-stable vector

bundles on P
2-bundles over P1. Our goal in here is to deepen those results in the case of the

three-dimensional projective space and to address the rationality issue mentioned above. Note
that, in spite of the extensive literature on the rank r “ 2 case, there are few articles dealing
with higher rank bundles on P

3. However, non-abelian gauge theories frequently appear in the
physics literature, especially for the special unitary group SUprq, r ě 2. Also, the Penrose
transform which relates Hermitian vector bundles endowed with self-dual connections over
the sphere S4, on the one hand, to certain holomorphic vector bundles on P

3, on the other
hand, does apply in this more general setting [2]. For this reason we believe that our unified
treatment of the arbitrary rank case, not only two, provides additional interest to this article.

Now let us justify the reason for restricting our attention to a particular class of stable
bundles on P

3. Indeed, already for r “ 2, the description of the components of the moduli
spaces of all the stable vector bundles is involved; the observation goes back to Barth-Hulek [4,
§8]. This fact forces us to single out a class of better behaved vector bundles, those that
we call End-general instantons; in short, this means that both the vector bundle and its
endomorphisms satisfy the so-called instanton condition (cf. Definition 1.1 below). A good
feature is that the corresponding moduli space has the expected dimension, given by the
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2 M. HALIC, R. TAJAROD

Riemann-Roch formula, and it contains (in the case r “ 2) the special ’t Hooft bundles
studied by Hirschowitz and Narasimhan [10, 6].

Theorem The moduli space of End-general instanton vector bundles on P
3 (of rank r, with

Chern classes 0, n, 0) is non-empty, irreducible of dimension 4rn´r2`1, and it is rational. In
particular, the statement holds for the moduli space of rank-2 mathematical instanton bundles
on P

3.

Furthermore, we give a completely explicit description of the generic End-general instanton
bundle; it is determined by its restriction either to a pair of planes or to a smooth quadric in
P
3 (cf. Theorem 3.2).
We conclude this introduction with a brief survey of the article. Our techniques are based

on cohomological computations but, compared to previous work, our approach to the problem
is original and it contains novelties:

– The analysis of the properties of instantons requires an in-depth understanding of Barth
and Hulek’s construction [4]. We show that their monad is obtained in a functorial way,
from a ‘universal’ diagram which is based on Beilinson’s resolution of the diagonal in
P
3 ˆP

3; this allows to control various homomorphisms in cohomology, which appear in the
display of the monad. To our knowledge, this fact has never been observed before.

– For studying the geometry of their moduli space, we restrict instantons on P
3 to (a pair

of) planes. The End-general condition ensures that this restriction map is étale, so we can
apply the results of [8] concerning the rationality of the moduli space of framed instantons
on P

2.

We also highlight the brevity of our work, making the proofs easy to follow, which reflects
the effectiveness of our methods: the arguments are not restricted only to the rank-2 case; we
deduce the irreducibility of the relevant moduli space in a couple of lines (cf. Theorem 3.1).

1. The framework

Throughout the article, we work over an algebraically closed field k of characteristic zero.

Definition 1.1 An instanton-like vector bundle F on P
3 of charge n and rank r, with n ě r,

is defined by the following properties:

(i) c1pFq “ 0, c2pFq “ n, c3pFq “ 0;
(ii) its restriction to some (general) line λgen Ă P

3 is trivializable (hence it is slope semi-
stable);

(iii) it satisfies the instanton condition: H1pFp´2qq “ H2pFp´2qq “ 0.

We say that an instanton-like vector bundle F is End-general—it’s an Egen-instanton, for
short1—if, in addition, it satisfies:

(iv) H1
`
EndpFqp´2q

˘
“ H2

`
EndpFqp´2q

˘
“ 0.

Remark 1.2 As mentioned before, the case r “ 2 with the conditions (i)-(iii), corresponds
to the mathematical (’t Hooft) instanton bundles and it has been intensely investigated. Note
that in this case, by the Grauert-Müllich theorem, semi-stable vector bundles with c1 “ 0
automatically satisfy the property (ii).

1In a previous version the authors proposed the name special instantons. However, this term already
appeared in [6, 10], and the corresponding bundles form a closed subvariety of the full moduli space. In
contrast, our condition is an open.
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For arbitrary r, Barth-Hulek [4] showed that vector bundles F satisfying (i)-(iii) above can
be written as the cohomology of a linear monad

H2pFp´3qqlooooomooooon
–kn

bOP3p´1q Ñ O‘r`2n
P3 Ñ H1pFp´1qqlooooomooooon

–kn

bOP3p1q.

This construction will be carefully analysed in the next section.
The condition (iv) is indeed a generic property. By taking the cohomology of the display

of the monad, twisted by F_p´2q, one obtains the exact sequence involving E :“ EndpFq:

0 Ñ H1pEp´2qq Ñ H2pFp´3qq b H2pF_p´3qq Ñ H1pFp´1qq b H1pF_p´1qq Ñ H2pEp´2qq Ñ 0.

Hence the Egen-condition amounts to saying that the middle arrow is an isomorphism; clearly,
the relevant vector spaces have the same dimension.

Notation 1.3 We consider the following quasi-projective varieties:

(i) EIP3pr;nq, the moduli space of Egen-instantons. It is an open subset of the moduli space
of slope semi-stable sheaves on P

3.

(ii) EIP3pr;nqλ, the open subspace corresponding to bundles which are trivializable along the
line λ Ă P

3.

(iii) Let M̄P2pr;nq (resp. M̄P2pr;nqline) be the moduli space of rank-r, slope semi-stable
(resp. framed) vector bundles on P

2, with c1 “ 0, c2 “ n. They are p2rn´ r2 ` 1q- (resp.
2rn)-dimensional, cf. [8, §3]. For simplicity, we call such vector bundles P2-instantons.

(iv) For two 2-planes D,H Ă P
3 and λ :“ D X H, we denote

M̄DYHpr;nqλ :“
M̄Dpr;nqλ ˆ M̄Hpr;nqλ

PGLprq

the variety of pairs of bundles, modulo the diagonal action on the framings along λ.
Furthermore, we denote by

Θ : EIP3pr;nqλ Ñ M̄DYHpr;nqλ

the morphism which sends a vector bundle F to its restriction FDYH :“ F b ODYH .

Proposition 1.4 (i) The moduli spaces EIP3pr;nq are non-empty, for n ě r ě 2.
(ii) For any F P EIP3pr;nq, we have H2pEndpFqq “ 0, so its deformations are unobstructed.
(iii) The differential of the morphism Θ is an isomorphism everywhere, so Θ is an étale map.
(iv) Each irreducible component of EIP3pr;nq has the expected dimension and the locus cor-

responding to stable bundles is dense.

Proof. (i) For r “ 2, consider the union Z of n ` 1 disjoint lines in P
3. The rank-2 vector

bundle given by the Hartshorne-Serre construction along Z fits into the exact sequence

0 Ñ Oπp´1q Ñ F2 Ñ IZp1q Ñ 0; F2 b OZ – O‘2
Z ,

and one easily verifies that F2 is an Egen-instanton. This construction already appears in [9,
Example 3.1.1]

For r ą 2, we observe that the rank-r vector bundle Fr :“ O
‘pr´2q
Y ‘ F2 still satisfies the

conditions 1.1. Its general deformation is stable, by (iv) below.
(ii) Take the long exact sequences in cohomology determined by

OP3p´2q ãÑ OP3p´1q։ OHp´1q, OP3p´1q ãÑ OP3 ։ OH
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twisted by EndpFq and use the semi-stabilty of FH .
(iii) The differential of Θ at F is the homomorphism H1pEndpFqq Ñ H1pEndpFDYHqq. The
Egen-condition shows that it is indeed an isomorphism.
(iv) Since Θ is étale, its restriction to each component of EIP3pr;nq is dominant. But the
stable vector bundles are dense in M̄DYHpr;nq (cf. [8, Theorem 3.6]) and F on P

3 is stable as
soon as its restriction to D Y H is so. This shows that the stable bundles F P EIP3pr;nq are
dense; at such a point, the moduli space is smooth and has the expected dimension. l

Remark 1.5 For r ě 2, the examples Fr above possess the following property: through any
point y P P

3 passes a trivialising line λ that is, Fr bOλ – O‘r
λ . Thus the same property holds

for the general vector bundle in the irreducible component of EIP3pr;nq containing this point.
Below we show that this holds generally.

In the next section, such trivialising lines will be used to determine the structure of certain
homomorphisms which appear in the monad construction.

Proposition 1.6 Let F be an instanton-like vector bundle. Then, for any point p P P
3, the

general line λ passing through it trivializes F.

Proof. Consider the blow-up σ : Y Ñ P
3 at p; it admits a natural projection π : Y Ñ P

2. Let
E “ σ˚OP3p1q b π˚OP2p´1q be the exceptional divisor.
Claim σ˚F is slope semi-stable for the paring with

π˚OP2p1q ¨ pσ˚OP3p1q ` cπ˚OP2p1qq,

for any c ą 0. (See [8] for the terminology.)

Indeed, let G̃ Ă σ˚F be a saturated subsheaf, so σ˚F{G̃ is torsion-free; thus G̃ is reflexive

and its singularities (if any) are punctual. Then det G̃ “ σ˚OP3pkqbOY plEq, for some integers

k, l, and det G̃ Ă σ˚
` gŹ

F
˘
; here g stands for the rank of G̃.

Note that σ˚F{G̃ b OE is a quotient of σ˚F b OE – O‘r
E . But OEp´Eq is ample on E

and E3 “ 1; the semi-stability of O‘r
E yields ´l ě 0. Now we show that k ď 0, too. Indeed,

σ˚ det G̃ “ OP3pkq b I´l
p Ă

gŹ
F and the latter is semi-stable. (We denoted by Ip the sheaf of

ideals of p.) It remains to compute

c1pG̃q ¨ π˚OP2p1q ¨ pσ˚OP3p1q ` cπ˚OP2p1qq “ k ¨ p1 ` cq ` lc ď 0.

so σ˚F is indeed semi-stable. Finally, we apply [8, Theorem A] and deduce that the restriction
of σ˚F to the general fibre of π—corresponding to the general line passing through p—is semi-
stable (with c1 “ 0), hence it is trivializable. l

2. Computations with monads

Throughout this section, for shorthand, the symbol ‘ãÑ’ indicates a monomorphism and
‘։’ an epimorphism; we denote short exact sequences by A ãÑ C ։ B.
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2.1. The monad construction. Let F,G be instanton-like vector bundles as in Defini-
tion 1.1. We recall [4, p. 340] that F_ is the cohomology of a monad with display

V b Op´1q �
� εF // KF

// //
� _

ev_
K��

F_
� _

��

p›q

V b Op´1q �
� rεF // C b O

evQ // //

rqF����

QF

qF����
W b Op1q W b Op1q.

If F is stable, the monad is uniquely defined up to a natural GLpV q ˆ GLpCq ˆ GLpW q-
action; V,W,C are vector spaces of dimensions n, n, r ` 2n, respectively. In what follows, we
enumerate several of its properties.

(i) There are canonical identifications:
V – VF :“ H2pF_p´3qq, W – WF :“ H1pF_p´1qq; H0pQFq – C – H0pK_

F
q_.

So evQ is H0pQFq b OP3 Ñ QF and ev_
K is the dual of the evaluation map of K_.

(ii) The diagram is obtained as follows:
(a) The middle column is the extension defined by 1lW P EndpW q “ Ext1pW p1q,KFq.
(b) The middle row is defined by 1lV P EndpV q “ Ext1pQF, V p´1qq.
Although superfluous, we recall [4, p. 339] the following detail in order to justify (at
least morally) the appearance of the Koszul-type isomorphisms in the sequel. The Koszul

resolution of a line in P
3 is used to show that the module

À
lě0

H1pF_pl ´ 1qq is generated

by H1pF_p´1qq over the ring
À
lě0

H0pOP3plqq. Therefore the top line and the rightmost

column of p›q, as defined by (a), (b) above, coincide with the minimal resolutions given
by [Proposition 1, p. 327], which is at the core of the construction.

(iii) Let λ Ă P
3 be a trivialising line for F and Op´2q ãÑ Op´1q‘2

։ Iλ be the Koszul
resolution of its sheaf of ideals. By applying Homp¨,F_p´3qq, we obtain

0 Ñ Ext1pOp´2q,F_p´3qqlooooooooooooomooooooooooooon
“H1pF_p´1qq“WF

κzFÝÑ
–

Ext2pIλ,F
_p´3qqloooooooooomoooooooooon

“H2pF_p´3qq“VF

Ñ 0.

On the right-hand side, we used that Fλ – O‘r
λ . The isomorphism κzF is given by

the Yoneda-product with the element of Ext1pIλ,Op´2qq corresponding to the Koszul
resolution, twisted by the identity of F.
Note that two trivialising lines λ, λ1 for F induce the same map in cohomology:

˛ if λ, λ1 are disjoint, then use IλYλ1 ãÑ Iλ ։ Oλ1 ;
˛ if λ X λ1 “ tyu, then use IλYλ1 ãÑ Iλ1 ։ Oλp´yq.

As we mentioned earlier, the monad p›q is defined up to a group action; in order to perform
computations, we need explicit representatives for its entries. Let pl,pr : P3 ˆ P

3 Ñ P
3 be

the projections onto the first and second factors, respectively, and denote by ∆ Ă P
3 ˆP

3 the
diagonal. The natural evaluation map

evP3 : pl˚pI∆ b pr
˚Op1qq b Op´1q Ñ I∆

is surjective; in fact,

pl˚pI∆ b pr
˚Op1qq – Ω1

P3p1q
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and evP3 is the first term of Beilinson’s resolution of the diagonal in P
3 ˆ P

3. Let us denote

S̃ :“ KerpevP3q –
Ω2
P3p2q b OP3p´2q

OP3p´1q b OP3p´3q
–

TP3p´2q b OP3p´2q

OP3p´1q b OP3p´3q
,

so we get the resolution S̃ ãÑ Ω1
P3p1q b OP3p´1q։ I∆.

Lemma 2.1 Suppose F is stable. Then the display p›q is obtained by applying suitable
Homp¨, ¨q functors to the diagram below, which is independent of the vector bundle F:

pr
˚OP3p1q

++ ++
I∆ b pr

˚OP3p1q? _oo OP3p1q apply
Homp ¨ ,pl˚F_p´3qq

S̃ b pr
˚OP3p1q �

� // pl
˚Ω1

P3p1q // //

OOOO

I∆ b pr
˚OP3p1q
� _

��

apply
Homppl˚Fp1q, ¨ q

S̃ b pr
˚OP3p1q
?�

OO

pr
˚OP3p1q

XXXX

apply
Homp ¨ ,pl˚F_p´3qq

apply
Homppl˚Fp1q, ¨ q

(2.1)

Pointwise, over y P P
3, one has to restrict the diagram to P

3 ˆ tyu. As a consequence, the
various homomorphism in p›q are actually induced from the diagram above.

Proof. By applying the indicated functors, we obtain

H2pF_p´3qq b OP3p´1q �
� // Ext2pr

`
I∆,pl

˚F_p´3q
˘

b Op´1qloooooooooooooooooooomoooooooooooooooooooon
“: A

// //

� _

a_

��

Ext3prpO∆,F
_p´4qq“F_“ pr˚pl

˚F_
� _

��
R1pr˚ppl

˚F_p´1q b S̃b pr
˚OP3p1qq �

� // H
1pP3,F_p´1qbΩ1

P3
p1q q bO

P3

Ext2
P3

pΩ1

P3
p1q,F_p´3qq bO

P3

b // //

����

R1pr˚

`
I∆ b pl

˚F_p´1q
˘

b Op1qloooooooooooooooooooomoooooooooooooooooooon
“: B

����
Ext2prpS̃ b pr

˚OP3p1q,pl
˚F_p´3qq H1pF_p´1qq b OP3p1q

(2.2)

where Extpr stands for the relative Ext-functor.
The top and rightmost extensions are clearly defined by the identity elements in EndpVFq

and EndpWFq, so A,B coincide with KF and QF, respectively. The fact that a, b are indeed
evaluations morphisms follow from the identities:

H0pBq “ H0pP3, R1pr˚pI∆ b pl
˚F_p´1qq b Op1q q

“ H1pP3 ˆ P
3, I∆ b pF_p´1q b Op1qq q “ H1pP3, F_p´1q b pl˚pI∆ b pr

˚Op1qq q

“ H1pP3, F_p´1q b Ω1
P3p1qq;

H0pA_q_ “ . . . “ Ext2
P3ppl˚pI∆ b pr

˚Op1qq,F_p´3qq

“ Ext2
P3pΩ1

P3p1q,F_p´3qq.

One should also verify that the central term C in p›q, coincide with the central terms in the
previous diagram. For this, note that we have

0 Ñ C “ H0pQFq Ñ WF b H0pOP3p1qq Ñ H1pF_q,
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so C is the kernel of the (pairing) homomorphism on the right. But this pairing is obtained
by tensoring I∆ ãÑ OP3ˆP3 ։ O∆ with F_p´1q bOp1q. It follows that C in p›q can indeed be
naturally identified with H1pP3, F_p´1q b Ω1

P3p1q q. For K_
F
, the argument is similar.

Now we check, respectively, the isomorphism between the two entries in the leftmost and
the bottom row. The Euler sequence on P

3 and the exact sequence

OP3p´1q b OP3p´3q ãÑ TP3p´2q b OP3p´2q։ S̃

yield

R1pr˚ppl
˚F_p´1q b S̃ b pr

˚OP3p1qq – H1pF_bTP3p´3qq b OP3p´1q – H2pF_p´3qq b OP3p´1q.

Ext2prpS̃ b pr
˚OP3p1q,pl

˚F_p´3qq – H2pΩ1
P3p1q b F_p´2qq b OP3p1q – H1pF_p´1qq b OP3p1q.

The verifications done so far already ensure that our diagram agrees with the display p›q;
indeed, the latter is determined by expanding either the rightmost column, through the iso-

morphism Ext1pW p1q,KFq
–
Ñ Ext1pW p1q,F_q, or the top row, through Ext1pQF, V p´1qq

–
Ñ

Ext1pF_, V p´1qq. However, it is worth clarifying the remaining (rather mysterious) coinci-
dence of the central terms. This can be seen again by restricting to a hyperplane H Ă P

3.
The Euler sequence implies:

H1pF_p´2q b Ω1
P3p1qq “ 0, H1pF_p´1qq

–
Ñ H2pF_p´2q b Ω1

P3p1qq;

H1pF_p´2q b TP3p´1qq
–
Ñ H2pF_p´3qq, H2pF_p´2q b TP3p´1qq “ 0.

The commutative diagrams below (tensored by F_p´1q and F_p´2q, respectively)

Ω1
P3

� � //

��

Ω1
P3p1q // //

��

Ω1
P3p1qH “ Ω1

Hp1q ‘ pIH{I2HqpHq

��

H0pOP3p1qq b OP3

��
OP3p´Hq �

� // OP3
// // OH

OP3p´1q �
� // H0pOP3p1qq_ b OP3

// //

��

TP3p´1q

����
TP3p´1qH “ THp´1q ‘ OH

��
OP3p´1q �

� // OP3
// // OH

yield the exact sequences

0 Ñ H1pF_p´1q b Ω1
P3p1qq Ñ H1pF_

H b Ω1
Hq ‘ H1pF_

Hp´1qq Ñ H1pF_p´1qqloooooooooooooooooomoooooooooooooooooon
–

,

H2pF_p´3qq Ñ H1pF_
Hp´2qqloooooooooooooooooomoooooooooooooooooon

–

‘H1pF_
H b THp´3qq Ñ H2pF_p´3q b TP3p´1qq Ñ 0,

whose rightmost (resp. leftmost) terms are isomorphic. Since THp´1q – Ω1
Hp2q, it follows that

H1pF_p´1q b Ω1
P3p1qq and H2pF_p´3q b TP3p´1qq are isomorphic and both can be identified

with H1pF_
H b Ω1

Hq. l

Lemma 2.2 Let F be an instanton-like vector bundle. Take a point y P P
3 and consider a

line λ Ă P
3 passing through it, such that Fλ – O‘r

λ . Then the inclusion Iλ Ă Iy determines a
(local) inverse to εF that is, the choice of λ determines a splitting of the top row of p›q at y.
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Proof. By applying the functor Homp¨,F_p´3qq to Iλ ãÑ Iy ։ Oλp´yq, we obtain

0 Ñ Ext2pOλp´yq,F_p´3qqloooooooooooooomoooooooooooooon
“Ext3pOy ,F_p´3qq“F_p1qy

Ñ Ext2pIy,F
_p´3qqloooooooooomoooooooooon

“KFp1qy

Ñ Ext2pIλ,F
_p´3qqloooooooooomoooooooooon

“H2pF_p´3qq“VF

Ñ 0.

This yields a (local) inverse of εF, due to the commutativity of

Iλ //

��

Iy

��
OP3 OP3 .

Clearly, the construction can be done locally about y and we obtain local splittings (over
open subsets U Ă P

3) denoted by ηU : KFæU Ñ VFp´1qU . We can assume that they are small
enough so that the middle column splits over them, too. l

2.2. Computations. Henceforth it is convenient to bear in mind that cohomology classes
can be represented as Čech cocycles, which are genuine sections over open subsets, so one can
understand easier the effect of homomorphisms on them. It is common in the literature to
denote cocycles by Z‚p ¨ q.

Our next goal is to prove the commutativity of the diagram:

WF b H1pGp´1qq

βFb1lG–

��

κzFbκzG
–

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

H1pKF b Gp´2qqlooooooooomooooooooon
“0

// H1pHompF,Gqp´2qq // VF b H2pGp´3qq
H2pεFb1lGq

// H2pKF b Gp´2qq

Proposition 2.3 For general Egen-instantons, the diagram above is commutative that is,

H2pεF b 1lGq ˝ pκzF b κzGq “ βF b 1lG. (2.3)

Therefore, it holds H1pHompF,Gqp´2qq “ H2pHompF,Gqp´2qq “ 0.

Note that the homomorphisms on both sides of the equation above act separately on
F,G. If the rank is allowed to vary, one can say that the left- and the right-hand side are
bilinear functors (from the category of semi-stable vector bundles, with c1 “ c3 “ 0, to the
category of homomorphisms between vector spaces). One may turn the statement around:
pβF b 1lGq´1 ˝ H2pεF b 1lGq : VF b VG Ñ WF b WG is a (functorial and bilinear) isomorphism,
so it’s natural to ask what is this map.

This leads to the idea to analyse the effect on F and G separately. The G-component is
easier to understand—it is obtained by tensoring with the identity map of G—, while the
F-component is rooted deeper into the structure of the monad.

Lemma 2.4 Let F,G be two stable instanton-like vector bundles. Then it holds:

pβF b 1lGq´1 ˝ H2pεF b 1lGq “ χF b κz´1
G

, with χF P HompH2pFp´3qq,H1pFp´1qq q. (2.4)

That is, the left-hand side acts on the G-component of the tensor product the same way as
the inverse of the Koszul map. Moreover, the homomorphism χF depends only of F (it is
independent of G).
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Note that we don’t require F or G to be Egen-instantons. Also, in the proof, we shall use no
information about the structure of VF,WF, but only the properties of G.

In order to clarify our reasoning, let us point out two rearrangements in the display p›q,
which should clarify our approach involving restrictions to 2-planes in P

3:

VF b Gp´3q “ VFp´1q b Gp´2q and WFp1q b Gp´2q “ WF b Gp´1q.

They are necessary to apply εF, βF, respectively, and correspond to division (for VF,WF) by
a linear equation and multiplication (for G) by the same factor.

Proof. Our reasoning involves three steps: we start by analysing the structure of the homo-
morphisms induced by εF and by βF; finally we compose the two maps.

Step 1 Let λ be a trivialising line for G and D,H two planes containing it. The restrictions
GD,GH are automatically semi-stable and, for generic choices, they are actually stable. For
analysing the homomorphism induced by ε, we consider the diagram:

VF b H1pGp´2qHq

–

((

� � // H1pKF b Gp´1qHq �
� // CF b H1pGp´1qHq

restrict

to λ
CF b H1pGp´2qH q

–

����

VF b H1pGp´2qDYHq

OOOO

–
��

// H1pKF b Gp´1qDYHq

��

//

OO

CF b H1pGp´1qDYHq

OOOO

** **❱❱❱❱
❱❱

❱❱
❱❱

❱❱
❱

VF b H2pGp´4qq

����

// H2pKFp1q b Gp´4qq

����

– // CF b H2pGp´3qq

VF b H2pGp´3qq
H2pεFb1lGq

//

δ

00

H2pKFp1q b Gp´3qq

We observe that it is commutative: this fact can be seen by moving along the second row.
First we claim that the dotted arrow δ—defined by following the top row—acts as the

identity on H2pGp´3qq. Indeed, a lifting of an element in H2pGp´3qq to H2pGp´4qq amounts
to dividing the corresponding cocycle by a linear equation (the surjectivity of the arrow ensures
that such a division makes sense). The homomorphism εF is a linear combination of elements

in H0pOP3p1qq, so εF “
3ř

j“0

cjLj, where L0, . . . , L3 is a basis of linear forms and cj P V _
F

bCF.

Then, by following the third row, we deduce that δ acts on v b h P VF b H2pGp´3qq as

follows: for j “ 0, . . . , 3, there is a representative h̃j P Z2pGp´3qq of h, such that the quotient
h̃j

Lj
P Z2pGp´4qq is well-defined, so we have

δpv b hq “ the cohomology class defined by
3ÿ

j“0

cjpvq b Lj ¨
h̃j

Lj
“

´ 3ÿ

j“0

cjpvq
¯

b h.

The linear factor required for lifting h to H2pGp´4qq cancels out by applying εF, so the only
operation performed on the H2pGp´3qq-factor is the tensor product by elements of CF. It is
also apparent that the F-component of δ is determined only by F.

Step 2 Now we turn our attention to βF: by tensoring the exact sequences

KFp´1q ãÑ CFp´1q։WF b OP3 and Gp´2q ãÑ Gp´1q։ Gp´1qH
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we obtain the diagram

KF b Gp´3q �
� //

� _

��

KF b Gp´2q
� _

��

// // KF b Gp´2qH� _

�� ��✤
✤

CF b Gp´3q �
� //

����

CF b Gp´2q

����

// //

m
))

CF b Gp´2qH

����
WF b Gp´2q �

� // WF b Gp´1q // // WF b Gp´1qH .

Then M :“ Kerpmq satisfies the isomorphism

WF b H1pGp´1qHq
–
Ñ H2pMq

and it also fits into the following three diagrams:

KF b Gp´3q �
� //

� _

��

KF b Gp´2q
� _

��

// // KF b Gp´2qH

CF b Gp´3q �
� //

����

M // //

����

KF b Gp´2qH

WF b Gp´2q WF b Gp´2q

KF b Gp´2qH� _

��
CF b Gp´3q �

� //
� _

��

CF b Gp´2q // // CF b Gp´2qH

����
M

� � //

����

CF b Gp´2q // // WF b Gp´1qH

KF b Gp´2qH

WF b Gp´2q
� _

��
KF b Gp´2q �

� //
� _

��

CF b Gp´2q // // WF b Gp´1q

����
M

� � //

����

CF b Gp´2q // // WF b Gp´1qH

WF b Gp´2q

pIq pIIq pIIIq

They all imply the commutativity of the diagram

H2pKF b Gp´3qq // //

–
����

pIq

H2pKF b Gp´2qq

–
����

pIIIq

WF b H1pGp´1qq
–oo

–
��

CF b H2pGp´3qq // //

γ

22

pIIq

H2pMq WF b H1pGp´1qHq
–oo

CF b H1pGp´2qHq

–

OOOO

// // WF b H1pGp´1qH q

–

OOOO ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

By moving along the lower edges of the diagram, we see that the dotted homomorphism
γ is also a tensor product: its F-component is a composition of various homomorphisms
between cohomology groups—that is, CF,WF—determined by F. The G-component acts on
H2pGp´3qq as the inverse of the Koszul map: indeed, the lower side of the diagram is obtained
by tensoring with Gp´1q and applying ε, εC to either one of the following:

OP3p´D ´ Hq
� _

��
OP3p´Dq

����
OHp´λq �

� // OH
// // Oλ

OP3p´Hq
� _

��

IH� _

��
OP3p´D ´ Hq �

� // OP3p´Dq ‘ OP3p´Hq // //

����

Iλ

����
OP3p´D ´ Hq �

� // OP3p´Dq // // IλĂH “ OHp´λq.

Step 3 The composition in (2.4) coincides with γ ˝ δ, so it is a tensor product of two linear
maps, and the G-component is κz´1

G
, while the F-component is independent of G. l

Henceforth we are interested in determining the homomorphism χF. Although it is tempt-
ing to use the explicit expressions in the previous lemma and in (2.2), the multitude of identi-
fications make difficult pursuing this path. Let us recall that a general element F P EIP3pr;nq
is stable and through each point y P P

3 passes a line λ such that FbOλ – O‘r
λ . We are going

to consider general elements in this sense.
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Lemma 2.5 Let p›1q be the diagram obtained by replacing in p›q the entry VF by WF. (That
is, the top and middle horizontal extensions are given by κzF rather than the identity of VF.)
Let ε1

F
denote the top inclusion, instead of εF.

Suppose F,G are in the same component of EIP3pr;nq and general enough. Then, in p›q,
it holds χF “ κz´1

F
. Equivalently, in the diagram p›1q, H2pεF b 1lGq is invertible and the

F-component of H2pε1
F

b 1lGq´1 ˝ pβF b 1lGq is the identity of WF.

Proof. Conceptually, the statement is due to the fact that p›q is obtained by applying Hom-
functors to (2.1) and compositions of arrows correspond to Yoneda-products (concatenations):

βF in p›q is given by pairing with e P Ext1pI∆, S̃q twisted by the identity of F. On the other
hand, κzF is the connecting homomorphism for the Koszul resolution. Hence, in order to
relate them, one should compare their defining extensions.

The Egen-condition implies that H1pHompF,Gqp´2qq “ H2pHompF,Gqp´2qq “ 0, for all
pF,Gq in some neighbourhood of diagonal in EIP3pr;nqˆEIP3pr;nq. For such pairs, H2pεFb1lGq
is an isomorphism and we can take its inverse.

Recall that a short exact sequence A ãÑ C ։ B of locally free sheaves determines a ho-
momorphism ZkpBq Ñ Zk`1pAq at the level of cocycles, given by the cup product with a
representative in Z1pHompB,Aqq of the extension class, which induces the connecting homo-
morphism in cohomology.2

Back to our situation, since H2pεF b 1lGq is invertible, each element of H2pKF b Gp´2qq
admits a cocycle representative which belongs to the image of εF b1lG. Thus the F-component
of H2pεF b 1lGq´1 ˝ pβF b 1lGq is the map Z1pF_p´1qq Ñ Z2pF_p´3qq, which (locally) is
given by the composition of the connecting homomorphism βF followed by the projection
ηU : KFæU Ñ VFp´1qU . The projection is induced by the inclusion Iλ Ă Iy, so this is the
same as applying the connecting map of the pull-back (Yoneda pairing) of the extension
S ãÑ Ω1p1q Ñ Iy by the inclusion jλ : Iλ ãÑ Iy:

S� _

��

S� _

��
j˚
λΩ

1
P3p1q

����

� � // Ω1
P3p1q

����

H0pIyp1qq b OP3p´1q

Iλ
� � jλ // Iy

S –
Ω2

P3
p2q

O
P3

p´1q . (2.5)

We are going to show that the left column is induced by the Koszul resolution of Iλ. Note
that h1pSp1qq “ 0, so we have

H0pj˚
λΩ

1
P3p2qq �

� //

����

H0pΩ1
P3p2qq

����
H0pIλp1qq �

� // H0pIyp1qq

and we obtain the diagram

2We are interested in k “ 0, 1. For Dolbeault cocycles, our statement is clear: the product of B̄-closed
sections is still B̄-closed. For Čech cocycles, we use standard notation: let peijqi,j be a representative of the
extension class. Then, for k “ 0, define pbiqi ÞÑ paij :“ eijpbjæUi

qqi,j ;
for k “ 1, define pbijq ÞÑ paijk :“ ejkæUi

pbjkæUi
q ` eijæUk

pbijæUk
qqi,j,k.
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Op´2q �
� top //

� _

��

S� _

��

// // S

Op´2q

–
��

Op´1q‘2 – H0pIλp1qq b Op´1q �
� mid //

����

j˚
λΩ

1
P3p1q

����

// //
j˚
λΩ

1
P3p1q

Op´1q‘2

Iλ Iλ

(2.6)

The map mid is the natural evaluation and top is induced by

H0pIyp1qq b Op´1q Ñ Ω1p1q  

2Ź`
H0pIyp1qq b Op´1q

˘
Ñ Ω2p2q Ñ S.

This shows that (locally) the push-out by top of the Koszul resolution of Iλ is the left column
of (2.5). So, at the cohomological level, the globally defined homomorphism H2pεF b 1lGq´1 ˝
pβF b 1lGq acts on WF the same as κzF. l

Proof. (of Proposition 2.3) It remains to combine the previous steps.
We start by considering the case when F,G belong to the same irreducible component of

EIP3pr;nq. Suppose moreover that F,G are sufficiently close to each other, as in Lemma 2.5,
so H2pεF b 1lGq is bijective. Then, for the new diagram p›1q, we have

H2pε1
F b 1lGq´1 ˝ pβF b 1lGq “ 1lF b χG,

for some homomorphism χG. This G-component was determined in Lemma 2.4: it is just the
Koszul homomorphism of G.

So far we proved that H2pεF b 1lGq “ pβW b 1lGq ˝ pκzF b κzGq, for pF,Gq close enough to
each other. By keeping F fixed and allowing G to vary (in the same component as F), this can
be interpreted as the identity of two sections in a Hom-bundle, between the vector bundles
whose fibres over G P EIP3pr;nq are VF bH2pGp´3qq and H2pKF bGp´2qq, respectively. They
agree on a neighbourhood of F, so the identity holds on the irreducible component containing
F, wherever the vector bundles and the homomorphisms make sense.

Now let F,G P EIP3pr;nq be arbitrary; the proof of Lemma 2.5 doesn’t apply directly.
However, we proved that χF in (2.4) is independent of G, it is the composition of various
homomorphisms between cohomology groups determined by F only. Therefore χF can be
computed by using an instanton-like vector bundle G1 in the same component as F. The
conclusion follows from the previous step. l

3. The main results

Now we are in position to prove the Theorem stated in the Introduction.

3.1. The irreducibility.

Theorem 3.1 EIP3pr;nq is irreducible.

Proof. Indeed, by Proposition 1.4, the restriction of the map Θ to each irreducible compo-
nent of EIP3pr;nq dominates M̄DYHpr;nqλ. Let F,G be general Egen-instantons which are
mapped to the same (general) point in M̄DYHpr;nqλ. Then, Proposition 2.3 states that
H1pHompF,Gqp´2qq “ 0, so the isomorphism between FDYH and GDYH lifts to an isomor-
phism over all P3. l
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This short argument strongly contrasts the lengthy computations [14, 15] in the rank-2
case.

3.2. The rationality. Let D,H Ă P
3 be a generic pair (wedge) of 2-planes, intersecting

along λ :“ D X H.

Proof. We showed in 1.4 that the restriction map Θ : EIP3pr;nqλ Ñ MDYHpr;nqλ is étale.
Proposition 2.3 implies that an isomorphism between the restrictions to D Y H of two Egen
instantons actually comes from isomorphism over P

3; thus Θ is birational. It remains to
observe that [8, Corollary 3.11] implies that M̄P2pr;nqλ is a rational variety. l

We remark that we actually obtain an explicit description of the general Egen-instanton
on the projective space.

Theorem 3.2 (i) The assignment F ÞÑ pFD,FHq induces the birational map

EIP3pr;nqλ
Θ

ÝÑ M̄DYHpr;nq – MP2pr;nq ˆ MP2pr;nqλ.

Hence a general Egen-instanton bundle F on P
3 is uniquely determined by its restrictions

pF1,F2q to the 2-planes D,H and the gluing data F1
λ – O‘r

λ – F2
λ (trivializations, up to

simultaneous PGLprq-action).
(ii) Let Q – P

1 ˆ P
1 Ă P

3 be a smooth quadric. The assignment

Θ1 : EIP3pr;nq 99K M̄Qpr; 2nq, F ÞÑ FQ

yields a birational map to the moduli space of semi-stable bundles on Q, with c2 “ 2n.

Proof. The first statement is clear. For the second, note that the same argument as in
Proposition 1.4 shows that Θ1 is étale; by 2.3, it is actually birational. l

Remark 3.3 (i) At the infinitesimal, deformation-theoretic level, these facts are reflected in
the isomorphism:

H1pP3, EndpFqq
–
Ñ H1pD Y P, EndpFqq

–
Ñ H1pQ, EndpFqq.

(ii) The results obtained in [8, Theorem 3.6] yield detailed descriptions of M̄P2pr;nq and
M̄Qpr; 2nq: they are irreducible, rational varieties. Their general elements are, respectively,
the kernels of surjective homomorphisms:

´ for M̄P2pr;nq, Iappaq‘r´ρ ‘ Ia`1
p pa ` 1q

‘ρ
ÝÑ

nÀ
j“1

Olj p1q,

n “ ar ` ρ, 0 ď ρ ă r, and l1, . . . , ln Ă P
2

is a bouquet of distinct lines passing through the point p P P
2;

´ for M̄Qpr; 2nq, O
P
1

left
pa1q‘r´ρ1

‘ O
P
1

left
pa1 ` 1q‘ρ1

ÝÑ
2nÀ
j“1

OxjˆP
1

right
p1q,

Q “ P
1
left ˆ P

1
right 2n “ a1r ` ρ1, 0 ď ρ1 ă r,

and x1, . . . , x2n P P
1
left are distinct points.

(iii) In the case r “ 2, of mathematical instantons, Tikhomirov [14, 15] proved that their
moduli spaces are irreducible, so the Egen-condition 1.1(iv) can be dropped.
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