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SUBVARIETIES WITH PARTIALLY AMPLE NORMAL BUNDLE

MIHAT HALIC

ABSTRACT. We show that local complete intersection subvarieties of smooth projective va-
rieties, which have partially ample normal bundle, possess the G2-property. This generalizes
results of Hartshorne and Badescu-Schneider.

INTRODUCTION

Hartshorne [13, 14] investigated the cohomological properties of pairs (X,Y’), where X is
a projective scheme which is regular in a neighbourhood of a local complete intersection—
lci, for short—subscheme Y with ample normal bundle. He showed that, on one hand, Y
is G2 that is, the formal completion Xy determines an étale neighbourhood of Y. On the
other hand, the cohomology groups of coherent sheaves on the complement X\Y are finite
dimensional, above appropriate degrees.

The ampleness of the normal bundle can be weakened. On the complex-analytic side, it
suffices either a Hermitian metric with partially positive curvature (cf. [11, 7]). On the
algebraic side, Badescu-Schneider [4] addressed the globally generated, partially ample case
(in the sense of Sommese) by reducing the problem to [13]. Their results mainly apply—due
to the global generation of the normal bundle—to subvarieties of homogeneous varieties. A
comprehensive reference for the algebraic approach is Badescu [3].

Subvarieties with g-ample normal bundle have not been investigated yet. Here we are refer-
ring to the cohomological partial ampleness [2, 18]. It is less restrictive than Sommese’s [17]
and also more flexible, being a numerical condition. There are numerous subvarieties with
partially ample, but neither ample nor globally generated normal bundle. Their ubiquity is,
in our opinion, a strong motivation to systematically study their properties.

The main result of this article is stated below. It generalizes Hartshorne [13, Theorem 6.7],
Béadescu-Schneider [4, Theorem 1], and strengthens as well the formality principle—for Y lci
rather than smooth—due to Griffiths, Commichau-Grauert, Chen [11, 7, 6].

Theorem (cf. 2.6, 2.7) Let X be a smooth irreducible projective variety defined over an alge-
braically closed field of characteristic zero, and'Y a connected, lci subscheme, with (dimY —1)-
ample normal bundle. Then'Y is G2 in X and the formality principle holds for (X,Y).

We conclude the article with applications. It is worth mentioning that Voisin’s strongly
movable subvarieties [19] have non-pseudo-effective co-normal bundle, hence they enjoy the
G2-property (cf. 3.5).
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1. BACKGROUND MATERIAL

Notation 1.1 We work over an algebraically closed field k of characteristic zero. Throughout
the article, X is a connected, noetherian formal scheme, regular and projective over k; X
stands for an irreducible projective variety—that is, reduced and irreducible—over k.

Let Y be either a subscheme of definition of X—it is projective—, or a closed subscheme
of X; in the latter case, we suppose X is non-singular along Y. Let dimY be the maximal
dimension of its components—we assume that all are at least 1-dimensional—, codimx (Y') :=
dimX —dimY (if Y < X). Let Jy < Ox (resp. < Ox) be the sheaf of ideals defining Y;
for a = 0, Y, is the subscheme defined by Jg’,“. The formal completion of X along Y is
Xy = lim Yo; it is regular and projective.

If Y is lci in X, we denote its normal sheaf by N = Ny := (Jy/93)V; it is locally free of
rank v. The structure sheaves of the various thickenings Y, fit into the exact sequences:

0— Syma(Nv) - Oya - Oy{kl — 0, Va = 1. (1.1)

For a coherent sheaf G, we denote h'(G) := dimy H!(G); for a field extension K — K’,
trdeg, K’ is the transcendence degree; ct% stands for a real constant depending on the
quantities A, B,.... A line (resp. vector) bundle is an invertible (resp. locally free) sheaf.

We recall some terminology due to Hironaka-Matsumura [15]. Suppose Y is connected; let
K(Xy) be the field of formal rational functions on X along Y (cf. [15, Lemma 1.4]).

e YVisGlin X, if HO(Xy,OXy) =k;

A~

e Vis G2in X, if K(X) — K(Xy) is finite;

e YVis G3in X, if K(X) — K(Xy) is an isomorphism.

1.1. Cohomological g-ampleness. This notion was introduced by Arapura and Totaro.
Definition 1.2 Let Y be a projective scheme, A € Pic(Y') an ample line bundle.

(i) (cf. [18, Theorem 7.1]) An invertible sheaf £ on Y is g-ample if, for any coherent sheaf
G on X, holds:
Jetd Va=ctd V> q, H(Y,5® L) =0.
It’s enough to verify the property for G = A%,k > 1 (cf. [18, Theorem 6.3, 7.1]).
(ii) (cf. [2, Lemma 2.1, 2.3]) A locally free sheaf € on Y is g-ample if Opev)(1) on P(€Y) :=
Proj(SyméY &) is g-ample. It is equivalent saying that, for any coherent sheaf G on Y,
there is ct9 > 0 such that:

HY(Y,§®Sym?%(&)) = 0, Vt > ¢, Va > ct9.

The g-amplitude of €, denoted g%, is the smallest integer ¢ with this property. Note that
€ is g-ample if and only if so is €y, (cf. [18, Corollary 7.2]). Also, any locally free
quotient J of € is still g-ample; indeed, Op(gv)(1) = Opev)(1) ® Op(gv).

(iii) For a coherent sheaf G on Y, let reg”(§) be its Castelnuovo-Mumford regularity with
respect to A and reg’(§) := max{1,reg™(3)}.

The g-amplitude enjoys uniformity and sub-additivity properties.

Theorem 1.3 (i) (cf. [18, Theorem 6.4, 7.1]) Let Y be a projective scheme, A, L € Pic(Y).
We assume that A is sufficiently ample—Koszul-ample, cf. [18, p. 733]—, and L is g-ample.
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Then there are ctf’ﬁ,ctéq’ﬁ > 0, such that for any coherent sheaf G on'Y holds:
HY(Y,5®L%) =0, Vt>q, Va=> ct{l’ﬁ -regﬁ (9) + ctél’ﬁ .

(ii) (cf. [18, Theorem 3.4]) If H°(Oy) = k then, for a locally free sheaf & and coherent sheaf
S onY, one has

reg (€ ® G) < reg™ (&) + reg(9).
Hence it holds: reg’ (€ ® G) < reg’ (&) + regh (9).

Theorem 1.4 (cf. [2, Theorem 3.1]) Let 0 — & — & — €3 — 0 be an exact sequence of
locally free sheaves on'Y . Then it holds: ¢¢ < ¢®' + ¢%2.

For products there is a better estimate.

Lemma 1.5 Let X1, X5 be irreducible projective varieties and €1, Es locally free sheaves on
them, respectively. Let &1 H €y be the direct sum of their pull-backs to X1 x X5. Then we
have: ¢©18¢2 < max{¢®' + dim Xo,¢®2 + dim X1 }.

Proof. Let Ay, As be ample line bundles on X1, X5, respectively, A; X].Ao the tensor product
of their pull-backs. For k > 1, t > max{¢®* + dim X5, ¢%? + dim X;},a » 0, it holds:

HY(X) x X, (AT"RAF) @ Sym® (€1 B €2))
= @ H"(X1,AT"®@Sym™(&1)) ® H' (X2, A5" ® Sym™(&,)) = 0. O

ty+to=t,
ajtag=a

Lemma 1.6 One has the equivalence:
L e Pic(Y) is g-ample < L ® Oy is g-ample, VY' < Y irreducible.

Proof. If Y =Y’ 0 Y” is the union of distinct closed subschemes, one has:

0— Oy — Oy ® Oyr — Oyrayr — 0,
0—->Jy ®Iyr —> Oy — Oyrnyr — 0.

Now tensor the exact sequences by L™ ® Oy (—k) and take their cohomology. O

1.2. (dimY—-1)-ample vector bundles on Y. Subvarieties Y < X with (dim Y —1)-ample
normal bundle will play an essential role. The following is analogous to Totaro’s result for
invertible sheaves.

Proposition 1.7 (cf. [18, Theorem 9.1]) Let & be a locally free sheaf on an irreducible
projective variety Y (reduced, irreducible). The statements are equivalent:
(i) € is (dimY — 1)-ample.
(ii) Ope)(1) is not pseudo-effective, where P(€) := Proj(Sym® €V).
In this case, we say that £V is not pseudo-effective.
(iii) There is a dominant morphism ¢ : Cs — Y, with S affine and Cg an integral curve over
S, such that the following conditions are satisfied:
(1) ¢*& admits a line sub-bundle M which is relatively ample for Cg — S;
(2) Let S, = S be the curves passing through the general point y € Y and Mg, the
restriction of M to Cg,,.
Then the points {[Msy]}ses,, corresponding to My, cover an open subset of P(€,).
(For shorthand, we say that M < ¢*E& is movable.)

If'Y is reducible, the conditions (ii), (iii) must hold for all its irreducible components.
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Proof. The last statement follows from 1.6. Let Oy (1) be an ample line bundle on Y. Its
dualizing sheaf wy is torsion free of rank one, and Oy (—c) < wy < Oy(c) for some ¢ > 0
(cf. [18, §9]); hence the (dimY — 1)-ampleness means: H(Y,wy ® L @ Sym®EV) = 0, VL €
Pic(Y), a > ct®. Tt is equivalent to HO(Y,M® Sym?® &) = 0, YM € Pic(Y), a > ct™, and to:

HO(P(€), M ® Op(e)(a)) = 0, YM € Pic(P(€)), Ya > ct™.

The last condition is the (dimP(€) — 1)-ampleness of Opg)(—1); (i)« (ii) follows.

The equivalence (ii)<(iii) is the duality (cf. [5, Theorem 0.2]), for X = P(&). However,
loc. cit. requires X to be smooth. Thus we must prove the following.
Claim Let (X,0x(1)) be a d-dimensional projective variety, £ € Pic(X). It holds:

L is (d — 1)-ample < Fmovable curve C' — X such that £-C > 0.

(=) Let X % X be a desingularization of X with exceptional locus E. Then 0*£ is (d —1)-
ample. Indeed, we may assume that A := (U*Ox(l)) (—FE) is ample on X, hence:

HY (X, 0" LT @A) c HY(X, LT ®0x(k) ®0.05) =0, k>0, m » ct”.
For the last step, 0,0 ¢ is torsion-free of rank one, so Ox(—c) < 0,03 < Ox(c) for an
appropriate ¢ > 0. Then ¢*£~! is not pseudo-effective, so there is a movable curve C' — X
such that ¢*£ - C' > 0.
(<) Let C — X be a movable curve and suppose £ is not (d — 1)-ample. There is kg > 0

and a strictly increasing sequence {m;}, = Z, such that H°(X,£L~™ @A) # 0. Tt follows:
0<—my(L-C)+koOx(1)-C, Yt,s0 L-C <0, a contradiction. O

Observe that the notion of pseudo-effective vector bundle used in [5, §7] is more restrictive:
it also requires that the projection of the non-nef locus of Op(g)(].) does not cover Y.

2. FINITE DIMENSIONALITY RESULTS AND THE G2 PROPERTY

Hartshorne [13] investigated the cohomological properties of lci subvarieties with ample
normal bundle and of their complements. Badescu and Schneider [4] extended his results to
subvarieties with Sommese-g-ample (globally generated) normal bundle, hence their applica-
tions mainly concern homogeneous spaces.

2.1. Finite dimensionality. The following generalizes results in [13, Section 5].
Theorem 2.1 Assume Y is lci, let ¢ be the amplitude of its normal bundle N.

(i) Consider L € Pic(X%), let ¢~ be the amplitude of its restriction to Y. Let F be a locally
free sheaf on X, of finite rank. Then the following statements hold:
(a) Fort < dimY —¢N, HY(X,F) is finite dimensional. In particular, if ¢¥ < dimY —1
and X is connected, then H°(X,Ox) = k.
(b) HY(X,FQL™) =0, fort <dimY — (¢ + ¢*), b » 0.
(ii) Let X be a projective scheme, non-singular along Y. Let G be a coherent sheaf on X\Y
and L € Pic(X). The following statements hold:
(a) HYX\Y,S) is finite dimensional, t > dim X — dimY + ¢,
(b) HY(X\Y,5®LY) =0, t >dim X —dimY + ¢V + ¢, b>» 0.

Proof. (i)(a) Use (1.1) and proceed as in loc. cit., Theorem 5.1, Corollary 5.4.
(b)(cf. loc. cit., Corollary 5.3) For F := F ® Oy, £ := L ® Oy, is enough to show:

HY Y, wy @ F¥ @ Sym*(N) @ LY) =0, Vt > ¢ +¢%,Va=0,b> 0.
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But Sym®(N) ® £° is direct summand in Sym** °(N@ L), and N@ £ is (¢ + ¢*)-ample. The
vanishing holds for a + b > ct¥, e.g. a >0, b = ct”.
(ii) Use the formal duality [14, Theorem III1.3.3] and the previous point. ]

In [12, Exposé XIII, Conjecture 1.3], Grothendieck discusses the finite dimensionality of
the cohomology groups of coherent sheaves on the complement of lci subvarieties. Hartshorne
addressed the issue for smooth subvarieties of projective spaces (cf. [13, Corollary 5.7]).

Let S be a smooth projective variety and E a principal G-bundle on it, with G a connected
linear algebraic group; let P < G be a parabolic subgroup. Then X := E/P 5 S is a locally
trivial G/P-fibration. The co-ampleness (ca, for short) of homogeneous varieties has been
explicitly computed by Goldstein [10]. By definition, ¢°¢/* = dim(G/P) — ca(G/P), hence
Tx » := Ker(dm) is g-ample, for ¢ := dim X — ca(G/P).

Corollary 2.2 Suppose Y < X is a smooth S-family of subvarieties of relative codimension
§, dimY > dim S; that is, dry : Ty — 75T is surjective, codimy (Y) = 6. Then H'(X\Y, G)
is finite dimensional for t = § + dim X — ca(G/P), for all coherent sheaves § on X\Y.

Hartshorne’s result corresponds to S = {point}, G/P =~ P" ¢t > 0.

Proof. The exact diagram

0 0
00— ‘J'yljﬂy ‘J'ly Ty Jg —0
0 (‘TX,% B% rIXLTY 7T*(-THS 'y —=0
l
Tx fY/‘IYer —— Ny/x
% ;
shows that Ny, x is a quotient of Tx [y, so is g-ample (cf. 1.2(ii)); apply 2.1(ii). O

2.2. The G2 property. Here we generalize [13, Section 6]. The difficulty to overcome is
that several statements in there are proved for curves, the general case being obtained by
induction on the dimension.

Lemma 2.3 (cf. [13, Lemma 6.1]) Let (Y,0y (1)) be a projective scheme, L € Pic(Y') and
&, F locally free sheaves on'Y . Let hg(a,b) := hO(Y,T ® Sym*(€V)® L7?), a,b > 1.

(i) If £ is (dimY — 1)-ample, then it holds:
hg(a,b) =0, for b= ct(lf)Y(l)’L"(S ca + ctg)Y(l)’L’?. (2.1)
(ii) If € is (dimY — 1)-ample, then it holds:

0y (1),€,L 1,6,

hy(a,b) =0, for a > cty b+ cth( ) (2.2)

Proof. We fix Oy (1) sufficiently ample (cf. 1.3) and consider the regularity with respect to it.
Also, we may assume that Y is irreducible; let wy be its dualizing sheaf.
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(i) There is ¢g = c¢o(Y') = 1 such that Oy (—cg) < wy, so it holds:
RO(Y,F ®@Sym?(EV)®L7Y) < h%(Y,wy ® F(cp) ® Sym?(£Y) ® £L7P)
= pdmY (Y FV(—¢y) ® Sym? (&) ® LP).

Claim The right hand side vanishes for b as in (2.1). Indeed, we replace F v F(—cq)
and verify the statement for h4™Y (FV ® Sym®(€) ® L’). The effect of the replacement is
reg FV v~ regFY — ¢, with ¢y depending on Y. Now observe that is enough to prove the
claim for Y reduced—so H°(Oy) = k—and for coherent sheaves G on Y.

Indeed, for J := Ker(Oy — Oy;_,), there is 7 > 0 such that J” = 0, so Oy admits a filtration
(similar to (1.1)) by the quotients J7¥=!/J¥ 1 < k < r, which are Oy, _,-modules; now we may
use the estimates for F¥ ® (J¥71 /%) on Y;eq, which is coherent. Property 1.3 yields:

HIY (Y, @ Sym* € @ £8) = 0, ¥b > ct)¥ V“ reg, (G @ Sym® &) + ct5r 1+
But Sym® € is a summand of €%%, so reg, (G ® Sym €) <a-reg,(€) +reg, (9), thus (2.1)
holds for b > ?Y(l) (a-reg (€) +reg (9)) + ct2 vl
(ii) We may assume that Y is reduced. If G is coherent on Y, h9™Y (G ® Sym?(&) ® £?)
vanishes for a > ct; Oy (1).€ -reg, (G ® LP) + ctoY(l) , and reg_ (S ®Lb) < breg, L +reg, §. O
Proposition 2.4 (cf. [13, Theorem 6.2, Corollary 6.6]) Let the situation be as in 1.1. Suppose

Y is lci and its normal bundle N is (dimY — 1)-ample, of rank v. For any locally free sheaf
F and invertible sheaf L on X, there is a polynomial of degree dimY + v such that:

WX, F®LY) < PST, (b), forb» 0.

Proof. Let A € Pic(Y) be sufficiently (Koszul) ample, such that A~! < wy; denote F :=
F®Oy,L:= L Oy. For v:=ct{? +1,b > ct3™ (cf. (2.2)), it holds:

b
EFe L) < z (Y, F ® Sym*(NY) ® £%) = Y A%V, F ® Sym*(NY) ® L£).
a=0 a=0

Since F < (A9)PET ¢y = regt FV, it is enough to consider F = A,
Consider S := IP’(OP(NV (- OP(NV ) and Og(1) the relatively ample invertible sheaf on
it. The right hand side above can be re-written:

b b
rhs= > h%(Y, A% @ Sym?*(NV) ® £%) < Y hO(Y, wy ® A+ ® Sym*(NY) ® LP)
a=0 a=0

oL
— Z hdlmy(Y,Afcofl ®Syma(N) ®Lfb)
a=0

vb ) .
3R (BNY), A0 @ Ope (a) @ L) = B (8,470 @ O5(78) @ £ ).
a=0

But A4 (S Og(vb) ® £L7°) is dominated by a polynomial in b, depending on Og(y) ® L1,
of degree at most dim S = dimY + v (cf. [16, 1.2.33]). To include A~%1 use

0> A1 50y -0y, -0, dimY; =dimY — 1,
which yields: rhs < A4 X (0g(yb) ® £70) + KM X=1(Og(v0) ® L0 1y,). O

With these preparations, the proof of the following theorem is identical to loc. cit.
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Theorem 2.5 (cf. [13, Theorem 6.7]) Let the situation be as in 1.1. We assume:

e Y is connected, Ilci, dimY > 1;
e the normal bundle N of Y is (dimY — 1)-ample.

Then the following statements hold:
(i) trdegy K(X) < dimY + rkN;
(i) If trdegy K (X) = dimY + rkN, then K(X) is a finitely generated extension of k.

Corollary 2.6 (cf. [13, Corollary 6.8]) Let X be a projective scheme, non-singular in a
neighbourhood of a closed, connected, lci subscheme Y with (dimY — 1)-ample normal bundle.
Then Y is G2 in X.

Proof. Indeed, K (X) is a subfield of K (Xy), so trdeg, K(Xy) = dim X = dimY + v. Hence
we are in the case (ii) of the previous theorem. O

The result is optimal, one can not conclude that Y is G3 (cf. [14, Example p. 199].

2.3. A formality criterion. One says that the formal principle holds for a pair (X,Y)
consisting of a scheme X and a closed subscheme Y if the following condition is satisfied: for
any other pair (Z,Y) such that Ty ~ Xy, extending the identity of Y, there is an isomorphism
between étale neighbourhoods of Y in X and in Z which induces the identity on Y.

Theorem 2.7 In the situation 2.6, the formal principle holds for (X,Y).

This simplifies and strengthens [6, Theorem 3|, since Y is only lci, rather than smooth.

Proof. Corollary 2.6 implies that Y is G2 in X. But, in this case, Gieseker proved (cf. [9,
Theorem 4.2], [3, Corollary 9.20, 10.6]) that the formality holds for (X,Y). O

There are similar results in complex analytic setting. Griffiths [11] investigated the formal-
ity /rigidity of smooth subvarieties Y = X whose normal bundle Ny, x admits a Hermitian
metric with curvature of signature (s,t), s + t = dimY’, and proves in [ibid., II. §2,3] the
rigidity of the embedding for s > 2. The main cohomological property of vector bundles
admitting metrics of curvature with mixed signature (s,t) is that of being (dim Y — s)-ample
(cf. [1, Proposition 28, p. 257], [11, (7.28), p. 432]).

On the other hand, Commichau-Grauert [7, Satz 4] proved the formality for subvarieties
with 1-positive normal bundle. Note that a 1-positive vector bundle on a smooth projective
variety Y is (dimY — 1)-ample (cf. [7, Satz 2]).

We conclude that the cohomological approach adopted in this article yields under weaker
assumptions the rigidity results obtained in [11, 7].

3. EXAMPLES OF SUBVARIETIES WITH PARTIALLY AMPLE NORMAL BUNDLE

In this section we assume that X is a smooth projective variety.

3.1. Elementary operations.

Corollary 3.1 (i) Let Yo = Y1 © X be connected lci, dimYy > 1. Suppose Ny, )y, Ny, /x
are respectively qs-, q1-ample, with q1 + qo < dimYs. Then Y, is G2 in X.

(ii) Suppose Y1,Y2 are lci in X, codim(Y1 N Y3) = codim(Y7) + codim(Y2), and Ny, x is
qj-ample, for j =1,2. Then Ny, ny,/x is (q1 + g2)-ample.

(ili) Suppose Y; < X, are connected lci and Nxvfj/xj is not pseudo-effective (so Y; < Xj is
G2), for j =1,2. Then Yy x Y3 is lci and G2 in X1 x Xo.
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v) Let [ : — e a surjective, flat morphism. Suppose (= 18 lct an v/x 1S
iv) Let f : X' X b jective, fl hi S Y X is lci and N /X 1
(dimY —1)-ample. ThenY' := f~1(Y) © X is lci and Ny+/x, is (dim Y’ — 1)-ample.

Proof. (i)-(iii) are consequences of the sub-additivity 1.4 and 1.5, applied to appropriate
normal bundle sequences. For (iv), note that f is equidimensional, Ny~ /xr = [*Ny,x. Apply
Leray’s spectral sequence to Y’ — Y. O

Corollary 3.2 Suppose Y1,Ys are lci in X, codim(Y; n Ys2) = codim(Y7) + codim(Y3), and
Ny, x is gj-ample, for j =1,2. If Y1 nYy is connected and gz < dim(Y; nY3), e.g. g2 =0,
then Y1 nYs is G2 in Y.

Proof. Note that Ny, ~y,/y; = Ny, x | O

YinYs®
3.2. Strongly movable subvarieties. (cf. [19, Section 2]) A class of examples of subvari-
eties having the G2-property are the strongly movable subvarieties introduced by Voisin [19,
Section 2], in the attempt to geometrically characterize big subvarieties.

Notation 3.3 Let Y (Wc’p) S'x X be a flat family of lci subschemes of X, with p dominant; then
p(Y) contains an open subset O of X. We may (and do) assume that S, ) are reduced, since
so is X. The incidence variety ¥ is the component of (71, m2)(Y xx V) < S x S containing
the diagonal; 7 is a proper, so X is closed. One obtains the Cartesian diagram:

[9>)
//\
Vs, Vs Y xy S x X. (3.1)
(m1,p2)
I ¢ )]
Y, Y L S xS

For o € S, denote X, := ¢~ !({o} x S) and p, := px 5, .

Definition 3.4 Suppose the general member of ) is irreducible. We say that the family )
is strongly mowvable, if py, is dominant; then Vs, 23 X is dominant, for o € S general, and Y,
is strongly movable. An arbitrary family ) is strongly mowvable if so is its general member Y,;
that is, all the irreducible components of Y, are strongly movable.

Proposition 3.5 Let YV be as above, o € S a non-singular point such that Y, is strongly
movable. Then Ny, x is (dimY, — 1)-ample. Hence, if Y, is connected, it is G2 in X.

Proof. Let Tg, SHg 0(Y,, Ny, /x) be the infinitesimal deformation homomorphism. By 1.7,
it is enough to prove that the restriction of Ny, /x to the irreducible components of Y, are
(dim Y, — 1)-ample. Recall that Ny, /x is (dim Y, — 1)-ample if and only if so is its restriction
to Yy red. For € € Tg,, we denote 0¢ € HO(YOJed, Ny, /x [yo’md) the restriction of §(§) to Y, red-
Henceforth, we replace Y, by an irreducible component.

We must find a movable morphism C 5 Y, red, an ample line bundle £¢ € Pic(C), and a
movable homomorphism Lo — ¢* Ny, /X We restrict ourselves to £ € Ty, , © T 0.
Claim 1 The vanishing locus of 9¢ is a non-empty, proper subset of Y, q; for £ € Ty,
variable, the vanishing loci of 0¢ cover an open subset of Y, rcq.

The vector £ is determined by an arc Spec (k[[e]]) L3 >, through o. The defining property of
Y, implies that h(e) = y. € Y, n Yho), h(0) = y € Y,. Since Y, is deformed at y in a tangential
direction, we deduce 6(§), = 0, so 0¢, = 0.
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We claim that ¢¢ # 0, for generic &, and their vanishing loci contain an open subset of

Po . . dpo,y . . . .
Y, red- Indeed, Vs, — X is dominant, so Ty, , —> NYo,re 4/X,y 1s surjective at a generic

(smooth) point y € Y, req. Since Y, is lci, a computation in local coordinates shows that there
is a non-trivial homomorphism Ny, /x ,, — Symk(Nyoymd/X,y), for some k > 0 (e.g. k =1,if Y,
is reduced at y), hence ¢, # 0. Second, Y, is strongly movable, so the points y € Y, where
3(&)y = 0, for some & € Ty, o, cover an open subset of Y.

Claim 2 Let C c Y, be a complete intersection curve which intersects the zero locus of ¥
properly. By Claim 1, such curves are movable. Moreover, ¢ extends to a pointwise injective
homomorphism Lo < Ny, /x [, where L¢ is an ample line bundle. The latter is movable too,
because dp, , is surjective at the generic point y € Y,,. This is formalized as follows.

Let Cgr 4, X be a movable curve (R is a parameter variety). Consider the diagram

g pr* N pr*N N:=Ny,/x!

G i

r‘TEo,o X Cp ——— HO (Yo,reda N) X Y;),red Y;),red

Yo,rcd

where v is the evaluation map. We may suppose that Cr is such that its generic member
intersects non-trivially and properly the zero locus of v. Note that g*v yields a rational map
T5,.0 X Cr -=» g* pr* P(N) which extends to a morphism outside a closed subscheme Z of
codimension at least two. Its projection does not cover Ty, , x R, hence we obtain a movable,
relatively ample £ < ¢g* pr* N. O

3.3. Varieties whose cotangent bundle is not pseudo-effective. Let ¥ < X be a
smooth subvariety, so Ny x is a quotient of Tx [y

Notation 3.6 For shorthand, denote P := P(Tx) and Py := P(Tx ly) its restriction to Y;
let 7 : P — X be the projection. Define Mov(Py)g < H2(Py; Q) to be the cone generated by
the classes of movable curves on Py and Mov(PP)g similarly.

Corollary 3.7 Let Y < X be a smooth subvariety such that Op, (1) is not pseudo-effective.
Then Ny x is (dimY — 1)-ample, so Y is G2.

Proof. Theorem 2.5 applies, since Ny x is (dimY" — 1)-ample. O

By using 1.7 we are going to show that, for Y < X sufficiently general, the partial ampleness
of Tx !y implies the non-pseudo-effectiveness of the cotangent bundle of X. The latter is a
numerical condition/restriction on the ambient variety. Examples include rationally connected
varieties—see below—and, possibly, Calabi-Yau varieties (cf. [8, Corollary 6.12]).

Lemma 3.8 Let Y 5 X be a subvariety, dimY > 0, and Hy(Py;Q) 55 Hy(P;Q) be the
induced homomorphism. In the situations enumerated below, it holds:

L (Mov(]P’y))Q < Mov(P)g. (3.2)

(i) An algebraic group G acts on X with an open orbit O, such that the stabilizer of a point
x € O acts with open orbit on Tx ., and Y N O # &.
(i1) k is uncountable, and Y is a very general member of a dominant family.

Hence, if Op, (1) is not pseudo-effective, then Op(1) is the same.
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Proof. (i) The G-translates of a movable curve on Py cover an open subset of P(Tx).
(ii) Let Yg < S x X be an S-flat family of subvarieties, with S affine, dominating X. Curves
on X are parametrized by their Hilbert polynomial, of degree one, with integer coefficients.
Let II be the countable set of polynomials occurring for movable curves on Y, s € S.

For P e II, denote Hilbis /s ™3 S the corresponding scheme. We are interested in the
components corresponding to curves. For s € S, let II; < II be the set of polynomials P

such that 7p, is not dominant; Ilgq := (JIL;. The image of Hilbg;i/gisd — S is a countable

seS

union of proper subvarieties. Take s’ € S in the complement (k is uncountable); let Py be the
™

Py
Hilbert polynomial of some movable curve Cy < Yy. Then Py ¢ Ilgiq, S0 Hilbi;'/s — S
is surjective. Let II' := II\Iligiq. The components of Hilbg; /s (corresponding to movable
curves) dominate S, so they are flat over the very general point o € S.
We claim that movable curves on Y, are movable on X. Indeed, for P, as above, consider

the universal curve Cg Hilb{i; /g % sYg. The family C, c Hilb)}i;’ xY, dominates Y,. By the

continuity of Hilbﬁ; /s xgYs — Yg, the same holds for Cs < Hilb% xYs, for s near o € S.
Finally, Yg¢ — X is dominant, so Cg covers an open subset of X. O

Lemma 3.9 Let X be a smooth rationally connected variety. Then O]}D(g’x)<1) 1 not pseudo-
effective, so Tx is (dim X — 1)-ample.

Proof. Consider a very free rational curve: a dominant morphism P! x S % X, where S is a
variety, such that ¢*Tx [P sy = Op1(1) ® G, Vs € S, with G globally generated. A nowhere
vanishing section gs € H°(P! x {s}, §) yields the inclusion jg, : Op1(1) = ¢*Tx [p1x s} We still
denote by j,, the morphism P! — P(Tx). Since § is globally generated, there is S c SxHOG)
open, such that S — Morphisms(P',P(Tx)), {s}x {gs} — Jgs» yields a movable rational curve

Pl x 55 P(Tx) satistying % Op(gy)(—1) Ip1x 5y = Op1 (1), Vs € S. O

It is well-known—particularly for projective spaces—that the G3 property of the diagonal
Ax :={(z,z) |z € X} c X x X imply important connectedness results for the intersections
of subvarieties in X (cf. [3, Ch. 11]). Our results yield the G2-property of the diagonal;
obviously, it is less than the G3-property, but it holds for a larger class of varieties.

Proposition 3.10 Let X be a smooth projective variety, whose cotangent bundle is not
pseudo-effective (e.g. rationally connected). Then the diagonal Ax is G2 in X x X.

Proof. The normal bundle of Ax is isomorphic to Tx; we conclude by 2.6. O
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