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SUBVARIETIES WITH PARTIALLY AMPLE NORMAL BUNDLE

MIHAI HALIC

Abstract. We show that local complete intersection subvarieties of smooth projective va-
rieties, which have partially ample normal bundle, possess the G2-property. This generalizes
results of Hartshorne and Bădescu-Schneider.

Introduction

Hartshorne [13, 14] investigated the cohomological properties of pairs pX,Y q, where X is
a projective scheme which is regular in a neighbourhood of a local complete intersection—
lci, for short—subscheme Y with ample normal bundle. He showed that, on one hand, Y
is G2 that is, the formal completion X̂Y determines an étale neighbourhood of Y . On the
other hand, the cohomology groups of coherent sheaves on the complement XzY are finite
dimensional, above appropriate degrees.

The ampleness of the normal bundle can be weakened. On the complex-analytic side, it
suffices either a Hermitian metric with partially positive curvature (cf. [11, 7]). On the
algebraic side, Bădescu-Schneider [4] addressed the globally generated, partially ample case
(in the sense of Sommese) by reducing the problem to [13]. Their results mainly apply—due
to the global generation of the normal bundle—to subvarieties of homogeneous varieties. A
comprehensive reference for the algebraic approach is Bădescu [3].

Subvarieties with q-ample normal bundle have not been investigated yet. Here we are refer-
ring to the cohomological partial ampleness [2, 18]. It is less restrictive than Sommese’s [17]
and also more flexible, being a numerical condition. There are numerous subvarieties with
partially ample, but neither ample nor globally generated normal bundle. Their ubiquity is,
in our opinion, a strong motivation to systematically study their properties.

The main result of this article is stated below. It generalizes Hartshorne [13, Theorem 6.7],
Bădescu-Schneider [4, Theorem 1], and strengthens as well the formality principle—for Y lci
rather than smooth—due to Griffiths, Commichau-Grauert, Chen [11, 7, 6].

Theorem (cf. 2.6, 2.7) Let X be a smooth irreducible projective variety defined over an alge-
braically closed field of characteristic zero, and Y a connected, lci subscheme, with pdimY ´1q-
ample normal bundle. Then Y is G2 in X and the formality principle holds for pX,Y q.

We conclude the article with applications. It is worth mentioning that Voisin’s strongly
movable subvarieties [19] have non-pseudo-effective co-normal bundle, hence they enjoy the
G2-property (cf. 3.5).
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1. Background material

Notation 1.1 We work over an algebraically closed field k of characteristic zero. Throughout
the article, X is a connected, noetherian formal scheme, regular and projective over k; X

stands for an irreducible projective variety—that is, reduced and irreducible—over k.
Let Y be either a subscheme of definition of X—it is projective—, or a closed subscheme

of X; in the latter case, we suppose X is non-singular along Y . Let dimY be the maximal
dimension of its components—we assume that all are at least 1-dimensional—, codimXpY q :“
dimX ´ dimY (if Y Ă X). Let IY Ă OX (resp. Ă OX) be the sheaf of ideals defining Y ;
for a ě 0, Ya is the subscheme defined by Ia`1

Y . The formal completion of X along Y is

X̂Y :“ limÝÑYa; it is regular and projective.

If Y is lci in X, we denote its normal sheaf by N “ NY :“ pIY {I2Y q_; it is locally free of
rank ν. The structure sheaves of the various thickenings Ya fit into the exact sequences:

0 Ñ SymapN_q Ñ OYa Ñ OYa´1
Ñ 0, @a ě 1. (1.1)

For a coherent sheaf G, we denote htpGq :“ dimkH
tpGq; for a field extension K ãÑ K 1,

trdegK K 1 is the transcendence degree; ctA,B,... stands for a real constant depending on the
quantities A,B, . . . . A line (resp. vector) bundle is an invertible (resp. locally free) sheaf.

We recall some terminology due to Hironaka-Matsumura [15]. Suppose Y is connected; let

KpX̂Y q be the field of formal rational functions on X along Y (cf. [15, Lemma 1.4]).

‚ Y is G1 in X, if H0pX̂Y ,OX̂Y
q “ k;

‚ Y is G2 in X, if KpXq ãÑ KpX̂Y q is finite;

‚ Y is G3 in X, if KpXq ãÑ KpX̂Y q is an isomorphism.

1.1. Cohomological q-ampleness. This notion was introduced by Arapura and Totaro.

Definition 1.2 Let Y be a projective scheme, A P PicpY q an ample line bundle.

(i) (cf. [18, Theorem 7.1]) An invertible sheaf L on Y is q-ample if, for any coherent sheaf
G on X, holds:

D ctG @ a ě ctG @ t ą q, HtpY,G b Laq “ 0.

It’s enough to verify the property for G “ A´k, k ě 1 (cf. [18, Theorem 6.3, 7.1]).
(ii) (cf. [2, Lemma 2.1, 2.3]) A locally free sheaf E on Y is q-ample if OPpE_qp1q on PpE_q :“

ProjpSym‚
OY

Eq is q-ample. It is equivalent saying that, for any coherent sheaf G on Y ,

there is ctG ą 0 such that:

HtpY,G b SymapEqq “ 0, @t ą q, @a ě ctG .

The q-amplitude of E, denoted qE, is the smallest integer q with this property. Note that
E is q-ample if and only if so is EYred

(cf. [18, Corollary 7.2]). Also, any locally free
quotient F of E is still q-ample; indeed, OPpF_qp1q “ OPpE_qp1q b OPpF_q.

(iii) For a coherent sheaf G on Y , let regApGq be its Castelnuovo-Mumford regularity with
respect to A and regA`pGq :“ maxt1, regApGqu.

The q-amplitude enjoys uniformity and sub-additivity properties.

Theorem 1.3 (i) (cf. [18, Theorem 6.4, 7.1]) Let Y be a projective scheme, A,L P PicpY q.
We assume that A is sufficiently ample—Koszul-ample, cf. [18, p. 733]—, and L is q-ample.
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Then there are ctA,L
1 , ctA,L

2 ą 0, such that for any coherent sheaf G on Y holds:

HtpY,G b Laq “ 0, @t ą q, @a ě ctA,L
1 ¨ regA`pGq ` ctA,L

2 .

(ii) (cf. [18, Theorem 3.4]) If H0pOY q “ k then, for a locally free sheaf E and coherent sheaf
G on Y , one has

regApE b Gq ď regApEq ` regApGq.

Hence it holds: regA`pE b Gq ď regA`pEq ` regA`pGq.

Theorem 1.4 (cf. [2, Theorem 3.1]) Let 0 Ñ E1 Ñ E Ñ E2 Ñ 0 be an exact sequence of
locally free sheaves on Y . Then it holds: qE ď qE1 ` qE2 .

For products there is a better estimate.

Lemma 1.5 Let X1,X2 be irreducible projective varieties and E1,E2 locally free sheaves on
them, respectively. Let E1 ‘ E2 be the direct sum of their pull-backs to X1 ˆ X2. Then we
have: qE1‘E2 ď maxtqE1 ` dimX2, q

E2 ` dimX1u.

Proof. Let A1,A2 be ample line bundles on X1,X2, respectively, A1 b A2 the tensor product
of their pull-backs. For k ě 1, t ą maxtqE1 ` dimX2, q

E2 ` dimX1u, a " 0, it holds:

Ht
`

X1 ˆ X2, pA´k
1 b A´k

2 q b SymapE1 ‘ E2q
˘

“
À

t1`t2“t,

a1`a2“a

Ht1
`

X1,A
´k
1 b Syma1pE1q

˘

b Ht2
`

X2,A
´k
2 b Syma2pE2q

˘

“ 0. l

Lemma 1.6 One has the equivalence:

L P PicpY q is q-ample ô L b OY 1 is q-ample, @Y 1 Ă Y irreducible.

Proof. If Y “ Y 1 Y Y 2 is the union of distinct closed subschemes, one has:

0 Ñ OY Ñ OY 1 ‘ OY 2 Ñ OY 1XY 2 Ñ 0,
0 Ñ IY 1 ‘ IY 2 Ñ OY Ñ OY 1XY 2 Ñ 0.

Now tensor the exact sequences by Lm b OY p´kq and take their cohomology. l

1.2. (dimY –1)-ample vector bundles on Y . Subvarieties Y Ă X with pdimY ´1q-ample
normal bundle will play an essential role. The following is analogous to Totaro’s result for
invertible sheaves.

Proposition 1.7 (cf. [18, Theorem 9.1]) Let E be a locally free sheaf on an irreducible
projective variety Y (reduced, irreducible). The statements are equivalent:

(i) E is pdimY ´ 1q-ample.
(ii) OPpEqp1q is not pseudo-effective, where PpEq :“ ProjpSym‚ E_q.

In this case, we say that E_ is not pseudo-effective.
(iii) There is a dominant morphism ϕ : CS Ñ Y , with S affine and CS an integral curve over

S, such that the following conditions are satisfied:
(1) ϕ˚E admits a line sub-bundle M which is relatively ample for CS Ñ S;
(2) Let Sy Ă S be the curves passing through the general point y P Y and MSy the

restriction of M to CSy .
Then the points trMs,ysusPSy , corresponding to Ms,y, cover an open subset of PpEyq.
(For shorthand, we say that M Ă ϕ˚E is movable.)

If Y is reducible, the conditions (ii), (iii) must hold for all its irreducible components.



4 MIHAI HALIC

Proof. The last statement follows from 1.6. Let OY p1q be an ample line bundle on Y . Its
dualizing sheaf ωY is torsion free of rank one, and OY p´cq Ă ωY Ă OY pcq for some c ą 0
(cf. [18, §9]); hence the pdimY ´ 1q-ampleness means: H0pY, ωY b L b Syma E_q “ 0, @L P
PicpY q, a ą ctL. It is equivalent to H0pY,Mb Syma E_q “ 0, @M P PicpY q, a ą ctM, and to:

H0pPpEq,M b OPpEqpaqq “ 0, @M P PicpPpEqq,@a ą ctM .

The last condition is the pdimPpEq ´ 1q-ampleness of OPpEqp´1q; (i)ô(ii) follows.
The equivalence (ii)ô(iii) is the duality (cf. [5, Theorem 0.2]), for X “ PpEq. However,

loc. cit. requires X to be smooth. Thus we must prove the following.
Claim Let pX,OX p1qq be a d-dimensional projective variety, L P PicpXq. It holds:

L is pd ´ 1q-ample ô Dmovable curve C Ñ X such that L ¨ C ą 0.

pñq Let X̃
σ

Ñ X be a desingularization of X with exceptional locus E. Then σ˚L is pd ´ 1q-

ample. Indeed, we may assume that Ã :“
`

σ˚OXp1q
˘

p´Eq is ample on X̃ , hence:

H0pX̃, σ˚L´m b Ãkq Ă H0pX,L´m b OXpkq b σ˚OX̃q “ 0, k ą 0, m " ctk .

For the last step, σ˚OX̃ is torsion-free of rank one, so OXp´cq Ă σ˚OX̃ Ă OXpcq for an

appropriate c ą 0. Then σ˚L´1 is not pseudo-effective, so there is a movable curve C Ñ X̃

such that σ˚L ¨ C ą 0.
pðq Let C Ñ X be a movable curve and suppose L is not pd ´ 1q-ample. There is k0 ą 0
and a strictly increasing sequence tmtut Ă Z, such that H0pX,L´mt b Ak0q ‰ 0. It follows:
0 ď ´mtpL ¨ Cq ` k0OXp1q ¨ C, @ t, so L ¨ C ď 0, a contradiction. l

Observe that the notion of pseudo-effective vector bundle used in [5, §7] is more restrictive:
it also requires that the projection of the non-nef locus of OPpEqp1q does not cover Y .

2. Finite dimensionality results and the G2 property

Hartshorne [13] investigated the cohomological properties of lci subvarieties with ample
normal bundle and of their complements. Bădescu and Schneider [4] extended his results to
subvarieties with Sommese-q-ample (globally generated) normal bundle, hence their applica-
tions mainly concern homogeneous spaces.

2.1. Finite dimensionality. The following generalizes results in [13, Section 5].

Theorem 2.1 Assume Y is lci, let qN be the amplitude of its normal bundle N.

(i) Consider L P PicpXq, let qL be the amplitude of its restriction to Y . Let F be a locally
free sheaf on X, of finite rank. Then the following statements hold:
(a) For t ă dimY ´qN, HtpX,Fq is finite dimensional. In particular, if qN ď dimY ´1

and X is connected, then H0pX,OXq “ k.
(b) HtpX,F b L´bq “ 0, for t ă dimY ´ pqN ` qLq, b " 0.

(ii) Let X be a projective scheme, non-singular along Y . Let G be a coherent sheaf on XzY
and L P PicpXq. The following statements hold:
(a) HtpXzY,Gq is finite dimensional, t ě dimX ´ dimY ` qN,

(b) HtpXzY,G b Lbq “ 0, t ě dimX ´ dimY ` qN ` qL, b " 0.

Proof. (i)(a) Use (1.1) and proceed as in loc. cit., Theorem 5.1, Corollary 5.4.
(b)(cf. loc. cit., Corollary 5.3) For F :“ F b OY , L :“ L b OY , is enough to show:

HtpY, ωY b F_ b SymapNq b Lbq “ 0, @t ą qN ` qL,@a ě 0, b " 0.
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But SymapNq bLb is direct summand in Syma`bpN ‘Lq, and N‘L is pqN ` qLq-ample. The
vanishing holds for a ` b ě ctF, e.g. a ě 0, b ě ctF.
(ii) Use the formal duality [14, Theorem III.3.3] and the previous point. l

In [12, Exposé XIII, Conjecture 1.3], Grothendieck discusses the finite dimensionality of
the cohomology groups of coherent sheaves on the complement of lci subvarieties. Hartshorne
addressed the issue for smooth subvarieties of projective spaces (cf. [13, Corollary 5.7]).

Let S be a smooth projective variety and E a principal G-bundle on it, with G a connected
linear algebraic group; let P Ă G be a parabolic subgroup. Then X :“ E{P

π
Ñ S is a locally

trivial G{P -fibration. The co-ampleness (ca, for short) of homogeneous varieties has been

explicitly computed by Goldstein [10]. By definition, qTG{P “ dimpG{P q ´ capG{P q, hence
TX,π :“ Kerpdπq is q-ample, for q :“ dimX ´ capG{P q.

Corollary 2.2 Suppose Y Ă X is a smooth S-family of subvarieties of relative codimension
δ, dimY ą dimS; that is, dπY : TY Ñ π˚

Y TS is surjective, codimXpY q “ δ. Then HtpXzY,Gq
is finite dimensional for t ě δ ` dimX ´ capG{P q, for all coherent sheaves G on XzY .

Hartshorne’s result corresponds to S “ tpointu, G{P – Pn, t ě δ.

Proof. The exact diagram

0

��

0

��
0 // TY,πY

//

��

TY
//

��

π˚
Y TS

// 0

0 // TX,πæY //

��

TXæY

��

// π˚TSæY // 0

TX,πæY

M

TY,πY

��

NY {X

��
0 0

shows that NY {X is a quotient of TX,πæY , so is q-ample (cf. 1.2(ii)); apply 2.1(ii). l

2.2. The G2 property. Here we generalize [13, Section 6]. The difficulty to overcome is
that several statements in there are proved for curves, the general case being obtained by
induction on the dimension.

Lemma 2.3 (cf. [13, Lemma 6.1]) Let pY,OY p1qq be a projective scheme, L P PicpY q and
E,F locally free sheaves on Y . Let hFpa, bq :“ h0pY,F b SymapE_q b L´bq, a, b ě 1.

(i) If L is pdimY ´ 1q-ample, then it holds:

hFpa, bq “ 0, for b ě ct
OY p1q,L,E
1 ¨ a ` ct

OY p1q,L,F
2 . (2.1)

(ii) If E is pdimY ´ 1q-ample, then it holds:

hFpa, bq “ 0, for a ě ct
OY p1q,E,L
1 ¨ b ` ct

OY p1q,E,F
2 . (2.2)

Proof. We fix OY p1q sufficiently ample (cf. 1.3) and consider the regularity with respect to it.
Also, we may assume that Y is irreducible; let ωY be its dualizing sheaf.
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(i) There is c0 “ c0pY q ě 1 such that OY p´c0q Ă ωY , so it holds:

h0pY,F b SymapE_q b L´bq ď h0pY, ωY b Fpc0q b SymapE_q b L´bq

“ hdimY pY,F_p´c0q b SymapEq b Lbq.

Claim The right hand side vanishes for b as in (2.1). Indeed, we replace F ù Fp´c0q
and verify the statement for hdimY pF_ b SymapEq b Lbq. The effect of the replacement is
regF_ ù regF_ ´ c0, with c0 depending on Y . Now observe that is enough to prove the
claim for Y reduced—so H0pOY q “ k—and for coherent sheaves G on Y .

Indeed, for I :“ KerpOY Ñ OYred
q, there is r ą 0 such that Ir “ 0, so OY admits a filtration

(similar to (1.1)) by the quotients Ik´1{Ik, 1 ď k ď r, which are OYred
-modules; now we may

use the estimates for F_ b pIk´1{Ikq on Yred, which is coherent. Property 1.3 yields:

HdimY pY,G b Syma E b Lbq “ 0, @b ě ct
OY p1q,L
1 ¨ reg`pG b Syma Eq ` ct

OY p1q,L
2 .

But Syma E is a summand of Eba, so reg`pG b Syma Eq ď a ¨ reg`pEq ` reg`pGq, thus (2.1)

holds for b ě ct
OY p1q,L
1 ¨ pa ¨ reg`pEq ` reg`pGqq ` ct

OY p1q,L
2 .

(ii) We may assume that Y is reduced. If G is coherent on Y , hdimY pG b SymapEq b Lbq

vanishes for a ě ct
OY p1q,E
1 ¨ reg`pG b Lbq ` ct

OY p1q,E
2 , and reg`pG b Lbq ď b reg` L ` reg` G. l

Proposition 2.4 (cf. [13, Theorem 6.2, Corollary 6.6]) Let the situation be as in 1.1. Suppose
Y is lci and its normal bundle N is pdimY ´ 1q-ample, of rank ν. For any locally free sheaf
F and invertible sheaf L on X, there is a polynomial of degree dimY ` ν such that:

h0pX,F b Lbq ď P
Y,L,F
dimY `νpbq, for b " 0.

Proof. Let A P PicpY q be sufficiently (Koszul) ample, such that A´1 Ă ωY ; denote F :“

F b OY ,L :“ L b OY . For γ :“ ctA,N,L
1 `1, b ą ctA,N,F

2 (cf. (2.2)), it holds:

h0pX,F b Lbq ď
8
ř

a“0

h0pY,F b SymapN_q b L
bq “

γb
ř

a“0

h0pY,F b SymapN_q b L
bq.

Since F Ă pAc0q‘rkF, c0 “ regA` F_, it is enough to consider F “ Ac0 .
Consider S :“ PpOPpN_qp´1q ‘ OPpN_qq and OSp1q the relatively ample invertible sheaf on

it. The right hand side above can be re-written:

rhs=
γb
ř

a“0

h0pY,Ac0 b SymapN_q b Lbq ď
γb
ř

a“0

h0pY, ωY b Ac0`1 b SymapN_q b Lbq

“
γb
ř

a“0

hdimY pY,A´c0´1 b SymapNq b L´bq

“
γb
ř

a“0

hdimY pPpN_q,A´c0´1 b OPpN_qpaq b L´bq “ hdimY pS,A´c0´1 b OSpγbq b L´bq.

But hdimY pS,OSpγbq b L´bq is dominated by a polynomial in b, depending on OSpγq b L´1,
of degree at most dimS “ dimY ` ν (cf. [16, 1.2.33]). To include A´c0´1, use

0 Ñ A
´c0´1 Ñ OY Ñ OY1

Ñ 0, dimY1 “ dimY ´ 1,

which yields: rhs ď hdimXpOSpγbq b L´bq ` hdimX´1pOSpγbq b L´bæY1
q. l

With these preparations, the proof of the following theorem is identical to loc. cit.
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Theorem 2.5 (cf. [13, Theorem 6.7]) Let the situation be as in 1.1. We assume:

‚ Y is connected, lci, dimY ě 1;
‚ the normal bundle N of Y is pdimY ´ 1q-ample.

Then the following statements hold:

(i) trdegkKpXq ď dimY ` rkN;
(ii) If trdegkKpXq “ dimY ` rkN, then KpXq is a finitely generated extension of k.

Corollary 2.6 (cf. [13, Corollary 6.8]) Let X be a projective scheme, non-singular in a
neighbourhood of a closed, connected, lci subscheme Y with pdimY ´1q-ample normal bundle.
Then Y is G2 in X.

Proof. Indeed, KpXq is a subfield of KpX̂Y q, so trdegk KpX̂Y q ě dimX “ dimY ` ν. Hence
we are in the case (ii) of the previous theorem. l

The result is optimal, one can not conclude that Y is G3 (cf. [14, Example p. 199].

2.3. A formality criterion. One says that the formal principle holds for a pair pX,Y q
consisting of a scheme X and a closed subscheme Y if the following condition is satisfied: for
any other pair pZ, Y q such that ẐY – X̂Y , extending the identity of Y , there is an isomorphism
between étale neighbourhoods of Y in X and in Z which induces the identity on Y .

Theorem 2.7 In the situation 2.6, the formal principle holds for pX,Y q.

This simplifies and strengthens [6, Theorem 3], since Y is only lci, rather than smooth.

Proof. Corollary 2.6 implies that Y is G2 in X. But, in this case, Gieseker proved (cf. [9,
Theorem 4.2], [3, Corollary 9.20, 10.6]) that the formality holds for pX,Y q. l

There are similar results in complex analytic setting. Griffiths [11] investigated the formal-
ity/rigidity of smooth subvarieties Y Ă X whose normal bundle NY {X admits a Hermitian
metric with curvature of signature ps, tq, s ` t “ dimY , and proves in [ibid., II. §2, 3] the
rigidity of the embedding for s ě 2. The main cohomological property of vector bundles
admitting metrics of curvature with mixed signature ps, tq is that of being pdimY ´ sq-ample
(cf. [1, Proposition 28, p. 257], [11, (7.28), p. 432]).

On the other hand, Commichau-Grauert [7, Satz 4] proved the formality for subvarieties
with 1-positive normal bundle. Note that a 1-positive vector bundle on a smooth projective
variety Y is pdimY ´ 1q-ample (cf. [7, Satz 2]).

We conclude that the cohomological approach adopted in this article yields under weaker
assumptions the rigidity results obtained in [11, 7].

3. Examples of subvarieties with partially ample normal bundle

In this section we assume that X is a smooth projective variety.

3.1. Elementary operations.

Corollary 3.1 (i) Let Y2 Ă Y1 Ă X be connected lci, dimY2 ě 1. Suppose NY2{Y1
,NY1{X

are respectively q2-, q1-ample, with q1 ` q2 ă dimY2. Then Y2 is G2 in X.

(ii) Suppose Y1, Y2 are lci in X, codimpY1 X Y2q “ codimpY1q ` codimpY2q, and NYj{X is

qj-ample, for j “ 1, 2. Then NY1XY2{X is pq1 ` q2q-ample.

(iii) Suppose Yj Ă Xj are connected lci and N_
Yj{Xj

is not pseudo-effective (so Yj Ă Xj is

G2), for j “ 1, 2. Then Y1 ˆ Y2 is lci and G2 in X1 ˆ X2.
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(iv) Let f : X 1 Ñ X be a surjective, flat morphism. Suppose Y Ă X is lci and NY {X is

pdimY ´ 1q-ample. Then Y 1 :“ f´1pY q Ă X is lci and NY 1{X1 is pdimY 1 ´ 1q-ample.

Proof. (i)-(iii) are consequences of the sub-additivity 1.4 and 1.5, applied to appropriate
normal bundle sequences. For (iv), note that f is equidimensional, NY 1{X1 “ f˚NY {X . Apply
Leray’s spectral sequence to Y 1 Ñ Y . l

Corollary 3.2 Suppose Y1, Y2 are lci in X, codimpY1 X Y2q “ codimpY1q ` codimpY2q, and
NYj{X is qj-ample, for j “ 1, 2. If Y1 X Y2 is connected and q2 ă dimpY1 X Y2q, e.g. q2 “ 0,
then Y1 X Y2 is G2 in Y1.

Proof. Note that NY1XY2{Y1
– NY2{Xæ

Y1XY2
. l

3.2. Strongly movable subvarieties. (cf. [19, Section 2]) A class of examples of subvari-
eties having the G2-property are the strongly movable subvarieties introduced by Voisin [19,
Section 2], in the attempt to geometrically characterize big subvarieties.

Notation 3.3 Let Y
pπ,ρq
Ă SˆX be a flat family of lci subschemes ofX, with ρ dominant; then

ρpYq contains an open subset O of X. We may (and do) assume that S,Y are reduced, since
so is X. The incidence variety Σ is the component of pπ1, π2qpY ˆX Yq Ă S ˆ S containing
the diagonal; π is a proper, so Σ is closed. One obtains the Cartesian diagram:

YΣo
//

π
��

YΣ
//

ρΣ

,,

��

Y ˆ Y
pπ1,ρ2q

//

pπ1,π2q
��

S ˆ X.

Σo
// Σ

ι // S ˆ S

(3.1)

For o P S, denote Σo :“ ι´1ptou ˆ Sq and ρo :“ ρΣæΣo
.

Definition 3.4 Suppose the general member of Y is irreducible. We say that the family Y

is strongly movable, if ρΣ is dominant; then YΣo

ρo
Ñ X is dominant, for o P S general, and Yo

is strongly movable. An arbitrary family Y is strongly movable if so is its general member Yo;
that is, all the irreducible components of Yo are strongly movable.

Proposition 3.5 Let Y be as above, o P S a non-singular point such that Yo is strongly
movable. Then NYo{X is pdimYo ´ 1q-ample. Hence, if Yo is connected, it is G2 in X.

Proof. Let TS,o
δ

Ñ H0pYo,NYo{Xq be the infinitesimal deformation homomorphism. By 1.7,
it is enough to prove that the restriction of NYo{X to the irreducible components of Yo are
pdimYo ´ 1q-ample. Recall that NYo{X is pdimYo ´ 1q-ample if and only if so is its restriction

to Yo,red. For ξ P TS,o, we denote v̂ξ P H0pYo,red,NYo{XæYo,red
q the restriction of δpξq to Yo,red.

Henceforth, we replace Yo by an irreducible component.

We must find a movable morphism C
ϕ
Ñ Yo,red, an ample line bundle LC P PicpCq, and a

movable homomorphism LC Ñ ϕ˚NYo{X . We restrict ourselves to ξ P TΣo,o Ă TS,o.
Claim 1 The vanishing locus of v̂ξ is a non-empty, proper subset of Yo,red; for ξ P TΣo,o

variable, the vanishing loci of v̂ξ cover an open subset of Yo,red.

The vector ξ is determined by an arc Spec
`

krrǫss
˘ h

Ñ Σo through o. The defining property of
Σo implies that hpǫq “ yǫ P Yo XYhpǫq, hp0q “ y P Yo. Since Yo is deformed at y in a tangential
direction, we deduce δpξqy “ 0, so v̂ξ,y “ 0.
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We claim that v̂ξ ‰ 0, for generic ξ, and their vanishing loci contain an open subset of

Yo,red. Indeed, YΣo

ρo
Ñ X is dominant, so TΣo,o

dρo,y
ÝÑ NYo,red{X,y is surjective at a generic

(smooth) point y P Yo,red. Since Yo is lci, a computation in local coordinates shows that there

is a non-trivial homomorphism NYo{X,y Ñ SymkpNYo,red{X,yq, for some k ą 0 (e.g. k “ 1, if Yo

is reduced at y), hence v̂ξ,y ‰ 0. Second, Yo is strongly movable, so the points y P Yo where
δpξqy “ 0, for some ξ P TΣo,o, cover an open subset of Yo.
Claim 2 Let C Ă Yo be a complete intersection curve which intersects the zero locus of v̂ξ
properly. By Claim 1, such curves are movable. Moreover, v̂ξ extends to a pointwise injective
homomorphism LC Ă NYo{XæC , where LC is an ample line bundle. The latter is movable too,
because dρo,y is surjective at the generic point y P Yo. This is formalized as follows.

Let CR
f

Ñ X be a movable curve (R is a parameter variety). Consider the diagram

g˚ pr˚ N

��

pr˚ N

��

N :“ NYo{XæYo,red

��
TΣo,o ˆ CR

g“pδ,fq
//

g˚v

AA

H0pYo,red,Nq ˆ Yo,red
pr

//

v

AA

Yo,red

where v is the evaluation map. We may suppose that CR is such that its generic member
intersects non-trivially and properly the zero locus of v. Note that g˚v yields a rational map
TΣo,o ˆ CR 99K g˚ pr˚ PpNq which extends to a morphism outside a closed subscheme Z of
codimension at least two. Its projection does not cover TΣo,o ˆR, hence we obtain a movable,
relatively ample L Ă g˚ pr˚ N. l

3.3. Varieties whose cotangent bundle is not pseudo-effective. Let Y Ă X be a
smooth subvariety, so NY {X is a quotient of TXæY .

Notation 3.6 For shorthand, denote P :“ PpTXq and PY :“ PpTXæY q its restriction to Y ;
let π : P Ñ X be the projection. Define MovpPY qQ Ă H2pPY ;Qq to be the cone generated by
the classes of movable curves on PY and MovpPqQ similarly.

Corollary 3.7 Let Y Ă X be a smooth subvariety such that OPY
p1q is not pseudo-effective.

Then NY {X is pdimY ´ 1q-ample, so Y is G2.

Proof. Theorem 2.5 applies, since NY {X is pdimY ´ 1q-ample. l

By using 1.7 we are going to show that, for Y Ă X sufficiently general, the partial ampleness
of TXæY implies the non-pseudo-effectiveness of the cotangent bundle of X. The latter is a
numerical condition/restriction on the ambient variety. Examples include rationally connected
varieties—see below—and, possibly, Calabi-Yau varieties (cf. [8, Corollary 6.12]).

Lemma 3.8 Let Y
ι

Ñ X be a subvariety, dimY ą 0, and H2pPY ;Qq
ι˚
Ñ H2pP;Qq be the

induced homomorphism. In the situations enumerated below, it holds:

ι˚
`

MovpPY q
˘

Q
Ď MovpPqQ. (3.2)

(i) An algebraic group G acts on X with an open orbit O, such that the stabilizer of a point
x P O acts with open orbit on TX,x, and Y X O ‰ H.

(ii) k is uncountable, and Y is a very general member of a dominant family.

Hence, if OPY
p1q is not pseudo-effective, then OPp1q is the same.
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Proof. (i) The G-translates of a movable curve on PY cover an open subset of PpTXq.
(ii) Let YS Ă S ˆ X be an S-flat family of subvarieties, with S affine, dominating X. Curves
on X are parametrized by their Hilbert polynomial, of degree one, with integer coefficients.
Let Π be the countable set of polynomials occurring for movable curves on Ys, s P S.

For P P Π, denote HilbPYS{S
πPÑ S the corresponding scheme. We are interested in the

components corresponding to curves. For s P S, let Πs Ă Π be the set of polynomials Ps

such that πPs is not dominant; Πrigid :“
Ť

sPS
Πs. The image of Hilb

Πrigid

YS{S Ñ S is a countable

union of proper subvarieties. Take s1 P S in the complement (k is uncountable); let Ps1 be the

Hilbert polynomial of some movable curve Cs1 Ă Ys1 . Then Ps1 R Πrigid, so Hilb
Ps1

YS{S

πP
s1

ÝÑ S

is surjective. Let Π1 :“ ΠzΠrigid. The components of HilbΠ
1

YS{S (corresponding to movable

curves) dominate S, so they are flat over the very general point o P S.
We claim that movable curves on Yo are movable on X. Indeed, for Po as above, consider

the universal curve CS Ă HilbPo

YS{S ˆSYS . The family Co Ă HilbPo

Yo
ˆYo dominates Yo. By the

continuity of HilbPo

YS{S ˆSYS Ñ YS, the same holds for Cs Ă HilbPo

Ys
ˆYs, for s near o P S.

Finally, YS Ñ X is dominant, so CS covers an open subset of X. l

Lemma 3.9 Let X be a smooth rationally connected variety. Then OPpTXqp1q is not pseudo-
effective, so TX is pdimX ´ 1q-ample.

Proof. Consider a very free rational curve: a dominant morphism P1 ˆ S
ϕ
Ñ X, where S is a

variety, such that ϕ˚TXæP1ˆtsu – OP1p1q b G, @s P S, with G globally generated. A nowhere

vanishing section gs P H0pP1ˆtsu,Gq yields the inclusion jgs : OP1p1q Ñ ϕ˚TXæP1ˆtsu; we still

denote by jgs the morphism P1 Ñ PpTXq. Since G is globally generated, there is S̃ Ă SˆH0pGq

open, such that S̃ Ñ MorphismspP1,PpTXqq, tsuˆtgsu ÞÑ jgs , yields a movable rational curve

P1 ˆ S̃
ϕ̃

Ñ PpTXq satisfying ϕ̃˚OPpTXqp´1qæP1ˆts̃u – OP1p1q, @s̃ P S̃. l

It is well-known—particularly for projective spaces—that the G3 property of the diagonal
∆X :“ tpx, xq | x P Xu Ă X ˆ X imply important connectedness results for the intersections
of subvarieties in X (cf. [3, Ch. 11]). Our results yield the G2-property of the diagonal;
obviously, it is less than the G3-property, but it holds for a larger class of varieties.

Proposition 3.10 Let X be a smooth projective variety, whose cotangent bundle is not
pseudo-effective (e.g. rationally connected). Then the diagonal ∆X is G2 in X ˆ X.

Proof. The normal bundle of ∆X is isomorphic to TX ; we conclude by 2.6. l
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