SUBVARIETIES WITH PARTIALLY AMPLE NORMAL BUNDLE

MIHAI HALIC

ABSTRACT. We show that local complete intersection subvarieties of smooth projective varieties, which have partially ample normal bundle, possess the G2-property. This generalizes results of Hartshorne and Bădescu-Schneider.

INTRODUCTION

Hartshorne [13, 14] investigated the cohomological properties of pairs (X, Y), where X is a projective scheme which is regular in a neighbourhood of a local complete intersection lci, for short—subscheme Y with ample normal bundle. He showed that, on one hand, Y is G2 that is, the formal completion \hat{X}_Y determines an étale neighbourhood of Y. On the other hand, the cohomology groups of coherent sheaves on the complement $X \setminus Y$ are finite dimensional, above appropriate degrees.

The ampleness of the normal bundle can be weakened. On the complex-analytic side, it suffices either a Hermitian metric with partially positive curvature (cf. [11, 7]). On the algebraic side, Bădescu-Schneider [4] addressed the *globally generated*, partially ample case (in the sense of Sommese) by reducing the problem to [13]. Their results mainly apply—due to the global generation of the normal bundle—to subvarieties of homogeneous varieties. A comprehensive reference for the algebraic approach is Bădescu [3].

Subvarieties with q-ample normal bundle have not been investigated yet. Here we are referring to the cohomological partial ampleness [2, 18]. It is less restrictive than Sommese's [17] and also more flexible, being a numerical condition. There are numerous subvarieties with partially ample, but neither ample nor globally generated normal bundle. Their ubiquity is, in our opinion, a strong motivation to systematically study their properties.

The main result of this article is stated below. It generalizes Hartshorne [13, Theorem 6.7], Bădescu-Schneider [4, Theorem 1], and strengthens as well the formality principle—for Y lci rather than smooth—due to Griffiths, Commichau-Grauert, Chen [11, 7, 6].

Theorem (cf. 2.6, 2.7) Let X be a smooth irreducible projective variety defined over an algebraically closed field of characteristic zero, and Y a connected, lci subscheme, with $(\dim Y-1)$ -ample normal bundle. Then Y is G2 in X and the formality principle holds for (X, Y).

We conclude the article with applications. It is worth mentioning that Voisin's strongly movable subvarieties [19] have non-pseudo-effective co-normal bundle, hence they enjoy the G2-property (cf. 3.5).

²⁰¹⁰ Mathematics Subject Classification. 14C25, 14B20, 14C20.

Key words and phrases. q-ample vector bundles; G2-property.

1. Background material

Notation 1.1 We work over an algebraically closed field \Bbbk of characteristic zero. Throughout the article, \mathfrak{X} is a connected, noetherian formal scheme, regular and projective over \Bbbk ; X stands for an irreducible projective variety—that is, reduced and irreducible—over \Bbbk .

Let Y be either a subscheme of definition of \mathfrak{X} —it is projective—, or a closed subscheme of X; in the latter case, we suppose X is non-singular along Y. Let dim Y be the maximal dimension of its components—we assume that all are at least 1-dimensional—, $\operatorname{codim}_X(Y) :=$ $\dim X - \dim Y$ (if $Y \subset X$). Let $\mathcal{I}_Y \subset \mathcal{O}_{\mathfrak{X}}$ (resp. $\subset \mathcal{O}_X$) be the sheaf of ideals defining Y; for $a \ge 0$, Y_a is the subscheme defined by \mathcal{I}_Y^{a+1} . The formal completion of X along Y is $\hat{X}_Y := \varinjlim Y_a$; it is regular and projective.

If Y is lci in \mathfrak{X} , we denote its normal sheaf by $\mathcal{N} = \mathcal{N}_Y := (\mathcal{I}_Y/\mathcal{I}_Y^2)^{\vee}$; it is locally free of rank ν . The structure sheaves of the various thickenings Y_a fit into the exact sequences:

$$0 \to \operatorname{Sym}^{a}(\mathbb{N}^{\vee}) \to \mathcal{O}_{Y_{a}} \to \mathcal{O}_{Y_{a-1}} \to 0, \ \forall a \ge 1.$$

$$(1.1)$$

For a coherent sheaf \mathcal{G} , we denote $h^t(\mathcal{G}) := \dim_{\mathbb{K}} H^t(\mathcal{G})$; for a field extension $K \hookrightarrow K'$, trdeg_K K' is the transcendence degree; ct^{A,B,...} stands for a real constant depending on the quantities A, B, \ldots A line (resp. vector) bundle is an invertible (resp. locally free) sheaf.

We recall some terminology due to Hironaka-Matsumura [15]. Suppose Y is connected; let $K(\hat{X}_Y)$ be the field of formal rational functions on X along Y (cf. [15, Lemma 1.4]).

- Y is G1 in X, if $H^0(\hat{X}_Y, \mathcal{O}_{\hat{X}_Y}) = \Bbbk$;
- Y is G2 in X, if $K(X) \hookrightarrow K(\hat{X}_Y)$ is finite;
- Y is G3 in X, if $K(X) \hookrightarrow K(\hat{X}_Y)$ is an isomorphism.

1.1. Cohomological *q*-ampleness. This notion was introduced by Arapura and Totaro. Definition 1.2 Let Y be a projective scheme, $\mathcal{A} \in \text{Pic}(Y)$ an ample line bundle.

(i) (cf. [18, Theorem 7.1]) An invertible sheaf L on Y is q-ample if, for any coherent sheaf G on X, holds:

$$\exists \operatorname{ct}^{\mathfrak{G}} \forall a \geq \operatorname{ct}^{\mathfrak{G}} \forall t > q, \ H^{t}(Y, \mathfrak{G} \otimes \mathcal{L}^{a}) = 0.$$

It's enough to verify the property for $\mathcal{G} = \mathcal{A}^{-k}, k \ge 1$ (cf. [18, Theorem 6.3, 7.1]).

(ii) (cf. [2, Lemma 2.1, 2.3]) A locally free sheaf \mathcal{E} on Y is q-ample if $\mathcal{O}_{\mathbb{P}(\mathcal{E}^{\vee})}(1)$ on $\mathbb{P}(\mathcal{E}^{\vee}) := \operatorname{Proj}(\operatorname{Sym}_{\mathcal{O}_Y}^{\bullet} \mathcal{E})$ is q-ample. It is equivalent saying that, for any coherent sheaf \mathcal{G} on Y, there is $\operatorname{ct}^{\mathcal{G}} > 0$ such that:

$$H^t(Y, \mathcal{G} \otimes \operatorname{Sym}^a(\mathcal{E})) = 0, \ \forall t > q, \ \forall a \ge \operatorname{ct}^{\mathcal{G}}.$$

The *q*-amplitude of \mathcal{E} , denoted $q^{\mathcal{E}}$, is the smallest integer q with this property. Note that \mathcal{E} is *q*-ample if and only if so is $\mathcal{E}_{Y_{\text{red}}}$ (cf. [18, Corollary 7.2]). Also, any locally free quotient \mathcal{F} of \mathcal{E} is still *q*-ample; indeed, $\mathcal{O}_{\mathbb{P}(\mathcal{F}^{\vee})}(1) = \mathcal{O}_{\mathbb{P}(\mathcal{E}^{\vee})}(1) \otimes \mathcal{O}_{\mathbb{P}(\mathcal{F}^{\vee})}$.

(iii) For a coherent sheaf \mathcal{G} on Y, let $\operatorname{reg}^{\mathcal{A}}(\mathcal{G})$ be its Castelnuovo-Mumford regularity with respect to \mathcal{A} and $\operatorname{reg}^{\mathcal{A}}_{+}(\mathcal{G}) := \max\{1, \operatorname{reg}^{\mathcal{A}}(\mathcal{G})\}.$

The q-amplitude enjoys uniformity and sub-additivity properties.

Theorem 1.3 (i) (cf. [18, Theorem 6.4, 7.1]) Let Y be a projective scheme, $\mathcal{A}, \mathcal{L} \in \text{Pic}(Y)$. We assume that \mathcal{A} is sufficiently ample—Koszul-ample, cf. [18, p. 733]—, and \mathcal{L} is q-ample. Then there are $\operatorname{ct}_1^{\mathcal{A},\mathcal{L}},\operatorname{ct}_2^{\mathcal{A},\mathcal{L}} > 0$, such that for any coherent sheaf \mathfrak{G} on Y holds:

$$H^{t}(Y, \mathfrak{G} \otimes \mathcal{L}^{a}) = 0, \quad \forall t > q, \, \forall a \ge \operatorname{ct}_{1}^{\mathcal{A}, \mathcal{L}} \cdot \operatorname{reg}_{+}^{\mathcal{A}}(\mathfrak{G}) + \operatorname{ct}_{2}^{\mathcal{A}, \mathcal{L}}$$

(ii) (cf. [18, Theorem 3.4]) If $H^0(\mathcal{O}_Y) = \mathbb{k}$ then, for a locally free sheaf \mathcal{E} and coherent sheaf \mathcal{G} on Y, one has

$$\operatorname{reg}^{\mathcal{A}}(\mathcal{E}\otimes\mathcal{G})\leqslant\operatorname{reg}^{\mathcal{A}}(\mathcal{E})+\operatorname{reg}^{\mathcal{A}}(\mathcal{G}).$$

Hence it holds: $\operatorname{reg}_{+}^{\mathcal{A}}(\mathcal{E}\otimes\mathcal{G}) \leq \operatorname{reg}_{+}^{\mathcal{A}}(\mathcal{E}) + \operatorname{reg}_{+}^{\mathcal{A}}(\mathcal{G}).$

Theorem 1.4 (cf. [2, Theorem 3.1]) Let $0 \to \mathcal{E}_1 \to \mathcal{E} \to \mathcal{E}_2 \to 0$ be an exact sequence of locally free sheaves on Y. Then it holds: $q^{\mathcal{E}} \leq q^{\mathcal{E}_1} + q^{\mathcal{E}_2}$.

For products there is a better estimate.

Lemma 1.5 Let X_1, X_2 be irreducible projective varieties and $\mathcal{E}_1, \mathcal{E}_2$ locally free sheaves on them, respectively. Let $\mathcal{E}_1 \boxplus \mathcal{E}_2$ be the direct sum of their pull-backs to $X_1 \times X_2$. Then we have: $q^{\mathcal{E}_1 \boxplus \mathcal{E}_2} \leq \max\{q^{\mathcal{E}_1} + \dim X_2, q^{\mathcal{E}_2} + \dim X_1\}.$

Proof. Let $\mathcal{A}_1, \mathcal{A}_2$ be ample line bundles on X_1, X_2 , respectively, $\mathcal{A}_1 \boxtimes \mathcal{A}_2$ the tensor product of their pull-backs. For $k \ge 1$, $t > \max\{q^{\mathcal{E}_1} + \dim X_2, q^{\mathcal{E}_2} + \dim X_1\}, a \gg 0$, it holds:

$$H^{t}\left(X_{1} \times X_{2}, \left(\mathcal{A}_{1}^{-k} \boxtimes \mathcal{A}_{2}^{-k}\right) \otimes \operatorname{Sym}^{a}(\mathcal{E}_{1} \boxplus \mathcal{E}_{2})\right)$$

$$= \bigoplus_{\substack{t_{1}+t_{2}=t, \\ a_{1}+a_{2}=a}} H^{t_{1}}\left(X_{1}, \mathcal{A}_{1}^{-k} \otimes \operatorname{Sym}^{a_{1}}(\mathcal{E}_{1})\right) \otimes H^{t_{2}}\left(X_{2}, \mathcal{A}_{2}^{-k} \otimes \operatorname{Sym}^{a_{2}}(\mathcal{E}_{2})\right) = 0.$$

Lemma 1.6 One has the equivalence:

 $\mathcal{L} \in \operatorname{Pic}(Y)$ is q-ample $\Leftrightarrow \mathcal{L} \otimes \mathcal{O}_{Y'}$ is q-ample, $\forall Y' \subset Y$ irreducible.

Proof. If $Y = Y' \cup Y''$ is the union of distinct closed subschemes, one has:

$$\begin{array}{l} 0 \to \mathcal{O}_Y \to \mathcal{O}_{Y'} \oplus \mathcal{O}_{Y''} \to \mathcal{O}_{Y' \cap Y''} \to 0, \\ 0 \to \mathcal{J}_{Y'} \oplus \mathcal{J}_{Y''} \to \mathcal{O}_Y \to \mathcal{O}_{Y' \cap Y''} \to 0. \end{array}$$

Now tensor the exact sequences by $\mathcal{L}^m \otimes \mathcal{O}_Y(-k)$ and take their cohomology.

1.2. (dim Y-1)-ample vector bundles on Y. Subvarieties $Y \subset X$ with (dim Y-1)-ample normal bundle will play an essential role. The following is analogous to Totaro's result for invertible sheaves.

Proposition 1.7 (cf. [18, Theorem 9.1]) Let \mathcal{E} be a locally free sheaf on an irreducible projective variety Y (reduced, irreducible). The statements are equivalent:

- (i) \mathcal{E} is $(\dim Y 1)$ -ample.
- (ii) $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is not pseudo-effective, where $\mathbb{P}(\mathcal{E}) := \operatorname{Proj}(\operatorname{Sym}^{\bullet} \mathcal{E}^{\vee})$.
 - In this case, we say that \mathcal{E}^{\vee} is not pseudo-effective.
- (iii) There is a dominant morphism $\varphi : C_S \to Y$, with S affine and C_S an integral curve over S, such that the following conditions are satisfied:
 - (1) $\varphi^* \mathcal{E}$ admits a line sub-bundle \mathcal{M} which is relatively ample for $C_S \to S$;
 - (2) Let $S_y \subset S$ be the curves passing through the general point $y \in Y$ and \mathcal{M}_{S_y} the restriction of \mathcal{M} to C_{S_y} .

Then the points $\{[\mathcal{M}_{s,y}]\}_{s\in S_y}$, corresponding to $\mathcal{M}_{s,y}$, cover an open subset of $\mathbb{P}(\mathcal{E}_y)$. (For shorthand, we say that $\mathcal{M} \subset \varphi^* \mathcal{E}$ is movable.)

If Y is reducible, the conditions (ii), (iii) must hold for all its irreducible components.

Proof. The last statement follows from 1.6. Let $\mathcal{O}_Y(1)$ be an ample line bundle on Y. Its dualizing sheaf ω_Y is torsion free of rank one, and $\mathcal{O}_Y(-c) \subset \omega_Y \subset \mathcal{O}_Y(c)$ for some c > 0 (cf. [18, §9]); hence the $(\dim Y - 1)$ -ampleness means: $H^0(Y, \omega_Y \otimes \mathcal{L} \otimes \operatorname{Sym}^a \mathcal{E}^{\vee}) = 0, \forall \mathcal{L} \in \operatorname{Pic}(Y), a > \operatorname{ct}^{\mathcal{L}}$. It is equivalent to $H^0(Y, \mathcal{M} \otimes \operatorname{Sym}^a \mathcal{E}^{\vee}) = 0, \forall \mathcal{M} \in \operatorname{Pic}(Y), a > \operatorname{ct}^{\mathcal{M}}$, and to:

$$H^0(\mathbb{P}(\mathcal{E}), \mathcal{M} \otimes \mathcal{O}_{\mathbb{P}(\mathcal{E})}(a)) = 0, \ \forall \mathcal{M} \in \operatorname{Pic}(\mathbb{P}(\mathcal{E})), \forall a > \operatorname{ct}^{\mathcal{M}}.$$

The last condition is the $(\dim \mathbb{P}(\mathcal{E}) - 1)$ -ampleness of $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(-1)$; (i) \Leftrightarrow (ii) follows.

The equivalence (ii) \Leftrightarrow (iii) is the duality (cf. [5, Theorem 0.2]), for $X = \mathbb{P}(\mathcal{E})$. However, *loc. cit.* requires X to be smooth. Thus we must prove the following.

<u>Claim</u> Let $(X, \mathcal{O}_X(1))$ be a *d*-dimensional projective variety, $\mathcal{L} \in \operatorname{Pic}(X)$. It holds:

$$\mathcal{L}$$
 is $(d-1)$ -ample $\Leftrightarrow \exists$ movable curve $C \to X$ such that $\mathcal{L} \cdot C > 0$.

 (\Rightarrow) Let $\tilde{X} \xrightarrow{\sigma} X$ be a desingularization of X with exceptional locus E. Then $\sigma^* \mathcal{L}$ is (d-1)ample. Indeed, we may assume that $\tilde{\mathcal{A}} := (\sigma^* \mathcal{O}_X(1))(-E)$ is ample on \tilde{X} , hence:

$$H^{0}(\tilde{X}, \sigma^{*}\mathcal{L}^{-m} \otimes \tilde{\mathcal{A}}^{k}) \subset H^{0}(X, \mathcal{L}^{-m} \otimes \mathcal{O}_{X}(k) \otimes \sigma_{*}\mathcal{O}_{\tilde{X}}) = 0, \ k > 0, \ m \gg \operatorname{ct}^{k}.$$

For the last step, $\sigma_* \mathcal{O}_{\tilde{X}}$ is torsion-free of rank one, so $\mathcal{O}_X(-c) \subset \sigma_* \mathcal{O}_{\tilde{X}} \subset \mathcal{O}_X(c)$ for an appropriate c > 0. Then $\sigma^* \mathcal{L}^{-1}$ is not pseudo-effective, so there is a movable curve $C \to \tilde{X}$ such that $\sigma^* \mathcal{L} \cdot C > 0$.

(\Leftarrow) Let $C \to X$ be a movable curve and suppose \mathcal{L} is not (d-1)-ample. There is $k_0 > 0$ and a strictly increasing sequence $\{m_t\}_t \subset \mathbb{Z}$, such that $H^0(X, \mathcal{L}^{-m_t} \otimes \mathcal{A}^{k_0}) \neq 0$. It follows: $0 \leq -m_t(\mathcal{L} \cdot C) + k_0 \mathcal{O}_X(1) \cdot C, \forall t$, so $\mathcal{L} \cdot C \leq 0$, a contradiction.

Observe that the notion of pseudo-effective vector bundle used in [5, §7] is more restrictive: it also requires that the projection of the non-nef locus of $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ does not cover Y.

2. Finite dimensionality results and the G2 property

Hartshorne [13] investigated the cohomological properties of lci subvarieties with ample normal bundle and of their complements. Bădescu and Schneider [4] extended his results to subvarieties with Sommese-q-ample (globally generated) normal bundle, hence their applications mainly concern homogeneous spaces.

2.1. Finite dimensionality. The following generalizes results in [13, Section 5].

Theorem 2.1 Assume Y is lci, let $q^{\mathbb{N}}$ be the amplitude of its normal bundle \mathbb{N} .

- (i) Consider $\mathcal{L} \in \operatorname{Pic}(\mathfrak{X})$, let $q^{\mathcal{L}}$ be the amplitude of its restriction to Y. Let \mathcal{F} be a locally free sheaf on \mathfrak{X} , of finite rank. Then the following statements hold:
 - (a) For $t < \dim Y q^{\mathbb{N}}$, $H^t(\mathfrak{X}, \mathcal{F})$ is finite dimensional. In particular, if $q^{\mathbb{N}} \leq \dim Y 1$ and \mathfrak{X} is connected, then $H^0(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}) = \mathbb{k}$.
 - (b) $H^t(\mathfrak{X}, \mathcal{F} \otimes \mathcal{L}^{-b}) = 0$, for $t < \dim \tilde{Y} (q^{\mathcal{N}} + q^{\mathcal{L}}), b \gg 0$.
- (ii) Let X be a projective scheme, non-singular along Y. Let \mathcal{G} be a coherent sheaf on $X \setminus Y$ and $\mathcal{L} \in \operatorname{Pic}(X)$. The following statements hold:
 - (a) $H^t(X \setminus Y, \mathcal{G})$ is finite dimensional, $t \ge \dim X \dim Y + q^N$,
 - (b) $H^t(X \setminus Y, \mathfrak{G} \otimes \mathcal{L}^b) = 0, t \ge \dim X \dim Y + q^{\mathcal{N}} + q^{\mathcal{L}}, b \gg 0.$

Proof. (i)(a) Use (1.1) and proceed as in *loc. cit.*, Theorem 5.1, Corollary 5.4. (b)(cf. *loc. cit.*, Corollary 5.3) For $\mathcal{F} := \mathcal{F} \otimes \mathcal{O}_Y$, $\mathcal{L} := \mathcal{L} \otimes \mathcal{O}_Y$, is enough to show:

$$H^{t}(Y, \omega_{Y} \otimes \mathcal{F}^{\vee} \otimes \operatorname{Sym}^{a}(\mathcal{N}) \otimes \mathcal{L}^{b}) = 0, \quad \forall t > q^{\mathcal{N}} + q^{\mathcal{L}}, \forall a \ge 0, b \gg 0.$$

But $\operatorname{Sym}^{a}(\mathbb{N}) \otimes \mathcal{L}^{b}$ is direct summand in $\operatorname{Sym}^{a+b}(\mathbb{N} \oplus \mathcal{L})$, and $\mathbb{N} \oplus \mathcal{L}$ is $(q^{\mathbb{N}} + q^{\mathcal{L}})$ -ample. The vanishing holds for $a + b \ge \operatorname{ct}^{\mathfrak{F}}$, *e.g.* $a \ge 0$, $b \ge \operatorname{ct}^{\mathfrak{F}}$.

(ii) Use the formal duality [14, Theorem III.3.3] and the previous point. $\hfill \square$

In [12, Exposé XIII, Conjecture 1.3], Grothendieck discusses the finite dimensionality of the cohomology groups of coherent sheaves on the complement of lci subvarieties. Hartshorne addressed the issue for smooth subvarieties of projective spaces (cf. [13, Corollary 5.7]).

Let S be a smooth projective variety and E a principal G-bundle on it, with G a connected linear algebraic group; let $P \subset G$ be a parabolic subgroup. Then $X := E/P \xrightarrow{\pi} S$ is a locally trivial G/P-fibration. The co-ampleness (ca, for short) of homogeneous varieties has been explicitly computed by Goldstein [10]. By definition, $q^{\mathfrak{T}_{G/P}} = \dim(G/P) - ca(G/P)$, hence $\mathfrak{T}_{X,\pi} := \operatorname{Ker}(\mathrm{d}\pi)$ is q-ample, for $q := \dim X - ca(G/P)$.

Corollary 2.2 Suppose $Y \subset X$ is a smooth S-family of subvarieties of relative codimension δ , dim $Y > \dim S$; that is, $d\pi_Y : \mathfrak{T}_Y \to \pi_Y^* \mathfrak{T}_S$ is surjective, $\operatorname{codim}_X(Y) = \delta$. Then $H^t(X \setminus Y, \mathfrak{G})$ is finite dimensional for $t \ge \delta + \dim X - \operatorname{ca}(G/P)$, for all coherent sheaves \mathfrak{G} on $X \setminus Y$.

Hartshorne's result corresponds to $S = \{\text{point}\}, G/P \cong \mathbb{P}^n, t \ge \delta$.

Proof. The exact diagram

shows that $\mathcal{N}_{Y/X}$ is a quotient of $\mathcal{T}_{X,\pi} \upharpoonright_Y$, so is q-ample (cf. 1.2(ii)); apply 2.1(ii).

2.2. The G2 property. Here we generalize [13, Section 6]. The difficulty to overcome is that several statements in there are proved for *curves*, the general case being obtained by induction on the dimension.

Lemma 2.3 (cf. [13, Lemma 6.1]) Let $(Y, \mathcal{O}_Y(1))$ be a projective scheme, $\mathcal{L} \in \text{Pic}(Y)$ and \mathcal{E}, \mathcal{F} locally free sheaves on Y. Let $h_{\mathcal{F}}(a, b) := h^0(Y, \mathcal{F} \otimes \text{Sym}^a(\mathcal{E}^{\vee}) \otimes \mathcal{L}^{-b}), a, b \ge 1$.

(i) If \mathcal{L} is $(\dim Y - 1)$ -ample, then it holds:

$$h_{\mathcal{F}}(a,b) = 0, \text{ for } b \ge \operatorname{ct}_{1}^{\mathcal{O}_{Y}(1),\mathcal{L},\mathcal{E}} \cdot a + \operatorname{ct}_{2}^{\mathcal{O}_{Y}(1),\mathcal{L},\mathcal{F}}.$$
(2.1)

(ii) If \mathcal{E} is $(\dim Y - 1)$ -ample, then it holds:

$$h_{\mathcal{F}}(a,b) = 0, \text{ for } a \ge \operatorname{ct}_{1}^{\mathcal{O}_{Y}(1),\mathcal{E},\mathcal{L}} \cdot b + \operatorname{ct}_{2}^{\mathcal{O}_{Y}(1),\mathcal{E},\mathcal{F}}.$$
(2.2)

Proof. We fix $\mathcal{O}_Y(1)$ sufficiently ample (cf. 1.3) and consider the regularity with respect to it. Also, we may assume that Y is irreducible; let ω_Y be its dualizing sheaf.

(i) There is
$$c_0 = c_0(Y) \ge 1$$
 such that $\mathcal{O}_Y(-c_0) \subset \omega_Y$, so it holds:

$$\begin{split} h^{0}(Y, \mathcal{F} \otimes \operatorname{Sym}^{a}(\mathcal{E}^{\vee}) \otimes \mathcal{L}^{-b}) &\leq h^{0}(Y, \omega_{Y} \otimes \mathcal{F}(c_{0}) \otimes \operatorname{Sym}^{a}(\mathcal{E}^{\vee}) \otimes \mathcal{L}^{-b}) \\ &= h^{\dim Y}(Y, \mathcal{F}^{\vee}(-c_{0}) \otimes \operatorname{Sym}^{a}(\mathcal{E}) \otimes \mathcal{L}^{b}). \end{split}$$

<u>Claim</u> The right hand side vanishes for b as in (2.1). Indeed, we replace $\mathcal{F} \leadsto \mathcal{F}(-c_0)$ and verify the statement for $h^{\dim Y}(\mathcal{F}^{\vee} \otimes \operatorname{Sym}^a(\mathcal{E}) \otimes \mathcal{L}^b)$. The effect of the replacement is reg $\mathcal{F}^{\vee} \leadsto \operatorname{reg} \mathcal{F}^{\vee} - c_0$, with c_0 depending on Y. Now observe that is enough to prove the claim for Y reduced—so $H^0(\mathcal{O}_Y) = \Bbbk$ —and for coherent sheaves \mathcal{G} on Y.

Indeed, for $\mathcal{I} := \operatorname{Ker}(\mathcal{O}_Y \to \mathcal{O}_{Y_{red}})$, there is r > 0 such that $\mathcal{I}^r = 0$, so \mathcal{O}_Y admits a filtration (similar to (1.1)) by the quotients $\mathcal{I}^{k-1}/\mathcal{I}^k$, $1 \leq k \leq r$, which are $\mathcal{O}_{Y_{red}}$ -modules; now we may use the estimates for $\mathcal{F}^{\vee} \otimes (\mathcal{I}^{k-1}/\mathcal{I}^k)$ on Y_{red} , which is coherent. Property 1.3 yields:

$$H^{\dim Y}(Y, \mathcal{G} \otimes \operatorname{Sym}^{a} \mathcal{E} \otimes \mathcal{L}^{b}) = 0, \ \forall b \ge \operatorname{ct}_{1}^{\mathcal{O}_{Y}(1), \mathcal{L}} \cdot \operatorname{reg}_{+}(\mathcal{G} \otimes \operatorname{Sym}^{a} \mathcal{E}) + \operatorname{ct}_{2}^{\mathcal{O}_{Y}(1), \mathcal{L}}.$$

But Sym^{*a*} \mathcal{E} is a summand of $\mathcal{E}^{\otimes a}$, so $\operatorname{reg}_{+}(\mathcal{G} \otimes \operatorname{Sym}^{a} \mathcal{E}) \leq a \cdot \operatorname{reg}_{+}(\mathcal{E}) + \operatorname{reg}_{+}(\mathcal{G})$, thus (2.1) holds for $b \geq \operatorname{ct}_{1}^{\mathcal{O}_{Y}(1),\mathcal{L}} \cdot (a \cdot \operatorname{reg}_{+}(\mathcal{E}) + \operatorname{reg}_{+}(\mathcal{G})) + \operatorname{ct}_{2}^{\mathcal{O}_{Y}(1),\mathcal{L}}$.

(ii) We may assume that Y is reduced. If \mathcal{G} is coherent on Y, $h^{\dim Y}(\mathcal{G} \otimes \operatorname{Sym}^{a}(\mathcal{E}) \otimes \mathcal{L}^{b})$ vanishes for $a \ge \operatorname{ct}_{1}^{\mathcal{O}_{Y}(1),\mathcal{E}} \cdot \operatorname{reg}_{+}(\mathcal{G} \otimes \mathcal{L}^{b}) + \operatorname{ct}_{2}^{\mathcal{O}_{Y}(1),\mathcal{E}}$, and $\operatorname{reg}_{+}(\mathcal{G} \otimes \mathcal{L}^{b}) \le b \operatorname{reg}_{+} \mathcal{L} + \operatorname{reg}_{+} \mathcal{G}$. \Box

Proposition 2.4 (cf. [13, Theorem 6.2, Corollary 6.6]) Let the situation be as in 1.1. Suppose Y is lci and its normal bundle \mathbb{N} is $(\dim Y - 1)$ -ample, of rank ν . For any locally free sheaf \mathcal{F} and invertible sheaf \mathcal{L} on \mathfrak{X} , there is a polynomial of degree dim $Y + \nu$ such that:

$$h^0(\mathfrak{X}, \mathcal{F} \otimes \mathcal{L}^b) \leq P^{Y, \mathcal{L}, \mathcal{F}}_{\dim Y + \nu}(b), \text{ for } b \gg 0.$$

Proof. Let $\mathcal{A} \in \operatorname{Pic}(Y)$ be sufficiently (Koszul) ample, such that $\mathcal{A}^{-1} \subset \omega_Y$; denote $\mathcal{F} := \mathcal{F} \otimes \mathcal{O}_Y, \mathcal{L} := \mathcal{L} \otimes \mathcal{O}_Y$. For $\gamma := \operatorname{ct}_1^{\mathcal{A},\mathcal{N},\mathcal{L}} + 1, b > \operatorname{ct}_2^{\mathcal{A},\mathcal{N},\mathcal{F}}$ (cf. (2.2)), it holds:

$$h^{0}(\mathfrak{X}, \mathcal{F} \otimes \mathcal{L}^{b}) \leqslant \sum_{a=0}^{\infty} h^{0}(Y, \mathfrak{F} \otimes \operatorname{Sym}^{a}(\mathcal{N}^{\vee}) \otimes \mathcal{L}^{b}) = \sum_{a=0}^{\gamma b} h^{0}(Y, \mathfrak{F} \otimes \operatorname{Sym}^{a}(\mathcal{N}^{\vee}) \otimes \mathcal{L}^{b}).$$

Since $\mathcal{F} \subset (\mathcal{A}^{c_0})^{\oplus \mathrm{rk}\mathcal{F}}, c_0 = \mathrm{reg}_+^{\mathcal{A}} \mathcal{F}^{\vee}$, it is enough to consider $\mathcal{F} = \mathcal{A}^{c_0}$.

Consider $S := \mathbb{P}(\mathcal{O}_{\mathbb{P}(\mathcal{N}^{\vee})}(-1) \oplus \mathcal{O}_{\mathbb{P}(\mathcal{N}^{\vee})})$ and $\mathcal{O}_{S}(1)$ the relatively ample invertible sheaf on it. The right hand side above can be re-written:

$$rhs = \sum_{a=0}^{\gamma b} h^{0}(Y, \mathcal{A}^{c_{0}} \otimes \operatorname{Sym}^{a}(\mathbb{N}^{\vee}) \otimes \mathcal{L}^{b}) \leqslant \sum_{a=0}^{\gamma b} h^{0}(Y, \omega_{Y} \otimes \mathcal{A}^{c_{0}+1} \otimes \operatorname{Sym}^{a}(\mathbb{N}^{\vee}) \otimes \mathcal{L}^{b})$$

$$= \sum_{a=0}^{\gamma b} h^{\dim Y}(Y, \mathcal{A}^{-c_{0}-1} \otimes \operatorname{Sym}^{a}(\mathbb{N}) \otimes \mathcal{L}^{-b})$$

$$= \sum_{a=0}^{\gamma b} h^{\dim Y}(\mathbb{P}(\mathbb{N}^{\vee}), \mathcal{A}^{-c_{0}-1} \otimes \mathcal{O}_{\mathbb{P}(\mathbb{N}^{\vee})}(a) \otimes \mathcal{L}^{-b}) = h^{\dim Y}(S, \mathcal{A}^{-c_{0}-1} \otimes \mathcal{O}_{S}(\gamma b) \otimes \mathcal{L}^{-b}).$$

But $h^{\dim Y}(S, \mathcal{O}_S(\gamma b) \otimes \mathcal{L}^{-b})$ is dominated by a polynomial in b, depending on $\mathcal{O}_S(\gamma) \otimes \mathcal{L}^{-1}$, of degree at most dim $S = \dim Y + \nu$ (cf. [16, 1.2.33]). To include \mathcal{A}^{-c_0-1} , use

$$0 \to \mathcal{A}^{-c_0-1} \to \mathcal{O}_Y \to \mathcal{O}_{Y_1} \to 0, \ \dim Y_1 = \dim Y - 1,$$

which yields: rhs $\leq h^{\dim X}(\mathcal{O}_S(\gamma b) \otimes \mathcal{L}^{-b}) + h^{\dim X-1}(\mathcal{O}_S(\gamma b) \otimes \mathcal{L}^{-b} \upharpoonright_{Y_1}).$

With these preparations, the proof of the following theorem is identical to *loc. cit*.

Theorem 2.5 (cf. [13, Theorem 6.7]) Let the situation be as in 1.1. We assume:

- Y is connected, lci, $\dim Y \ge 1$;
- the normal bundle \mathbb{N} of Y is $(\dim Y 1)$ -ample.

Then the following statements hold:

- (i) $\operatorname{trdeg}_{\Bbbk} K(\mathfrak{X}) \leq \dim Y + \operatorname{rk} \mathcal{N};$
- (ii) If $\operatorname{trdeg}_{\Bbbk} K(\mathfrak{X}) = \dim Y + \operatorname{rk} \mathfrak{N}$, then $K(\mathfrak{X})$ is a finitely generated extension of \Bbbk .

Corollary 2.6 (cf. [13, Corollary 6.8]) Let X be a projective scheme, non-singular in a neighbourhood of a closed, connected, lci subscheme Y with $(\dim Y - 1)$ -ample normal bundle. Then Y is G2 in X.

Proof. Indeed, K(X) is a subfield of $K(\hat{X}_Y)$, so $\operatorname{trdeg}_{\Bbbk} K(\hat{X}_Y) \ge \dim X = \dim Y + \nu$. Hence we are in the case (ii) of the previous theorem.

The result is optimal, one can not conclude that Y is G3 (cf. [14, Example p. 199]).

2.3. A formality criterion. One says that the *formal principle* holds for a pair (X, Y) consisting of a scheme X and a closed subscheme Y if the following condition is satisfied: for any other pair (Z, Y) such that $\hat{Z}_Y \cong \hat{X}_Y$, extending the identity of Y, there is an isomorphism between étale neighbourhoods of Y in X and in Z which induces the identity on Y.

Theorem 2.7 In the situation 2.6, the formal principle holds for (X, Y).

This simplifies and strengthens [6, Theorem 3], since Y is only lci, rather than smooth. *Proof.* Corollary 2.6 implies that Y is G2 in X. But, in this case, Gieseker proved (cf. [9, Theorem 4.2], [3, Corollary 9.20, 10.6]) that the formality holds for (X, Y).

There are similar results in complex analytic setting. Griffiths [11] investigated the formality/rigidity of smooth subvarieties $Y \subset X$ whose normal bundle $\mathcal{N}_{Y/X}$ admits a Hermitian metric with curvature of signature (s,t), $s + t = \dim Y$, and proves in [*ibid.*, II. §2,3] the rigidity of the embedding for $s \ge 2$. The main cohomological property of vector bundles admitting metrics of curvature with mixed signature (s,t) is that of being $(\dim Y - s)$ -ample (cf. [1, Proposition 28, p. 257], [11, (7.28), p. 432]).

On the other hand, Commichau-Grauert [7, Satz 4] proved the formality for subvarieties with 1-positive normal bundle. Note that a 1-positive vector bundle on a smooth projective variety Y is $(\dim Y - 1)$ -ample (cf. [7, Satz 2]).

We conclude that the cohomological approach adopted in this article yields under weaker assumptions the rigidity results obtained in [11, 7].

3. Examples of subvarieties with partially ample normal bundle

In this section we assume that X is a smooth projective variety.

3.1. Elementary operations.

Corollary 3.1 (i) Let $Y_2 \subset Y_1 \subset X$ be connected lci, dim $Y_2 \ge 1$. Suppose $\mathcal{N}_{Y_2/Y_1}, \mathcal{N}_{Y_1/X}$ are respectively q_2 -, q_1 -ample, with $q_1 + q_2 < \dim Y_2$. Then Y_2 is G2 in X.

- (ii) Suppose Y_1, Y_2 are lci in X, $\operatorname{codim}(Y_1 \cap Y_2) = \operatorname{codim}(Y_1) + \operatorname{codim}(Y_2)$, and $\mathbb{N}_{Y_j/X}$ is q_j -ample, for j = 1, 2. Then $\mathbb{N}_{Y_1 \cap Y_2/X}$ is $(q_1 + q_2)$ -ample.
- (iii) Suppose $Y_j \subset X_j$ are connected lci and $\mathbb{N}_{Y_j/X_j}^{\vee}$ is not pseudo-effective (so $Y_j \subset X_j$ is G2), for j = 1, 2. Then $Y_1 \times Y_2$ is lci and G2 in $X_1 \times X_2$.

(iv) Let $f : X' \to X$ be a surjective, flat morphism. Suppose $Y \subset X$ is lci and $\mathcal{N}_{Y/X}$ is $(\dim Y - 1)$ -ample. Then $Y' := f^{-1}(Y) \subset X$ is lci and $\mathcal{N}_{Y'/X'}$ is $(\dim Y' - 1)$ -ample.

Proof. (i)-(iii) are consequences of the sub-additivity 1.4 and 1.5, applied to appropriate normal bundle sequences. For (iv), note that f is equidimensional, $\mathcal{N}_{Y'/X'} = f^* \mathcal{N}_{Y/X}$. Apply Leray's spectral sequence to $Y' \to Y$.

Corollary 3.2 Suppose Y_1, Y_2 are lci in X, $\operatorname{codim}(Y_1 \cap Y_2) = \operatorname{codim}(Y_1) + \operatorname{codim}(Y_2)$, and $\mathcal{N}_{Y_j/X}$ is q_j -ample, for j = 1, 2. If $Y_1 \cap Y_2$ is connected and $q_2 < \dim(Y_1 \cap Y_2)$, e.g. $q_2 = 0$, then $Y_1 \cap Y_2$ is G2 in Y_1 .

Proof. Note that
$$\mathcal{N}_{Y_1 \cap Y_2/Y_1} \cong \mathcal{N}_{Y_2/X} \upharpoonright_{Y_1 \cap Y_2}$$
.

3.2. Strongly movable subvarieties. (cf. [19, Section 2]) A class of examples of subvarieties having the G2-property are the strongly movable subvarieties introduced by Voisin [19, Section 2], in the attempt to geometrically characterize big subvarieties.

Notation 3.3 Let $\mathcal{Y} \subset S \times X$ be a flat family of lci subschemes of X, with ρ dominant; then $\rho(\mathcal{Y})$ contains an open subset O of X. We may (and do) assume that S, \mathcal{Y} are reduced, since so is X. The incidence variety Σ is the component of $(\pi_1, \pi_2)(\mathcal{Y} \times_X \mathcal{Y}) \subset S \times S$ containing the diagonal; π is a proper, so Σ is closed. One obtains the Cartesian diagram:

For $o \in S$, denote $\Sigma_o := \iota^{-1}(\{o\} \times S)$ and $\rho_o := \rho_{\Sigma} \upharpoonright_{\Sigma_o}$.

Definition 3.4 Suppose the general member of \mathcal{Y} is irreducible. We say that the family \mathcal{Y} is *strongly movable*, if ρ_{Σ} is dominant; then $\mathcal{Y}_{\Sigma_o} \xrightarrow{\rho_o} X$ is dominant, for $o \in S$ general, and Y_o is strongly movable. An *arbitrary* family \mathcal{Y} is *strongly movable* if so is its general member Y_o ; that is, *all* the irreducible components of Y_o are strongly movable.

Proposition 3.5 Let \mathcal{Y} be as above, $o \in S$ a non-singular point such that Y_o is strongly movable. Then $\mathcal{N}_{Y_o/X}$ is $(\dim Y_o - 1)$ -ample. Hence, if Y_o is connected, it is G2 in X.

Proof. Let $\mathfrak{T}_{S,o} \xrightarrow{\delta} H^0(Y_o, \mathfrak{N}_{Y_o/X})$ be the infinitesimal deformation homomorphism. By 1.7, it is enough to prove that the restriction of $\mathfrak{N}_{Y_o/X}$ to the irreducible components of Y_o are $(\dim Y_o - 1)$ -ample. Recall that $\mathfrak{N}_{Y_o/X}$ is $(\dim Y_o - 1)$ -ample if and only if so is its restriction to $Y_{o, \text{red}}$. For $\xi \in \mathfrak{T}_{S,o}$, we denote $\hat{v}_{\xi} \in H^0(Y_{o, \text{red}}, \mathfrak{N}_{Y_o/X} \upharpoonright_{Y_{o, \text{red}}})$ the restriction of $\delta(\xi)$ to $Y_{o, \text{red}}$. Henceforth, we replace Y_o by an irreducible component.

We must find a movable morphism $C \xrightarrow{\varphi} Y_{o,\text{red}}$, an ample line bundle $\mathcal{L}_C \in \text{Pic}(C)$, and a movable homomorphism $\mathcal{L}_C \to \varphi^* \mathcal{N}_{Y_o/X}$. We restrict ourselves to $\xi \in \mathcal{T}_{\Sigma_{o},o} \subset \mathcal{T}_{S,o}$. <u>Claim 1</u> The vanishing locus of \hat{v}_{ξ} is a non-empty, proper subset of $Y_{o,\text{red}}$; for $\xi \in \mathcal{T}_{\Sigma_{o},o}$ variable, the vanishing loci of \hat{v}_{ξ} cover an open subset of $Y_{o,\text{red}}$.

The vector ξ is determined by an arc Spec $(\Bbbk[\![\epsilon]\!]) \xrightarrow{h} \Sigma_o$ through o. The defining property of Σ_o implies that $h(\epsilon) = y_{\epsilon} \in Y_o \cap Y_{h(\epsilon)}, h(0) = y \in Y_o$. Since Y_o is deformed at y in a tangential direction, we deduce $\delta(\xi)_y = 0$, so $\hat{v}_{\xi,y} = 0$.

We claim that $\hat{v}_{\xi} \neq 0$, for generic ξ , and their vanishing loci contain an open subset of $Y_{o,\text{red}}$. Indeed, $\mathcal{Y}_{\Sigma_o} \xrightarrow{\rho_o} X$ is dominant, so $\mathcal{T}_{\Sigma_o,o} \xrightarrow{d\rho_{o,y}} \mathcal{N}_{Y_{o,\text{red}}/X,y}$ is surjective at a generic (smooth) point $y \in Y_{o,\text{red}}$. Since Y_o is lci, a computation in local coordinates shows that there is a non-trivial homomorphism $\mathcal{N}_{Y_o/X,y} \to \text{Sym}^k(\mathcal{N}_{Y_{o,\text{red}}/X,y})$, for some k > 0 (e.g. k = 1, if Y_o is reduced at y), hence $\hat{v}_{\xi,y} \neq 0$. Second, Y_o is strongly movable, so the points $y \in Y_o$ where $\delta(\xi)_y = 0$, for some $\xi \in \mathcal{T}_{\Sigma_o,o}$, cover an open subset of Y_o .

<u>Claim 2</u> Let $C \subset Y_o$ be a complete intersection curve which intersects the zero locus of \hat{v}_{ξ} properly. By Claim 1, such curves are movable. Moreover, \hat{v}_{ξ} extends to a pointwise injective homomorphism $\mathcal{L}_C \subset \mathcal{N}_{Y_o/X} \upharpoonright_C$, where \mathcal{L}_C is an ample line bundle. The latter is movable too, because $d\rho_{o,y}$ is surjective at the generic point $y \in Y_o$. This is formalized as follows.

Let $\mathcal{C}_R \xrightarrow{J} X$ be a movable curve (*R* is a parameter variety). Consider the diagram

$$g^* \operatorname{pr}^* \mathcal{N} \qquad \operatorname{pr}^* \mathcal{N} \qquad \mathcal{N} := \mathcal{N}_{Y_o/X} \upharpoonright_{Y_{o, \operatorname{red}}}$$

$$g^* v \left(\bigcup_{T_{\Sigma_o, o} \times \mathcal{C}_R} \xrightarrow{g=(\delta, f)} H^0(Y_{o, \operatorname{red}}, \mathcal{N}) \times Y_{o, \operatorname{red}} \xrightarrow{\operatorname{pr}} Y_{o, \operatorname{red}} \xrightarrow{Y_{o, \operatorname{red}}} Y_{o, \operatorname{red}} \xrightarrow{\operatorname{pr}} Y_{o, \operatorname{red}} \xrightarrow{\operatorname{pr}} Y_{o, \operatorname{red}}$$

where v is the evaluation map. We may suppose that C_R is such that its generic member intersects non-trivially and properly the zero locus of v. Note that g^*v yields a rational map $\mathcal{T}_{\Sigma_{o,o}} \times C_R \longrightarrow g^* \operatorname{pr}^* \mathbb{P}(\mathbb{N})$ which extends to a morphism outside a closed subscheme Z of codimension at least two. Its projection does not cover $\mathcal{T}_{\Sigma_{o,o}} \times R$, hence we obtain a movable, relatively ample $\mathcal{L} \subset g^* \operatorname{pr}^* \mathbb{N}$.

3.3. Varieties whose cotangent bundle is not pseudo-effective. Let $Y \subset X$ be a smooth subvariety, so $\mathcal{N}_{Y/X}$ is a quotient of $\mathcal{T}_X \upharpoonright_Y$.

Notation 3.6 For shorthand, denote $\mathbb{P} := \mathbb{P}(\mathcal{T}_X)$ and $\mathbb{P}_Y := \mathbb{P}(\mathcal{T}_X \upharpoonright_Y)$ its restriction to Y; let $\pi : \mathbb{P} \to X$ be the projection. Define $\operatorname{Mov}(\mathbb{P}_Y)_{\mathbb{Q}} \subset H_2(\mathbb{P}_Y; \mathbb{Q})$ to be the cone generated by the classes of movable curves on \mathbb{P}_Y and $\operatorname{Mov}(\mathbb{P})_{\mathbb{Q}}$ similarly.

Corollary 3.7 Let $Y \subset X$ be a smooth subvariety such that $\mathcal{O}_{\mathbb{P}_Y}(1)$ is not pseudo-effective. Then $\mathcal{N}_{Y/X}$ is $(\dim Y - 1)$ -ample, so Y is G2.

Proof. Theorem 2.5 applies, since $\mathcal{N}_{Y/X}$ is $(\dim Y - 1)$ -ample.

By using 1.7 we are going to show that, for $Y \subset X$ sufficiently general, the partial ampleness of $\mathcal{T}_X \upharpoonright_Y$ implies the non-pseudo-effectiveness of the cotangent bundle of X. The latter is a numerical condition/restriction on the ambient variety. Examples include rationally connected varieties—see below—and, possibly, Calabi-Yau varieties (cf. [8, Corollary 6.12]).

Lemma 3.8 Let $Y \xrightarrow{\iota} X$ be a subvariety, dim Y > 0, and $H_2(\mathbb{P}_Y; \mathbb{Q}) \xrightarrow{\iota_*} H_2(\mathbb{P}; \mathbb{Q})$ be the induced homomorphism. In the situations enumerated below, it holds:

$$\iota_* (\operatorname{Mov}(\mathbb{P}_Y))_{\mathbb{Q}} \subseteq \operatorname{Mov}(\mathbb{P})_{\mathbb{Q}}.$$
(3.2)

(i) An algebraic group G acts on X with an open orbit O, such that the stabilizer of a point x ∈ O acts with open orbit on T_{X,x}, and Y ∩ O ≠ Ø.

(ii) \Bbbk is uncountable, and Y is a very general member of a dominant family.

Hence, if $\mathcal{O}_{\mathbb{P}_{Y}}(1)$ is not pseudo-effective, then $\mathcal{O}_{\mathbb{P}}(1)$ is the same.

Proof. (i) The G-translates of a movable curve on \mathbb{P}_Y cover an open subset of $\mathbb{P}(\mathcal{T}_X)$. (ii) Let $Y_S \subset S \times X$ be an S-flat family of subvarieties, with S affine, dominating X. Curves on X are parametrized by their Hilbert polynomial, of degree one, with integer coefficients. Let Π be the countable set of polynomials occurring for movable curves on $Y_s, s \in S$.

For $P \in \Pi$, denote $\operatorname{Hilb}_{Y_S/S}^P \xrightarrow{\pi_P} S$ the corresponding scheme. We are interested in the components corresponding to curves. For $s \in S$, let $\Pi_s \subset \Pi$ be the set of polynomials P_s such that π_{P_s} is not dominant; $\Pi_{\operatorname{rigid}} := \bigcup_{s \in S} \Pi_s$. The image of $\operatorname{Hilb}_{Y_S/S}^{\Pi_{\operatorname{rigid}}} \to S$ is a countable union of proper subvarieties. Take $s' \in S$ in the complement (k is uncountable); let $P_{s'}$ be the Hilbert polynomial of some movable curve $C_{s'} \subset Y_{s'}$. Then $P_{s'} \notin \Pi_{\operatorname{rigid}}$, so $\operatorname{Hilb}_{Y_S/S}^{P_{s'}} \xrightarrow{\pi_{P_{s'}}} S$ is surjective. Let $\Pi' := \Pi \setminus \Pi_{\operatorname{rigid}}$. The components of $\operatorname{Hilb}_{Y_S/S}^{\Pi'}$ (corresponding to movable curves) dominate S, so they are flat over the very general point $o \in S$.

We claim that movable curves on Y_o are movable on X. Indeed, for P_o as above, consider the universal curve $\mathcal{C}_S \subset \operatorname{Hilb}_{Y_S/S}^{P_o} \times_S Y_S$. The family $\mathcal{C}_o \subset \operatorname{Hilb}_{Y_o}^{P_o} \times Y_o$ dominates Y_o . By the continuity of $\operatorname{Hilb}_{Y_S/S}^{P_o} \times_S Y_S \to Y_S$, the same holds for $\mathcal{C}_s \subset \operatorname{Hilb}_{Y_s}^{P_o} \times Y_s$, for s near $o \in S$. Finally, $Y_S \to X$ is dominant, so \mathcal{C}_S covers an open subset of X.

Lemma 3.9 Let X be a smooth rationally connected variety. Then $\mathcal{O}_{\mathbb{P}(\mathcal{T}_X)}(1)$ is not pseudoeffective, so \mathcal{T}_X is $(\dim X - 1)$ -ample.

Proof. Consider a very free rational curve: a dominant morphism $\mathbb{P}^1 \times S \xrightarrow{\varphi} X$, where S is a variety, such that $\varphi^* \mathfrak{T}_X \upharpoonright_{\mathbb{P}^1 \times \{s\}} \cong \mathfrak{O}_{\mathbb{P}^1}(1) \otimes \mathfrak{G}, \forall s \in S$, with \mathfrak{G} globally generated. A nowhere vanishing section $g_s \in H^0(\mathbb{P}^1 \times \{s\}, \mathfrak{G})$ yields the inclusion $j_{g_s} : \mathfrak{O}_{\mathbb{P}^1}(1) \to \varphi^* \mathfrak{T}_X \upharpoonright_{\mathbb{P}^1 \times \{s\}};$ we still denote by j_{g_s} the morphism $\mathbb{P}^1 \to \mathbb{P}(\mathfrak{T}_X)$. Since \mathfrak{G} is globally generated, there is $\tilde{S} \subset S \times H^0(\mathfrak{G})$ open, such that $\tilde{S} \to \operatorname{Morphisms}(\mathbb{P}^1, \mathbb{P}(\mathfrak{T}_X)), \{s\} \times \{g_s\} \mapsto j_{g_s},$ yields a movable rational curve $\mathbb{P}^1 \times \tilde{S} \xrightarrow{\tilde{\varphi}} \mathbb{P}(\mathfrak{T}_X)$ satisfying $\tilde{\varphi}^* \mathfrak{O}_{\mathbb{P}(\mathfrak{T}_X)}(-1) \upharpoonright_{\mathbb{P}^1 \times \{s\}} \cong \mathfrak{O}_{\mathbb{P}^1}(1), \forall \tilde{s} \in \tilde{S}.$

It is well-known—particularly for projective spaces—that the G3 property of the diagonal $\Delta_X := \{(x, x) \mid x \in X\} \subset X \times X$ imply important connectedness results for the intersections of subvarieties in X (cf. [3, Ch. 11]). Our results yield the G2-property of the diagonal; obviously, it is less than the G3-property, but it holds for a larger class of varieties.

Proposition 3.10 Let X be a smooth projective variety, whose cotangent bundle is not pseudo-effective (e.g. rationally connected). Then the diagonal Δ_X is G2 in $X \times X$.

Proof. The normal bundle of Δ_X is isomorphic to \mathcal{T}_X ; we conclude by 2.6.

References

- Andreotti A., Grauert H., Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193–259.
- [2] Arapura D., Partial regularity and amplitude. Amer. J. Math. 128 (2006), 1025–1056.
- Bădescu L., Projective geometry and formal geometry. Math. Inst. Polish Acad. Sciences. Monographs 65, Birkhäuser Verlag Basel, 2004.
- [4] Bădescu L., Schneider M., A criterion for extending meromorphic functions. Math. Ann. 305 (1996), 393–402.
- [5] Boucksom S., Demailly J.-P., Păun M., Peternell T., The pseudo-effective cone of a compact Khler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22 (2013), 201–248.
- [6] Chen H., Algebraicity of formal varieties and positivity of vector bundles. Math. Ann. 354 (2012), 171–192.

- [7] Commichau M., Grauert H., Das formale Prinzip für kompakte komplexe Untermannigfaltigkeiten mit 1-positivem Normalenbündel. In: Recent developments in several complex variables. Fornaess J. (ed.)., pp. 101–126, Ann. Math. Stud. 100, Princeton Univ. Press, 1981.
- [8] Demailly J.P., Peternell T., Schneider M., Pseudo-effective line bundles on compact Kähler manifolds. Internat. J. Math. 12 (2001), 689–741.
- [9] Gieseker D., On two theorems of Griffiths about embeddings with ample normal bundle. Amer. J. Math. 99 (1977), 1137–1150.
- [10] Goldstein N., Ampleness and connectedness in complex G/P. Trans. Amer. Math. Soc. 274 (1982), 361– 373.
- [11] Griffiths Ph., The extension problem in complex analysis II. Embeddings with positive normal bundle. Amer. J. Math. 88 (1966), 366–446.
- [12] Grothendieck A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux. SGA2, Soc. Math. France, 2005.
- [13] Hartshorne R., Cohomological dimension of algebraic varieties. Ann. Math. 88 (1968), 403–450.
- [14] Hartshorne R., Ample Subvarieties of Algebraic Varieties. Lect. Notes Math. 156, Springer-Verlag Berlin, 1970.
- [15] Hironaka H., Matsumura H., Formal functions and formal embeddings. J. Math. Soc. Japan 20 (1968), 52–82.
- [16] Lazarsfeld R., Positivity in algebraic geometry I. Line bundles and linear series. Springer-Verlag Berlin, 2004.
- [17] Sommese A., Submanifolds of abelian varieties. Math. Ann. 233 (1978), 229–256.
- [18] Totaro B., Line bundles with partially vanishing cohomology. J. Eur. Math. Soc. 15 (2013), 731–754.
- [19] Voisin C., Coniveau 2 complete intersections and effective cones. Geom. Funct. Anal. 19 (2010), 1494– 1513.

E-mail address: mihai.halic@gmail.com

CRM, UMI 3457, MONTRÉAL H3T 1J4, CANADA