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EXTENSIONS OF RAMANUJAN’S RECIPROCITY

THEOREM AND THE ANDREWS–ASKEY INTEGRAL

ZHI-GUO LIU

Abstract. Ramanujan’s reciprocity theorem may be considered
as a three-variable extension of Jacobi’s triple product identity.
Using the method of q-partial differential equations, we extend
Ramanujan’s reciprocity theorem to a seven-variable reciprocity
formula. The Andrews–Askey integral is a q-integral having four
parameters with base q. Using the same method we extend the
Andrews–Askey integral formula to a q-integral formula which has
seven parameters with base q.

1. Introduction

In this paper we assume, unless otherwise stated, that |q| < 1 and use
the standard product notation

(a; q)0 = 1, (a; q)n =
n−1
∏

k=0

(1− aqk) and (a; q)∞ =
∞
∏

k=0

(1− aqk).

If n is an integer or ∞, the multiple q-shifted factorials are defined as

(a1, a2, ..., am; q)n = (a1; q)n(a2; q)n . . . (am; q)n.

The celebrated Jacobi triple product identity is stated in the follow-
ing proposition (see, for example [9, p. 1] and [12, p. 15]).

Proposition 1.1. For x 6= 0, we have the triple product identity

(q, x, q/x; q)∞ =

∞
∑

n=−∞

(−1)nqn(n−1)/2xn.
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This identity is among the most important identity in mathemat-
ics, which has many interesting applications in number theory, combi-
natorics, analysis, algebra and mathematical physics. Some amazing
extensions of this identity have been made by various authors. Ra-
manujan’s 1ψ1 summation formula and Bailey 6ψ6 summation formula
both contain this identity as a special case, and may be considered
as two important extensions of this identity, and these two extensions
have wider applications than Jacobi’s triple product identity.
Ramanujan’s reciprocity theorem and the Andrews–Askey integral

formula may also be regarded as two extensions of Jacobi’s triple prod-
uct identity.
In this paper we will use the method of q-partial differential equa-

tions to extend Ramanujan’s reciprocity theorem and Andrews–Askey
integral formula to two more general q-formulae.
For simplicity, in this paper we use ∆(u, v) to denote the theta func-

tion

(1.1) v(q, u/v, qv/u; q)∞.

The q-binomial coefficients are the q-analogs of the binomial coeffi-
cients, which are defined by

(

n

k

)

q

=
(q; q)n

(q; q)k(q; q)n−k
.

As usual, the basic hypergeometric series or q-hypergeometric series

rφs is defined by

rφs

(

a1, a2, ..., ar
b1, b2, ..., br

; q, z

)

=
∞
∑

n=0

(a1, a2, ..., ar; q)n
(q, b1, b2, ..., bs; q)n

(

(−1)nqn(n−1)/2
)1+s−r

zn.

Now we introduce the definition of the Thomae–Jackson q-integral
in q-calculus, which was introduced by Thomae [26] and Jackson [15].

Definition 1.2. Given a function f(x), the Thomae–Jackson q-integral
of f(x) on [a, b] is defined by

∫ b

a

f(x)dqx = (1− q)

∞
∑

n=0

[bf(bqn)− af(aqn)]qn.

If the function f(x) is continuous on [a, b], then, one can deduce that

lim
q→1

∫ b

a

f(x)dqx =

∫ b

a

f(x)dx.

In 1981, Andrews and Askey [4] established the following interest-
ing q-beta integral formula using Ramanujan 1ψ1 summation, which



AN EXTENSION OF RAMANUJAN’S RECIPROCITY THEOREM 3

has four parameters a, b, u.v with base q, which is now known as the
Andrews–Askey integral.

Proposition 1.3. If max{|au|, |bu|, |av|, |bv|} < 1 and uv 6= 0, then,
we have

∫ v

u

(qx/u, qx/v; q)∞
(ax, bx; q)∞

dqx =
(1− q)∆(u, v)(abuv; q)∞

(au, bu, av, bv; q)∞
.

Subsequently, in 1982, Al–Salam and Verma [1] found that Sears’
nonterminating extension of the q-Saalschütz summation can be rewrit-
ten in the following simple form, see also [12, page 52 ].

Proposition 1.4. If max{|au|, |bu|, |cu|, |av|, |bv|, |cv|} < 1 and uv 6=
0, then, we have

∫ v

u

(qx/u, qx/v, abcuvx; q)∞
(ax, bx, cx; q)∞

dqx =
(1− q)∆(u, v)(abuv, acuv, bcuv; q)∞

(au, bu, cu, av, bv, cv; q)∞
.

We call this q-integral formula the Al–Salam–Verma integral formula.
This q-integral formula has five parameters with base q. When c =
0, this q-integral formula reduces to the Andrews–Askey integral in
Proposition 1.3.
We have extended the Andrews–Askey integral formula or the Al–

Salam–Verma integral formula to the following q-integral formula [20,
Proposition 13.8], which has six parameters with base q. Extensions
of the Andrews–Askey integral involving the terminating q-series have
been discussed by [27] and [10].

Proposition 1.5. If a, b, c, d, u, v, r are complex numbers such that
max{|au|, |bu|, |cu|, |av|, |bv|, |cv|, |abr/c|} < 1 and uv 6= 0, then, we
have the following q-integral formula:

∫ v

u

(qx/u, qx/v, abrx; q)∞
(ax, bx, cx; q)∞

dqx =
(1− q)∆(u, v)(acuv, bcuv, abr/c; q)∞

(au, av, bu, bv, cu, cv; q)∞

× 3φ2

(

cu, cv, cuv/r

acuv, bcuv
; q,

abr

c

)

.

One of the main results of this paper is to extend the Andrews–
Askey integral formula or the Al–Salam–Verma integral formula to the
following integral formula, which has seven parameters a, b, c, d, r, u, v
with bases q.
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Theorem 1.6. If a, b, c, d, u, v, r are complex numbers such that uv 6= 0
and max{|au|, |bu|, |cu|, |av|, |bv|, |cv|, |abr/c|}< 1, then, we have

∫ v

u

(qx/u, qx/v, acduvx, abrx; q)∞
(ax, bx, cx, dx; q)∞

× 3φ2

(

ar, ax, cx

acduvx, abrx
; q, bduv

)

dqx

=
(1− q)∆(u, v)(acuv, aduv, bcuv, cduv, abr/c; q)∞

(au, av, bu, bv, cu, cv, du, dv; q)∞

× 3φ2

(

cu, cv, cuv/r

acuv, bcuv
; q,

abr

c

)

.

When d = 0, the 3φ2 series in the integrand reduces to 1, and in the
same time Theorem 1.6 becomes Proposition 1.5. So Theorem 1.6 is
really an extension of Proposition 1.5.
Setting r = cuv in Theorem 1.6, the 3φ2 series on the right-hand side

of the equation in Theorem 1.6 equals 1, and we obtain the following
proposition.

Proposition 1.7. If a, b, c, d, u, v, r are complex numbers such that
max{|au|, |bu|, |cu|, |av|, |bv|, |cv|}< 1 and uv 6= 0, then, we have

∫ v

u

(qx/u, qx/v, abcuvx, acduvx; q)∞
(ax, bx, cx, dx; q)∞

× 3φ2

(

acuv, ax, cx

abcuvx, acduvx
; q, bduv

)

dqx

=
(1− q)∆(u, v)(abuv, acuv, aduv, bcuv, cduv; q)∞

(au, av, bu, bv, cu, cv, du, dv; q)∞
.

In his lost notebook [23, p 40], Ramanujan stated the following beau-
tiful reciprocity theorem without proof. This formula may be consid-
ered as a three-variable extension of Jacobi’s triple product identity.
This result, now known as Ramanujan’s reciprocity theorem, was first
proved by Andrews in his paper [3] in 1981. For another proof, see [7].

Theorem 1.8. If uv 6= 0 and av 6= q−m, au 6= q−m, m=0, 1, 2,. . . ,
then, we have

(q, v/u, u/v; q)∞
(au, av; q)∞

= (1− v/u)
∞
∑

n=0

(−1)n
qn(n+1)/2(v/u)n

(av; q)n+1

+(1− u/v)
∞
∑

n=0

(−1)n
qn(n+1)/2(u/v)n

(au; q)n+1

.
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Andrews [3, Theorem 1] also derived a four-variable reciprocity the-
orem by using many summation and transformation formulae for basic
hypergeometric series. Inspired by the work of Andrews, in 2003, we
[18, Theorem 6] proved the following five-variable reciprocity formula
by using the q-exponential operator to Ramanujan’s 1ψ1 summation.

Theorem 1.9. For max{|au|, |av|, |cu|, |cv|, |du|, |dv|}< 1 and uv 6= 0,
then, we have

v
∞
∑

n=0

(q/du, acuv; q)n(dv)
n

(av, cv; q)n+1
− u

∞
∑

n=0

(q/dv, acuv; q)n(du)
n

(au, cu; q)n+1

=
∆(u, v)(aduv, acuv, cduv; q)∞
(au, av, cu, cv, du, dv; q)∞

.

Ramanujan’s reciprocity formula is the special case c = d = 0 of
Theorem 1.9, and Ramanujan 1ψ1 summation formula is the special
case c = 0 of Theorem 1.9. Setting a = c = d = 0 in Theorem 1.9 we
can immediately obtain the Jacobi triple product identity.
On taking cduv = q and a = 0, we can obtain the following very

interesting Lambert series identity.

Proposition 1.10. If cu 6= q−m and cv 6= q−m, m=0, 1, 2, . . . , then,
we have the Lambert series identity

v

∞
∑

n=0

(q/cu)n

1− cvqn
− u

∞
∑

n=0

(q/cv)n

1− cuqn
=

v(q, q, u/v, qv/u; q)∞
(cu, cv, q/cu, q/cv; q)∞

.

Recently, some other generalizations of Ramanujan’s reciprocity for-
mula have been found by various authors by rearranging some of the
well-known q-formulae, see, for example [11, 16, 22]. In this paper
we will give a completely new extension of Ramanujan’s reciprocity
formula.
For simplicity, we now introduce the notation ρ in the following def-

inition.

Definition 1.11. We use the notation ρ(a, b, c, d, r, u, v) to denote the
double q-series

v
∞
∑

n=0

(q/du, acuv, bcuv; q)n(dv)
n

(av, bv, cv; q)n+1

× 3φ2

(

qn+1, vqn+1/r, q/cu

avqn+1, bvqn+1
; q,

abcruv

q

)

.

Our generalization of Ramanujan’s reciprocity formula is the follow-
ing reciprocity formula which has seven parameters with base q.
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Theorem 1.12. If ρ is defined as in Definition 1.11 with uv 6= 0 and

max{|au|, |av|, |bu|, |bv|, |cu|, |cv|, |du|, |dv|, |abr/d|, |abcruv/q|}< 1,

then, we have the following seven-variable reciprocity formula:

ρ(a, b, c, d, r, u, v)− ρ(a, b, c, d, r, v, u)

=
∆(u, v)(acuv, aduv, bcuv, bduv, cduv, abr/d; q)∞

(au, av, bu, bv, cu, cv, du, dv, abcruv/q; q)∞

× 3φ2

(

du, dv, duv/r

aduv, bduv
; q,

abr

d

)

.

Setting b = 0 in Theorem 1.12, we immediately obtain Theorem 1.9.
Noting that when r = duv, the 3φ2 series reduces to 1. Thus, on

putting r = duv in Theorem 1.12, we immediately obtain the following
beautiful q-formula.

Proposition 1.13. If ρ is defined as in Definition 1.11 with uv 6= 0
and

max{|au|, |av|, |bu|, |bv|, |cu|, |cv|, |du|, |dv|, |abcdu2v2/q|} < 1,

then, we have the following six-variable reciprocity formula:

ρ(a, b, c, d, duv, u, v)− ρ(a, b, c, d, duv, v, u)

=
∆(u, v)(abuv, acuv, aduv, bcuv, bduv, cduv; q)∞
(au, av, bu, bv, cu, cv, du, dv, abcdu2v2/q; q)∞

.

The remainder of this paper is organized as follows. Some inequali-
ties for q-series are discussed in Section 2. In Section 3, we introduce
some important facts in q-differential calculus. Sections 4 and 5 are
devoted to the proofs of Theorems 1.6 and 1.12. In Section 6, we will
use Theorems 1.6 to derive a beta integral formula which including the
Askey–Wilson integral as a special case. Some limiting cases of The-
orem 1.9 are discussed in Section 7, and one notable example is the
following formula:

(q; q)4
∞

(qa, q/a; q)2
∞

= 1 + (1− a)2
∞
∑

n=1

n(q/a)n

1− aqn
+ (1− 1/a)2

∞
∑

n=1

n(qa)n

1− qn/a
.

2. some inequalities for q-series

For convenience, in this section, Sections 3 and 4, we assume that
0 < q < 1.



AN EXTENSION OF RAMANUJAN’S RECIPROCITY THEOREM 7

Proposition 2.1. If k is a nonnegative integer or ∞, a and b are two
nonnegative numbers such that 0 ≤ b ≤ 1, then, we have

(−ab; q)k ≤ (−a; q)∞.

If we further assume that 0 ≤ a ≤ 1, then, we have

(ab; q)k ≥ (a; q)∞.

Proof. Keeping the fact 0 < q < 1 in mind, we find that for any
0 ≤ j ≤ k − 1,

1 + abqj ≤ 1 + aqj.

On multiplying these inequalities together, we deduce that

(−ab; q)k ≤ (−a; q)k.

Since (−aqk; q)∞ ≥ 1, we multiply (−aqk; q)∞ to the right-hand side of
the above inequality to arrive at the first inequality in the proposition.
In the same way we can prove the second inequality. This completes
the proof of Proposition 2.1.

Proposition 2.2. If max{|b1|, |b2|, . . . , |br|, |x|} < 1 and n is a non-
negative integer, then, we have
∣

∣

∣

∣

r+1φr

(

a, a1q
n, . . . , arq

n

b1qn, . . . brqn
; q, x

)
∣

∣

∣

∣

≤
(−|ax|,−|a1|, . . . ,−|ar|; q)∞

(|x|, |b1|, . . . , |br|; q)∞
.

Proof. Keeping 0 < q < 1 in mind, using the triangle inequality and
Proposition 2.1, we find that for j ∈ {1, 2, . . . , r},

|(ajq
n; q)k| ≤

k−1
∏

l=0

(|1 + |aj|q
l) ≤

∞
∏

l=0

(|1 + |aj |q
l) = (−|aj |; q)∞,

and

|(bjq
n; q)k| ≥

k−1
∏

l=0

(|1− |bj |q
l) ≥

∞
∏

l=0

(|1− |bj|q
l) = (|bj |; q)∞.

It follows that
∣

∣

∣

∣

(a, a1q
n, . . . , arq

n; q)kx
k

(q, b1qn, . . . brqn; q)k

∣

∣

∣

∣

≤
(−|a1|, . . . ,−|ar|)∞(−|a|; q)k|x|

k

(|b1|, . . . , |br|)∞(q; q)k
.

Using this inequality and the triangle inequality, we conclude that
∣

∣

∣

∣

r+1φr

(

a, a1q
n, . . . , arq

n

b1qn, . . . brqn
; q, x

)
∣

∣

∣

∣

≤
(−|a1|, . . . ,−|ar|)∞
(|b1|, . . . , |br|)∞

∞
∑

k=0

(−|a|; q)k|x|
k

(q; q)k
.
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On applying the q-binomial theorem to the right-hand side of the above
inequality, we complete the proof of Proposition 2.2.

It should be pointed out that Wang [28, Theorem 1.1] has obtained
a similar inequality.

3. some facts in q-differential calculus

Next we introduce some basic concepts in q-differential calculus.

Definition 3.1. For any function f(x) of one variable, the q-derivative
of f(x) with respect to x, is defined as

Dq,x{f(x)} =
f(x)− f(qx)

x
,

and we further define D0
q,x{f} = f and Dn

q,x{f} = Dq,x{D
n−1
q,x {f}}.

The q-derivative was first introduced by L. Schendel [?] in 1877 and
then by F. H. Jackson [14] in 1908, which is a q-analog of the ordinary
derivative. The definition of the q-partial derivative can be found in
[20].

Definition 3.2. A q-partial derivative of a function of several variables
is its q-derivative with respect to one of those variables, regarding other
variables as constants. The q-partial derivative of a function f with
respect to the variable x is denoted by ∂q,x{f}.

Definition 3.3. A q-partial differential equation is an equation that
contains unknown multivariable functions and their q-partial deriva-
tives.

The homogeneous Rogers–Szegő polynomials play an important role
in the theory of orthogonal polynomials, which are defined by [19, 20]

(3.1) hn(a, b|q) =
n
∑

k=0

(

n

k

)

q

akbn−k.

By multiplying two copies of the q-binomial theorem (see, for example
[12, p. 8, Eq. (1.3.2)]), one can find that [19, 20]

(3.2)
∞
∑

n=0

hn(a, b|q)
tn

(q; q)n
=

1

(at, bt; q)∞
, |at| < 1, |bt| < 1.

It turn out that the q-partial differential equations is an important
subject of study, we started the study of this subject in [20] and [21].
The following very useful expansion theorem for q-series can be found
in [20, Proposition 1.6].
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Theorem 3.4. If f(x, y) is a two-variable analytic function at (0, 0) ∈
C2, then, f can be expanded in terms of hn(x, y|q) if and only if f
satisfies the q-partial differential equation ∂q,x{f} = ∂q,y{f}.

One of the most important formulae for the Rogers–Szegő polynomi-
als is the following q-Mehler formula, which can be derived easily from
Theorem 3.4, see [20, pp.219–220] for details.

Proposition 3.5. For max{|asz|, |atz|, |bsz|, |btz|} < 1, we have

∞
∑

n=0

hn(a, b|q)hn(s, t|q)
zn

(q; q)n
=

(abstz2; q)∞
(asz, atz, bsz, btz; q)∞

.

In order to prove Theorems 1.6 and 1.12, we need the following
proposition.

Proposition 3.6. The function L(a, b, u, v, s, t) satisfies the q-partial
differential equation ∂q,a{L} = ∂q,b{L}, where L(a, b, u, v, s, t) is defined
by

(av, bv, abstu/v; q)∞
(as, at, au, bs, bt, bu; q)∞

3φ2

(

v/s, v/t, v/u

av, bv
; q,

abstu

v

)

.

Proof. It is easily seen that using L(a, b, u, v, s, t) we can rewrite the
formula in Proposition 1.5 in the form

L(a, b, u, v, s, t) =
(v/s, v/t; q)∞

(1− q)∆(s, t)(au, bu; q)∞

∫ t

s

(qx/s, qx/t, abux; q)∞
(ax, bx, vx/st; q)∞

dqx.

Noting the definition of the q-partial differential equations and using a
direct computation, we easily find that

∂q,a{L} = ∂q,b{L}

=
(v/s, v/t; q)∞
(1− q)∆(s, t)

∫ t

s

(x+ u− aux− bux) (qx/s, qx/t, abuxq; q)∞
(au, bu, ax, bx, vx/st; q)∞

dqx,

which indicates that Proposition 3.6 holds.

4. the proof of Theorem 1.6

Recall the Sears 3φ2 transformation formula (see, for example [18,
Theorem 3])

3φ2

(

a1, a2, a3
b1, b2

; q,
b1b2
a1a2a3

)

=
(b2/a3, b1b2/a1a2; q)∞
(b2, b1b2/a1a2a3; q)∞

3φ2

(

b1/a1, b1/a2, a3
b1, b1b2/a1a2

; q,
b2
a3

)

.
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Using the Sears 3φ2 transformation formula, we easily conclude that

3φ2

(

ax, ar, cx

acduvx, abrx
q, bduv

)

=
(abr/c, bcduvx; q)∞
(bduv, abrx; q)∞

3φ2

(

cduv, cduvx/r, cx

acduvx, bcduvx
; q,

abr

c

)

.

This transformation formula shows that Theorem 1.6 is equivalent to
the following formula:

∫ v

u

(qx/u, qx/v, acduvx, bcduvx; q)∞
(ax, bx, cx, dx; q)∞

(4.1)

× 3φ2

(

cduv, cduvx/r, cx

acduvx, bcduvx
q,
abr

c

)

dqx

=
(1− q)∆(u, v)(acuv, aduv, bcuv, bduv, cduv; q)∞

(au, av, bu, bv, cu, cv, du, dv; q)∞

× 3φ2

(

cu, cv, cuv/r

acuv, bcuv
; q,

abr

c

)

.

In order to prove the identity (4.1), we need to prove the following
lemma.

Lemma 4.1. The q-integral in (4.1) is a two-variable analytic function
of a and b, which is analytic at (0, 0) ∈ C2.

Proof. For the sake of convenience, we define the compact notation An

and Bn by

An(a, b, c, d, r, u, v) : = 3φ2

(

cduv, cdvu2qn/r, cuqn

acdvu2qn, bcdvu2qn
; q,

abr

c

)

,

Bn(a, b, c, d, r, u, v) : = u(1− q)
(qn+1, qn+1u/v, acdvu2qn, bcdvu2qn; q)∞

(auqn, buqn, cuqn, duqn; q)∞
.

Using the definition of q-integral, we find that the left-hand side of the
equation in (4.1) can be written as

∞
∑

n=0

An(a, b, c, d, r, v, u)Bn(a, b, c, d, r, v, u)q
n(4.2)

−

∞
∑

n=0

An(a, b, c, d, r, u, v)Bn(a, b, c, d, r, u, v)q
n.

Next we will prove that this series converges to a two-variable an-
alytic function of a and b at (0, 0) ∈ C

2. It is obvious that the first
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summation can be obtained from the second one by interchanging u
and v. Thus we only need consider the second summation, namely,

(4.3)
∞
∑

n=0

An(a, b, c, d, r, u, v)Bn(a, b, c, d, r, u, v)q
n.

We divide our proof into two cases according cr 6= 0 and cr = 0. We
only prove the cr 6= 0 case and the cr = 0 case can be proved in the
same way. Without loss of generality, we can assume that

max{|a|, |b|, |d|} < 1 and 0 < |c|, |r|, |u|, |v| < 1.

Using Propositions 2.1 and 2.2 and doing some simple calculations, we
find that

|An(a, b, c, d, r, u, v)| ≤
(−|abduvr|,−|cdvu2/r|,−|cu|; q)∞
(|abr/c|, |acdvu2|, |bcdvu2|; q)∞

≤
(−1,−|r|,−|1/r|; q)∞
(|r/c|, |u|, |u|; q)∞

.

On making use of Proposition 2.1 and some elementary calculations,
we deduce that

|Bn(a, b, c, d, r, u, v)| ≤
(−1; q)3

∞
(−|qu/v|; q)∞

(|u|; q)4
∞

.

Using the triangular inequality and the above two inequalities, we con-
clude that

|

∞
∑

n=0

An(a, b, c, d, r, u, v)Bn(a, b, c, d, r, u, v)q
n|

≤

∞
∑

n=0

|An(a, b, c, d, r, u, v)||Bn(a, b, c, d, r, u, v)|q
n

≤
(−1; q)4

∞
(−|qu/v|,−|r|,−|1/r|; q)∞

(1− q)(|u|; q)6
∞
(|r/c|; q)∞

.

This indicates that the series in (4.3) converges absolutely and uni-
formly for |a| < 1. It is easily to see that every term of this series is a
analytic at a = 0. Thus, this series converges to an analytic function
of a, which is analytic at a = 0.
By symmetry, this series also converges to an analytic function of

b, which a analytic at b = 0. Hence the series in (4.2) converges to a
two-variable analytic function of a and b, which is analytic at (a, b) =
(0, 0) ∈ C2.
Interchanging u and v in (4.3) we immediately find that the first

series in (4.2) is also analytic at (a, b) = (0, 0) ∈ C
2. In summary,
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the left-hand side of the equation in (4.1) is a two-variable analytic
function of a and b, which is analytic at (a, b) = (0, 0) ∈ C2.

Now we begin to prove (4.1) by using Lemma 4.1, Proposition 3.6
and Theorem 3.4.

Proof. Using the definition of L in Proposition 3.6 and some simple
computations, we find that

L(a, b, duv, cduvx, x, r) =
(acduvx, bdcuvx, abr/c; q)∞
(ax, bx, ar, br, aduv, bduv; q)∞

× 3φ2

(

cduv, cduvx/r, cx

acduvx, bcduvx
; q,

abr

c

)

,

L(a, b, r, cuv, u, v) =
(acuv, bcuv, abr/c; q)∞
(au, av, bu, bv, ar, br; q)∞

× 3φ2

(

cu, cv, cuv/r

acuv, bcuv
; q,

abr

c

)

.

Using these two equations we can rewrite (4.1) in the form
∫ v

u

(qx/u, qx/v; q)∞
(cx, dx; q)∞

L(a, b, duv, cduvx, x, r)dqx(4.4)

=
(1− q)∆(u, v)(cduv; q)∞

(cu, cv, du, dv; q)∞
L(a, b, r, cuv, u, v).

If we use f(a, b) to denote the left-hand side of (4.4), then, f(a, b) is
analytic at (0, 0) ∈ C2, and satisfies the q-partial differential equation
∂q,a{f} = ∂q,b{f}. Thus, by Theorem 3.4, there exists a sequence {αn}
independent of a and b such that

f(a, b) =

∞
∑

n=0

αnhn(a, b|q).

On putting b = 0 in this equation, using hn(a, 0|q) = an, and noting
the definition of f(a, b), we find that

f(a, 0) =
1

(ar, aduv; q)∞

∫ v

u

(qx/u, qx/v, acduvx; q)∞
(ax, cx, dx; q)∞

dqx =

∞
∑

n=0

αna
n.

Applying the Al–Salam–Verma integral to the q-integral in this equa-
tion, we deduce that

(4.5)
∞
∑

n=0

αna
n =

(1− q)∆(u, v)(acuv, cduv; q)∞
(au, av, ar, cu, cv, du, dv; q)∞

.



AN EXTENSION OF RAMANUJAN’S RECIPROCITY THEOREM 13

If we use g(a, b) to denote the right-hand side of (4.4), then, g(a, b) is
analytic at (0, 0) ∈ C2, and satisfies the q-partial differential equation
∂q,a{g} = ∂q,b{g}. Thus, by Theorem 3.4, there exists a sequence {βn}
independent of a and b such that

g(a, b) =
∞
∑

n=0

βnhn(a, b|q).

On putting b = 0 in this equation, using hn(a, 0|q) = an, and noting
the definition of g(a, b), we find that

g(a, 0) =
∞
∑

n=0

βna
n =

(1− q)∆(u, v)(acuv, cduv; q)∞
(au, av, ar, cu, cv, du, dv; q)∞

.

Comparing this equation with (4.5), we find that αn = βn, which im-
plies that f(a, b) = g(a, b), which shows that the identity in (4.1) holds.
Thus we have proved Theorem 1.6 for |a| and |b| sufficiently small. By
analytic continuation, we complete the proof of Theorem 1.6.

5. The proof of Theorem 1.12

In order to prove Theorem 1.12, we first set up the following lemma.

Lemma 5.1. The series on the left-hand side of the equation in Theo-
rem 1.12 represents a two-variable analytic function of a and b, which
is analytic at (0, 0) ∈ C2.

Proof. The proof can be divided into two cases according to rcd 6= 0
and rcd = 0. We only prove the rcd 6= 0 case and the rcd = 0 case can
be proved similarly.
For the sake of simplicity, we will use the Cn and Dn to denote

Cn(a, b, c, d, u, v) : = v
(q/du, acuv, bcuv; q)n(dv)

n

(av, bv, cv; q)n+1

,

Dn(a, b, c, r, u, v) : = 3φ2

(

qn+1, vqn+1/r, q/cu

avqn+1, bvqn+1
q;
abcruv

q

)

.

Using these notations we can write the left-hand side of the equation
in Theorem 1.12 as

∞
∑

n=0

Cn(a, b, c, d, u, v)Dn(a, b, c, r, u, v)(5.1)

−

∞
∑

n=0

Cn(a, b, c, d, v, u)Dn(a, b, c, r, v, u).



14 ZHI-GUO LIU

Now we will show that this series converges to a two-variable analytic
function of a and b at (0, 0) ∈ C2. It is obvious that the second summa-
tion in the above equation can be obtained from the first summation
by interchanging u and v, so we only need consider the first summation

∞
∑

n=0

Cn(a, b, c, d, u, v)Dn(a, b, c, r, u, v)(5.2)

Without loss of generality, we may assume that max{|a|, |b|} < 1 and
in order to simplify the discussion, we only consider the case rcd 6= 0,
as the case rcd = 0 is similar. Using Proposition 2.1 and some simple
calculation, we conclude that

|Cn(a, b, c, d, u, v)| ≤
|v|(−|1/du|,−|v|,−|v|; q)∞|dv|

n

(|v|, |v|, |cv|; q)∞
.

On making use of Proposition 2.2 and a direct computation, we easily
deduce that

|Dn(a, b, c, r, u, v)| ≤
(−|abrv|,−q,−|v/r|; q)∞

(|v|, |v|, |q/cu|; q)∞

≤
(−|rv|,−q,−|v/r|; q)∞
(|v|, |v|, |q/cu|; q)∞

.

Using the triangular inequality and these two inequalities, we have
∣

∣

∣

∣

∣

∞
∑

n=0

Cn(a, b, c, d, u, v)Dn(a, b, c, r, u, v)

∣

∣

∣

∣

∣

≤

∞
∑

n=0

|Cn(a, b, c, d, u, v)Dn(a, b, c, r, u, v)|

≤ |v|
(−q,−|rv|,−|v/r|,−|1/du|; q)∞

(|v|; q)4
∞
(|cv|, |q/cu|; q)∞

∞
∑

n=0

|dv|n

=
|v|(−q,−|rv|,−|v/r|,−|1/du|; q)∞
(1− |dv|)(|v|; q)4

∞
(|cv|, |q/cu|; q)∞

.

This shows that the series in (5.2) converges absolutely and uniformly
for max{|a|, |b|} < 1. It is easily seen that every term of this series is
analytic at (a, b) = (0, 0) ∈ C2, thus this series converges to a two-
variable analytic function of a and b which is analytic at (0, 0) ∈ C2.

Now we begin to prove Theorem 1.12 by Theorem 3.4, Proposi-
tion 3.6 and Lemma 5.1.
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Proof. Using the definition of L in Proposition 3.6, we deduce that

3φ2

(

du, dv, duv/r

aduv, bduv
; q,

abr

d

)

=
(ar, br, au, bu, av, bv; q)∞
(aduv, bduv, abr/d; q)∞

L(a, b, u, duv, v, r),

3φ2

(

qn+1, vqn+1/r, q/cu

avqn+1, bvqn+1
; q,

abcruv

q

)

=
(av, bv, ar, br, acuvqn, bcuvqn; q)∞
(avqn+1, bvqn+1, abcruv/q; q)∞

L(a, b, r, vqn+1, v, cuvqn).

Using these two equations we can rewrite Theorem 1.12 in the form

v

∞
∑

n=0

(q/du; q)n(dv)
n

(cv; q)n+1
L(a, b, r, vqn+1, v, cuvqn)(5.3)

− u

∞
∑

n=0

(q/dv; q)n(du)
n

(cv; q)n+1
L(a, b, r, uqn+1, u, cuvqn)

=
∆(u, v)(cduv; q)∞
(cu, cv, du, dv; q)∞

L(a, b, u, duv, v, r).

If we use f(a, b) to denote the left-hand side of this equation, then,
from Lemma 5.1 we know that f(a, b) is analytic at (0, 0) ∈ C2. Using
Proposition 3.6, we easily see that f(a, b) satisfies the q-partial differ-
ential equation ∂q,a{f} = ∂q,b{f}. Thus by Theorem 3.4, there exists a
sequence {αn} independent of a and b such that

f(a, b) =

∞
∑

n=0

αnhn(a, b).

Putting b = 0 in this equation and using the fact hn(a, 0) = an, we
obtain

f(a, 0) =

∞
∑

n=0

αna
n.

Noting the definition of f(a, b) and using Theorem 1.9, we find that

(ar, acuv; q)∞f(a, 0)

= v
∞
∑

n=0

(q/du, acuv; q)n(dv)
n

(av, cv; q)n+1

− u
∞
∑

n=0

(q/dv, acuv; q)n(du)
n

(au, cu; q)n+1

=
∆(u, v)(aduv, acuv, cduv; q)∞
(au, av, cu, cv, du, dv; q)∞

.
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If we use g(a, b) to denote the right-hand side of (5.3), then, g(a, b) is
analytic at (0, 0) ∈ C2, and satisfies the q-partial differential equation
∂q,a{g} = ∂q,b{g}. Thus, by Theorem 3.4, there exists a sequence {βn}
independent of a and b such that

g(a, b) =
∞
∑

n=0

βnhn(a, b|q).

On putting b = 0 in this equation, using hn(a, 0|q) = an, and noting
the definition of g(a, b), we find that

g(a, 0) =

∞
∑

n=0

βna
n =

∆(u, v)(aduv, cduv; q)∞
(ar, au, av, cu, cv, du, dv; q)∞

.

It follows that
∞
∑

n=0

αna
n =

∞
∑

n=0

βna
n.

Thus we have αn = βn, which implies that f(a, b) = g(a, b). Hence
we have proved Theorem 1.12 for |a| and |b| sufficiently small and
0 < q < 1. Using analytic continuation, this completes the proof of
Theorem 1.12.

6. A beta integral formula

Definition 6.1. For x = cos θ, we define h(x; a) and h(x; a1, a2, . . . , am)
as follows:

h(x; a) = (aeiθ, ae−iθ; q)∞ =

∞
∏

k=0

(1− 2qkax+ q2ka2),

h(x; a1, a2, . . . , am) = h(x; a1)h(x; a2) · · ·h(x; am).

In this section we will use Theorem 1.6 to prove the following beta
integral formula, which including the Askey–Wilson integral as a special
case.

Theorem 6.2. For max{|a|, |b|, |c, |d|, |abr/c|} < 1, we have the inte-
gral formula

2πa0
(q, ac, ad, bc, cd, abr/c; q)∞

=
2π(abdr; q)∞

(q, ac, ad, bc, bd, cd, abr/c; q)∞

=

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)
3φ2

(

ceiθ, ce−iθ, c/r

ac, bc
; q,

abr

c

)

dθ.
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Proof. For the sake of brevity, we use I(x) to denote the function

(6.1) I(x) =
(acdx, abrx; q)∞

(ax, bx, cx, dx; q)∞
3φ2

(

ar, ax, cx

acdx, abrx
q, bd

)

.

It is easily seen that I(x) is analytic near x = 0. Thus, there exists a
sequence {ak}

∞

k=0 independent of x such that

I(x) = a0 +
∞
∑

k=1

akx
k.

By setting x = 0 in the above equation and using the q-binomial theo-
rem, we conclude that

(6.2) a0 =

∞
∑

n=0

(ar; q)n(bd)
n

(q; q)n
=

(abdr; q)∞
(bd; q)∞

.

Noting the definition of ∆(u, v) in (1.1) and using a simple computa-
tion, we easily find that

(6.3) (eiθ − e−iθ)∆(eiθ, e−iθ) = (q; q)∞h(cos 2θ; 1).

On replacing (u, v) by (eiθ, e−iθ) in Theorem 1.6 and noting the above
equation , we deduce that

(eiθ − e−iθ)

∫ e−iθ

eiθ
(qxeiθ, qxe−iθ; q)∞I(x)dqx(6.4)

=
(1− q)(q, ac, ad, bc, cd, abr/c; q)∞h(cos 2θ; 1)

h(cos θ; a, b, c, d)

× 3φ2

(

ceiθ, ce−iθ, c/r

ac, bc
; q,

abr

c

)

.

Using the definition of the q-integral, we find that the left-hand side of
this equation equals

(1− q)(1− e−2iθ)

∞
∑

n=0

(qn+1; q)∞(qne−2iθ; q)∞I(q
ne−iθ)qn

+ (1− q)(1− e2iθ)

∞
∑

n=0

(qn+1; q)∞(qne2iθ; q)∞I(q
neiθ)qn.

Inspecting the first series in the equation, we see that this series can
be expanded in terms of the negative powers of {e−kiθ}∞k=0, and the
constant term of the Fourier expansion of this series is (1−q)a0. Thus,
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there exists a sequence {αk}
∞

k=1 independent of θ such that the first
series equals

(1− q)a0 +
∞
∑

k=1

αke
−ikθ.

Replacing θ by −θ, we immediately find that the second series is equal
to

(1− q)a0 +

∞
∑

k=1

αke
ikθ.

Combining the above two expressions together, we arrive at

(eiθ − e−iθ)

∫ e−iθ

eiθ
(qxeiθ, qxe−iθ; q)∞I(x)dqx

= 2(1− q)a0 + 2
∞
∑

k=1

αk cos kθ.

Comparing this equation with (6.3), we are led to the Fourier series
expansion

2(1− q)a0 + 2

∞
∑

k=1

αk cos kθ

=
(1− q)(q, ac, ad, bc, cd, abr/c; q)∞h(cos 2θ; 1)

h(cos θ; a, b, c, d)

× 3φ2

(

ceiθ, ce−iθ, c/r

ac, bc
; q,

abr

c

)

.

On integrating the above equation over [−π, π] and using the fact
∫ π

−π

(cos kθ)dθ = 2πδk,0,

and noting that the integrand is an even function of θ, we deduce that
∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)
3φ2

(

ceiθ, ce−iθ, c/r

ac, bc
; q,

abr

c

)

dθ

=
2πa0

(q, ac, ad, bc, cd, abr/c; q)∞
.

Substituting the value of a0 in (6.2) into this equation, we complete
the proof of Theorem 6.2.

Letting r = c in Theorem 6.2, we immediately obtain the Askey–
Wilson integral formula [6].
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Theorem 6.3. If max{|a|, |b|, |c|, |d|} < 1, then, we have
∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)
dθ =

2π(abcd; q)∞
(q, ab, ac, ad, bc, bd, cd; q)∞

.

Remark 6.4. By setting u = eiθ and v = e−iθ in Proposition 1.13 and
then using the same argument as in the proof of Theorem 6.2, we can
give a derivation of the Askey–Wilson integral.

The continuous q-Hermite polynomials Hn(cos θ|q) is defined as

(6.5) Hn(cos θ|q) =
n
∑

k=0

(

n

k

)

q

ei(n−2k)θ.

Using the definition of the homogeneous Rogers–Szegő polynomials de-
fined in (3.1), it is easily seen that

(6.6) Hn(cos θ|q) = hn(e
−iθ, eiθ|q).

Putting a = e−iθ and b = eiθ in (3.2), one can find the following
proposition.

Proposition 6.5. For |t| < 1, we have

(6.7)
∞
∑

n=0

Hn(cos θ|q)
tn

(q; q)n
=

1

(teiθ, te−iθ; q)∞
.

Remark 6.6. One of the most important properties of the q-Hermite
polynomials is that they satisfy the following orthogonality relation,
which was first proved by Szegő [25]:
∫ π

0

Hm(cos θ|q)Hn(cos θ|q)h(cos 2θ; 1)dθ = 2π(q; q)nδm,n/(q; q)∞.

This orthogonality relation has been used by several authors to evaluate
the Askey–Wilson integral and other related q-beta integrals (see, for
example [2, 13, 17]). We have just evaluated the Askey–Wilson integral
without using the orthogonality relation for the q-Hermite polynomials.
We can use a special case of the Askey–Wilson integral formula to
give a new proof of the the orthogonality relation for the q-Hermite
polynomials. The proof is as follows:
Putting c = d = 0 in the Askey–Wilson integral formula, we imme-

diately deduce that

(6.8)

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b)
dθ =

2π

(q, ab; q)∞
.
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On multiplying two copies of the identity in (6.7), we find that for
max{|a|, |b|} < 1,

∞
∑

m,n=0

Hm(cos θ|q)Hn(cos θ|q)
ambn

(q; q)m(q; q)n
=

1

h(cos θ; a, b)
.

Using Proposition 6.5, we can easily show that the above double series
converges uniformly for max{|a|, |b|} < 1 on 0 ≤ θ ≤ π.
Substituting this series into the left-hand side of (6.8) and then in-

tegrating term by term, and applying the q-binomial theorem to the
right-hand side of (6.8), we find that

∞
∑

m,n=0

ambn

(q; q)m(q; q)n

∫ π

0

Hm(cos θ|q)Hn(cos θ|q)h(cos 2θ; 1)dθ

=
2π

(q; q)∞

∞
∑

n=0

(ab)n

(q; q)n
.

Equating the coefficients of ambn on both sides of this equation, we
arrive at the orthogonality relation for the q-Hermite polynomials.

7. Some limiting cases of Theorem 1.9

In this section we will discussed some limiting cases of Theorem 1.9.

Proposition 7.1. For a 6= q−m, c 6= q−m, d 6= q−m, m = 0, 1, 2, . . . , we
have

∞
∑

n=0

(q/d, ac; q)nd
n

(a, c; q)n+1

×

(

n+ 1 +

n
∑

k=0

aqk

1− aqk
+

n
∑

k=0

cqk

1− cqk
−

n
∑

k=1

qk

d− qk

)

=
(q; q)3

∞
(ac, ad, cd; q)∞

(a, c, d; q)2
∞

.

Proof. Keeping in mind that ∆(u, v) = (v − u)(q, qu/v, qv/u; q)∞, di-
viding both sides of the equation in Theorem 1.9 by v−u, then letting
v → u in the resulting equation, using L′Hôspital’s rule and simplifying,
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we deduce that
∞
∑

n=0

(q/du, acu2; q)n(du)
n

(au, cu; q)n+1

×

(

n + 1 +
n
∑

k=0

auqk

1− auqk
+

n
∑

k=0

cuqk

1− cuqk
−

n
∑

k=1

qk

du− qk

)

=
(q; q)3

∞
(acu2, adu2, cdu2; q)∞
(au, cu, du; q)2

∞

.

On replacing (au, bu, cu) by (a, b, c), we complete the proof of Propo-
sition 7.1.

On setting a = c = 0 in proposition 7.1, we immediately obtain the
following proposition.

Proposition 7.2. For d 6= q−m, m = 0, 1, 2, . . . , we have

∞
∑

n=0

(q/d; q)nd
n

(

n + 1−

n
∑

k=1

qk

d− qk

)

=
(q; q)3

∞

(d; q)2
∞

.

On putting d = 0 in Proposition 7.2, we immediately obtain the
following identity of Jacobi [8, p. 14]:

(q; q)3
∞

=
∞
∑

n=0

(−1)n(2n+ 1)qn(n+1)/2.

On letting d→ q Proposition 7.2, we obtain the Euler identity (see,
for example [5, p. 280])

1−
∞
∑

n=1

(q; q)n−1q
n = (q; q)∞.

On taking d = −q in Proposition 7.2, we are led to the identity

1 +
∞
∑

n=1

(−q)n(−q; q)n−1

(

2n+ 3 + 2
n−1
∑

k=1

qk

1 + qk

)

=
(q; q)3

∞

(−q; q)2
∞

.

Proposition 7.3. For a 6= qm, m = ±1,±2, . . . , we have the Lambert
series formula

(q; q)4
∞

(qa, q/a; q)2
∞

= 1 + (1− a)2
∞
∑

n=1

n(q/a)n

1− aqn
+ (1− 1/a)2

∞
∑

n=1

n(qa)n

1− qn/a
.
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Proof. Setting c = 0 and ad = q in proposition 7.1, we conclude that

(q; q)4
∞

(a, q/a; q)2
∞

=

∞
∑

n=0

(q/a)n

1− aqn

(

n +
1

1− aqn

)

(7.1)

=
1

(1− a)2
+

∞
∑

n=1

n(q/a)n

1− aqn
+

∞
∑

n=1

(q/a)n

(1− aqn)2
.

By a direct calculation, we can find the following elementary identity:

∞
∑

n=1

(q/a)n

(1− aqn)2
= a−2

∞
∑

n=1

n(qa)n

1− qn/a
.

Substituting this equation into (7.1) and then multiplying both sides
of the resulting equation by (1− a)2, we complete the proof of Propo-
sition 7.3.

On taking a = −1 Proposition 7.3, we immediately conclude that

(q; q)4
∞

(−q; q)4
∞

= 1 + 8

∞
∑

n=1

n(−q)n

1 + qn
.

On replacing q by −q in this equation, we can obtain Jacobi’s four-
square identity (see, for example [8, p. 61])

(

∞
∑

n=−∞

qn
2

)4

= 1 + 8
∞
∑

n=1

nqn

1− qn
− 32

∞
∑

n=1

nq4n

1− q4n
.

On writing q by q2 and then setting a = q in the first identity in (7.1),
we deduce that

(q2; q2)4
∞

(q; q2)4
∞

=

∞
∑

n=0

nqn

1− q2n+1
+

∞
∑

n=0

qn

(1− q2n+1)2

=

∞
∑

n=0

nqn

1− q2n+1
+

∞
∑

n=0

(n+ 1)qn

1− q2n+1

=

∞
∑

n=0

(2n + 1)qn

1− q2n+1
,

which is equivalent to the Legendre four triangular numbers identity
(see, for example [8, p. 72])

(

∞
∑

n=0

qn(n+1)/2

)4

=
∞
∑

n=0

(2n + 1)qn

1− q2n+1
.
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