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Abstract

A “quantum-first” approach to gravity is described, where rather than quantizing gen-

eral relativity, one seeks to formulate the physics of gravity within a quantum-mechanical

framework with suitably general postulates. Important guides are the need for appropri-

ate mathematical structure on Hilbert space, and correspondence with general relativity

and quantum field theory in weak-gravity situations. A basic physical question is that

of “Einstein separability:” how to define mutually independent subsystems, e.g. through

localization. Standard answers via tensor products or operator algebras conflict with prop-

erties of gravity, as is seen in the correspondence limit; this connects with discussions of

“soft hair.” Instead, gravitational behavior suggests a networked Hilbert space structure.

This structure plus unitarity provide important clues towards a quantum formulation of

gravity.
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The most profound foundational problem in physics is probably that of reconciling

gravity with the reality of the quantum world. Attempts to quantize gravity, beginning

with general relativity (GR) and applying certain rules (canonical quantization, functional

integration, etc.) have met vexing difficulties: nonrenormalizability, and the deeper prob-

lem of nonunitarity, associated with black hole decay[2,3]. String theory follows a similar

path, and despite addressing nonrenormalizability, still confronts nonunitarity. But quan-

tum mechanics is quite rigid, and that suggests another approach: begin with quantum

mechanics (QM), rather than with spacetime, and within QM find the structure needed

to describe gravity.

Conceivably gravity requires modification of QM, but we’ll explore whether QM suf-

fices. However, in typical formulations QM has extra elements likely not present in quan-

tum gravity; we need to begin with a suitably general framework. One such approach was

Hartle’s “generalized QM [4-7],” but that is still tied to the notion of quantizing spacetime.

More basically, essential quantum principles seem to be the existence of a linear space of

states with inner product (“Hilbert space”), hermitian operators interpreted as quantum

observables, and in appropriate contexts unitarity, e.g. of the S-matrix. These “universal

QM[8]” principles are notably sparse.

While these principles distill the spacetime-independent content of QM, clearly more

mathematical structure is needed on Hilbert space to describe gravity. A key question

was enunciated by Einstein[9,10]: “... it appears to be essential for this arrangement of

the things introduced in physics that, at a specific time, these things claim an existence

independent of one another, insofar as these things ‘lie in different parts of space.’ Without

such an assumption of the mutually independent existence (the ‘being-thus’) of spatially

distant things, an assumption which originates in everyday thought, physical thought in

the sense familiar to us would not be possible. Nor does one see how physical laws could

be formulated and tested without such a clean separation.”

As a starting point for a mathematically consistent structure to build on, we thus

look for a notion of “subsystems,” providing such separability. Subsystem structure is

hardwired into other quantum theories. In lattice systems, subsystems arise from tensor

factors of the Hilbert space. Local quantum field theory (LQFT) is more subtle, due to

“infinite entanglement” between neighboring regions (the type-III property of its von Neu-

mann algebras); instead one defines subsystems using commuting subalgebras of operators

associated to spacelike-separated regions[11]1 – matching Einstein’s description. But the

1 These issues are nicely reviewed in [12].
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question is what provides the correct underlying mathematical structure, or “gravitational

substrate,” on a Hilbert space H with gravity.

For a guide beyond mathematical consistency, we appeal to correspondence: in weak

gravity regimes with small perturbations about semiclassical spacetimes, we assume the

fundamental theory must approximately match LQFT plus perturbative GR, working in

an expansion in the gravitational coupling κ =
√
32πG. There is abundant evidence for

this in experimental physics.

So our “quantum-first” approach is to begin with the essential principles of QM,

and then follow the twin guides of need for a mathematically consistent structure and of

correspondence. This minimalist approach assumes no extra hidden degrees of freedom,

or extraneous structure. These guides are actually quite nontrivial.

A similar approach to LQFT provides an example. LQFT can be viewed as a solution

to the problem of constructing a quantum theory, implementing the additional postulates

of spacetime locality and special relativity. Locality is introduced through the algebraic

structure[11,12] described above: one has privileged subalgebras of observables, associated

with the open sets of spacetime, which commute at spacelike separation. In the limit of

small neighborhoods, these give local fields. This extra structure thus arises directly from

the underlying spacetime manifold. Relativity is implemented through an action of the

Poincaré group.

We seek analogous structure for gravity by investigating its weak-field correspondence

limit. Spacetime is used to infer the perturbative structure of the theory, but ultimately

we seek to determine the intrinsic mathematical structure on the Hilbert space, in which

spacetime is not expected to be fundamental. In parallel with LQFT, consider properties

of quantum observables, for concreteness in the theory of a scalar φ coupled to gravity. In

gravity, φ(x) is no longer a gauge-invariant observable: diffeomorphisms act via

δxµ = −κξµ(x) , (1)

so act nontrivially on local operators. One can find gauge-invariants by “dressing[13-15]”

φ(x), which at linear order in κ becomes

Φ(x) = φ(xµ + V µ(x)) . (2)

The V µ(x) are written in terms of the metric perturbation,

gµν(x) = ηµν + κhµν(x) (3)

2



and are constrained by diffeomorphism invariance, using

δhµν = −∂µξν − ∂νξµ , (4)

or equivalently by the condition that Φ(x) commutes with the constraints Gµ
0
−8πGTµ

0
= 0.

Different choices exist[15]. One is defined in terms of integrals along an arbitrary curve Γ

connecting (x,∞),

V Γ

µ (x) =
κ

2

∫ ∞

x

dx′ν
{

hµν(x
′) +

∫ ∞

x′

dx′′λ [∂µhνλ(x
′′)− ∂νhµλ(x

′′)]

}

; (5)

then Φ(x) creates a particle together with a gravitational field concentrated along Γ.

Another[15], V C
µ (x), found from an average of (5) over directions, creates a linearized

Schwarzschild field.

We ask what are intrinsic properties of the operators that should match the funda-

mental theory[16]. One finds[15]

[Φ(x),Φ(y)] 6= 0 (6)

for spacelike x − y, due to the dressing Vµ(x) extending to infinity; gravity has no local

commuting observables[17,18].

With neither tensor factorization nor commuting subalgebras to define subsystems and

separability we need another approach. Is there some notion of “independent information”

in a region, not evident in the gravitational field outside, or put differently, “what is a

localized qubit in gravity?” Part of the answer is provided in [19,20]: given a matter

configuration in a compact spatial region (extendable to a spacetime region), one may

always find a linearized gravitational field outside that depends only on the total Poincaré

charges of the matter. This field may be linelike as from (5) – incidentally providing an

example of local screening of gravity, or “antigravity[21,22]” – or linearized boosted Kerr.2

Different localized information may thus be encoded in different configurations with

identical Poincaré charges and thus asymptotic fields. More generally, this suggests the

notion of a “gravitational split structure[19]” associated to a neighborhood U , which is a

Hilbert subspace of states Hi
U ⊂ H so that for two states |ψ〉, |ψ̃〉 ∈ Hi

U and any observable

A localized outside U ,

〈ψ̃|A|ψ〉 = 〈ψ̃|ψ〉〈i|A|i〉 : (7)

2 Generalizing[19] the Corvino-Schoen gluing theorem[23,24].
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the “value” of A only depends on the Hilbert space label i.

A suggested alternative to the algebraic structure of LQFT is thus a network of such

Hilbert subspaces related by inclusion maps. For example, if U ′ ⊂ U , we expect an

inclusion

Hi
U ′ →֒ Hi

U . (8)

However, there should not be an Hi
U ⊂ H for each U ; if we try to excite a state in

a neighborhood small compared to the Planck length ∼ κ, its strong gravitational field

extends outside the neighborhood. Similarly, for a separated pair U, U ′ we expect

Hi
U ⊗Hi′

U ′ →֒ H , (9)

with limitations for states producing a strong gravitational field spanning the separation.

These limitations are in fact seen in (6): noncommutativity becomes large for such strong

fields[25-27,15].

Such a network of Hilbert space inclusions provides a candidate substrate. While

spacetime has been used to infer the perturbative limit of the mathematical structure, this

network - once more completely determined – is more basic, providing an example of a

possible quantum replacement for spacetime.

Similar approaches have begun with tensor products of Hilbert spaces[28-33], but

we have found gravitational systems don’t have Hilbert spaces with simple tensor factor-

izations. Another approach, “spacetime from entanglement[34,35],” begins with tensor

product structure, and is puzzling from the present view, which has argued that definition

of a subsystem structure arises from an analog of spacetime structure, and is prior to def-

inition of entanglement[1]; moreover, we expect this subsystem structure to be hardwired

into locality properties of the hamiltonian.

The mathematical structure implementing Einstein’s separability is expected to play

a key structural role and constrain the theory. A related question is that of evolution,

particularly given the problems black holes present for unitarity. Is a black hole (BH)

a localized subsystem? In Hawking’s original LQFT-based argument[2,3] it is, and its

ultimate disappearance spoils unitary evolution.

But we have found this question is more subtle; a related “soft quantum hair”

proposal[36] has even suggested that gravitational delocalization of information might re-

store unitarity. This is an important question. The preceding arguments regarding split

structure suggest that gravitational dressings may be found that make the “soft charges”
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of [36] corresponding to a given matter configuration vanish, so the soft hair doesn’t encode

its information, though higher-order questions remain[1].

If indeed the information in states of a BH subsystem is invisible from outside, uni-

tary evolution apparently requires transfer of this information out of the BH, through new

interactions not described by LQFT. One can attempt to parameterize the needed inter-

actions, in a form not spoiling correspondence[37,30,38,39]. If the subsystem structure

requires such interactions to be present to preserve unitarity, that is also very important

information about the theory.

A quantum-first approach thus provides a tight framework in which to cast grav-

ity. The twin goals of finding mathematically consistent structure needed for physics,

and respecting correspondence with quantum field theory and perturbative general rel-

ativity, provide extremely constraining guides. We already find quite nontrivial math-

ematical structure in the perturbative/correspondence limit. Plausibly these combined

requirements, including unitarity, will give key clues to a theory explaining gravity within

quantum mechanics.
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[24] P. T. Chruściel and E. Delay, “On mapping properties of the general relativistic con-

straints operator in weighted function spaces, with applications,” Mem. Soc. Math.

France 94, 1 (2003). [gr-qc/0301073].

[25] S. B. Giddings and M. Lippert, “Precursors, black holes, and a locality bound,” Phys.

Rev. D 65, 024006 (2002). [hep-th/0103231].

[26] S. B. Giddings and M. Lippert, “The Information paradox and the locality bound,”

Phys. Rev. D 69, 124019 (2004). [hep-th/0402073].

[27] S. B. Giddings, “Locality in quantum gravity and string theory,” Phys. Rev. D 74,

106006 (2006). [hep-th/0604072].

[28] T. Banks and W. Fischler, “M theory observables for cosmological space-times,” [hep-

th/0102077].

[29] T. Banks, “Lectures on Holographic Space Time,” [arXiv:1311.0755 [hep-th]].

[30] S. B. Giddings, “Black holes, quantum information, and unitary evolution,” Phys.

Rev. D 85, 124063 (2012). [arXiv:1201.1037 [hep-th]].

[31] C. Cao, S. M. Carroll and S. Michalakis, “Space from Hilbert Space: Recover-

ing Geometry from Bulk Entanglement,” Phys. Rev. D 95, no. 2, 024031 (2017).

[arXiv:1606.08444 [hep-th]].

[32] C. Cao and S. M. Carroll, “Bulk Entanglement Gravity without a Boundary: Towards

Finding Einstein’s Equation in Hilbert Space,” [arXiv:1712.02803 [hep-th]].

[33] S. M. Carroll and A. Singh, “Mad-Dog Everettianism: Quantum Mechanics at Its

Most Minimal,” [arXiv:1801.08132 [quant-ph]].

[34] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel.

Grav. 42, 2323 (2010), [Int. J. Mod. Phys. D 19, 2429 (2010)]. [arXiv:1005.3035 [hep-

th]].

[35] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch.

Phys. 61, 781 (2013). [arXiv:1306.0533 [hep-th]].

[36] S. W. Hawking, M. J. Perry and A. Strominger, “Soft Hair on Black Holes,” Phys.

Rev. Lett. 116, no. 23, 231301 (2016). [arXiv:1601.00921 [hep-th]];

“Superrotation Charge and Supertranslation Hair on Black Holes,” JHEP 1705, 161

(2017). [arXiv:1611.09175 [hep-th]].

7

http://arxiv.org/abs/1706.03104
http://arxiv.org/abs/1611.01808
http://arxiv.org/abs/gr-qc/0301071
http://arxiv.org/abs/gr-qc/0301073
http://arxiv.org/abs/hep-th/0103231
http://arxiv.org/abs/hep-th/0402073
http://arxiv.org/abs/hep-th/0604072
http://arxiv.org/abs/hep-th/0102077
http://arxiv.org/abs/hep-th/0102077
http://arxiv.org/abs/1311.0755
http://arxiv.org/abs/1201.1037
http://arxiv.org/abs/1606.08444
http://arxiv.org/abs/1712.02803
http://arxiv.org/abs/1801.08132
http://arxiv.org/abs/1005.3035
http://arxiv.org/abs/1306.0533
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/1611.09175


[37] S. B. Giddings, “Models for unitary black hole disintegration,” Phys. Rev. D 85,

044038 (2012) [arXiv:1108.2015 [hep-th]].

[38] S. B. Giddings, “Nonviolent nonlocality,” Phys. Rev. D 88, 064023 (2013). [arXiv:1211.7070

[hep-th]].

[39] S. B. Giddings, “Nonviolent unitarization: basic postulates to soft quantum structure

of black holes,” JHEP 1712, 047 (2017). [arXiv:1701.08765 [hep-th]].

8

http://arxiv.org/abs/1108.2015
http://arxiv.org/abs/1211.7070
http://arxiv.org/abs/1701.08765

