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PARTIALLY AMPLE SUBVARIETIES OF PROJECTIVE VARIETIES

MIHAI HALIC

Abstract. The goal of this article is to define partially ample subvarieties of projective
varieties, generalizing Ottem’s work on ample subvarieties, and also to show their ubiquity.
As an application, we obtain a connectedness result for pre-images of subvarieties by mor-
phisms, reminiscent to a problem posed by Fulton-Hansen in the late 1970s. Similar criteria
are not available in the literature.

Introduction

Hartshorne [13, 14] pioneered the systematic study of the cohomological properties of pairs
consisting of a projective scheme which is regular in a neighbourhood of a local complete
intersection subscheme with ample normal bundle. Ample subvarieties of projective varieties
were defined by Ottem [21], based on Totaro’s work [24] on cohomological ampleness. Inspired
by op. cit., but in a totally different framework (cf. [10, Introduction]), the author considered
the weaker q-ampleness property. Moreover, recently there is an increased interest in study-
ing and understanding various positivity properties of higher codimensional subvarieties and
cycles, see e.g. [8] and the references therein.

Our goal is to introduce partially ample subschemes. Besides general properties and exam-
ples, an important feature are their connectedness properties. The main result is a contribu-
tion to an issue raised by Fulton-Hansen [9], known to be false in its original form. We prove
that appropriate partial ampleness of a subvariety yields the connectedness of its pre-image
under a morphism; in fact, it implies the G3 property, in Hironaka-Matsumura’s terminology.

The article consists of three sections. In the first one, we introduce the relevant definitions
and compress those properties which carry over from [21]; for details, the reader should consult
the original reference. Next we present a class of situations where Fulton-Hansen’s question
does admit a positive answer.

Theorem (cf. 2.2, 2.7) Let V,X be irreducible projective varieties, V
f

Ñ X a morphism. Let
Y Ă X be a closed subscheme.

(i) If f is surjective and cdpXzY q ď dimX ´ 2, then f´1pY q is connected.
(ii) Suppose Y is

`
dim fpV q ` dimpY q ´ dimpXq ´ 1

˘
-ample.

Then f´1pY q is connected and π
alg
1 pf´1pY qq Ñ π

alg
1 pV q is surjective.

When f is an embedding, the theorem yields a connectedness criterion for intersections,
reminiscent to an problem posed by Hartshorne (cf. [14, 22]) which is still wide open. An
example from op. cit. shows that the first part of our result is optimal (cf. Remark 2.5).
To our knowledge, such numerical conditions are not available in this generality. Existing
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2 MIHAI HALIC

results (cf. Fulton-Hansen [9, 12], Faltings [7], Debarre [6]) hold for subvarieties of various
homogeneous spaces.

Also, our result goes beyond the applicability of Ottem’s work. On one hand, for a subvariety,
the requirement to be partially ample is obviously less restrictive than to be ample. On the
other hand—at a deeper level—even in the basic case of two subvarieties of an ambient space,
one of them being ample, [21] yields only the non-emptiness of their intersection, but gives
no information about the connectedness without further smoothness assumptions. Since the
image of a morphism can have arbitrarily bad singularities, it is not possible to conclude
anything regarding the connectedness of pre-images. Precisely for this reason, the first part
of the Theorem is essential: it holds in full generality.

In the last section, we show the ubiquity of partially ample—mostly not ample—subvarieties
by analysing several classes of examples: vanishing loci of sections in vector bundles (cf. §3.1);
Bialynicki-Birula decompositions (cf. §3.2); rational homogeneous spaces (cf. §3.3).

1. q-ample and p-positive subvarieties

Notation 1.1 Let X be a projective scheme defined over an algebraically closed field k of
characteristic zero. Let Y be a closed subscheme; we denote the maximal dimension of its
components by dimY , and assume that they are all at least 1-dimensional. Let IY Ă OX be
the sheaf of ideals defining Y ; for m ě 0, Ym is the subscheme defined by Im`1

Y . The formal

completion of X along Y is X̂Y :“ limÝÑYm; for any coherent sheaf G on X, it holds

HtpX̂Y ,Gq “ limÐÝHtpYm,Gq. (1.1)

Let X̃ :“ BlY pXq
σ

Ñ X be the blow-up of IY and EY Ă X̃ the exceptional divisor. If X
is Cohen-Macaulay and Y is locally complete intersection—lci for short—, its normal sheaf
NY {X :“ pIY {I2Y q_ is locally free. A variety is a reduced and irreducible scheme. The symbol

ctA stands for a constant depending on the quantity A. Further necessary notions are recalled
in the appendix.

1.1. Basic properties. Let the situation be as above.

Definition 1.2 We denote

δ :“ codimXpY q “ mintcodimXY 1 | Y 1 irreducible component of Y u.

(i) (cf. [21, Definition 3.1]) We say that Y is q-ample if OX̃pEY q is pq ` δ ´ 1q-ample. That

is, for any coherent sheaf F̃ on X̃ it holds:

HtpX̃, F̃ b OX̃pmEY qq “ 0, @ t ě q ` δ, @m ě ctF̃ . (1.2)

(ii) We say that Y is (has the property) pą0—that is, p-positive—if it holds:

HtpX,F b ImY q “ 0, @ t ď p, @m ě ctF, (1.3)

for all locally free sheaves F on X.

Partial ampleness behaves well under restrictions, while positivity yields connectedness re-
sults. The notions are dual under certain regularity assumptions.
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Remark 1.3 (i) For q “ 0, one recovers the ample subschemes [21].
(ii) For a closed point y P Y , it holds

δY,y ´ 1 ď dimσ´1pyq ď q ` δ ´ 1, (1.4)

where δY,y is the codimension of the irreducible component of Y containing y (cf. [21, Propo-
sition 3.4]). See 2.6 for equidimensionality criteria of partially ample subvarieties.

Proposition 1.4 (i) A subscheme is q-ample if and only if so is its integral closure.
(ii) The q-ampleness property of lci subschemes is open relative to projective, flat morphisms.
(iii) Y is q-ample if and only if it holds:

(a) OEY
pEY q is pδ ` q ´ 1q-ample; (b) cdpXzY qď δ ` q ´ 1. (Note: cdpXzY qě δ ´ 1.)

Proof. (i)+(ii) See [21, Proposition 6.8, Theorem 6.1].

(iii) Verify (1.2) for F̃EY
—F̃ “ Ã´k, k ě 1, and Ã P PicpX̃q ample—by using the sequence

0 Ñ F̃ppm ´ 1qEY q Ñ F̃pmEY q Ñ F̃EY
pmEY q Ñ 0; proceed as in [21, Theorem 5.4]. l

Proposition 1.5 The following statements are equivalent:

(i) Y Ă X is pą0; (ii) EY Ă X̃ is pą0;
(iii) The condition (1.2) holds for F “ Ak, k ě 1, where A P PicpXq is ample.
(iv) For all locally free sheaves F on X, the properties below are satisfied:

paq Ht
`
X, ImY {Im`1

Y b F
˘

“ 0, @m ě ctF, 0 ď t ď p ´ 1,

pbq resXY : HtpX,Fq Ñ HtpX̂Y ,Fq is

"
an isomorphism, for t ď p ´ 1,

injective, for t “ p.

Proof. (i)ô(iii) Observe that F fits into 0ÑFÑAk b kNÑGÑ0, with k,N ą 0, and G locally
free. Then HtpF b ImY q – Ht´1pG b ImY q—so t decreases—and we repeat the process.

(i)ô(ii) Let A P PicpXq be ample such that Ã :“ σ˚Ap´EY q is ample on X̃. Now note that

HtpX̃, Ãkp´mEY qq“HtpX̃, σ˚Akp´pk ` mqEY qq“HtpX,Ak b I
k`m
Y q, for m"0.

(i)ô(iv) For (a), we use 0ÑIm`1
Y ÑImY ÑImY {Im`1

Y Ñ0; for (b), twist by F the following sequence

and use (1.1): 0ÑI
m`1
Y ÑOXÑOYmÑ0.

Conversely, for t ď p´1 and m " ctF, using 0ÑImY {Im`1
Y ÑOYmÑOYm´1

Ñ0 we deduce that

HtpYm,FqÑHtpYm´1,Fq are injective and eventually isomorphic, so HtpX̂Y ,Fq “ HtpYm,Fq
for m large enough. Thus HtpX,FqÑHtpYm,Fq are isomorphisms, so HtpImY b Fq “ 0. It

remains t “ p. For m ě ctF, HppIm`1
Y bFqÑHppImY bFq are injective, eventually isomorphic

to a vector space Hpp,Fq. The previous step and the sequence 0ÑI
m`1
Y ÑOXÑOYmÑ0 imply

that Hpp,Fq “ Ker
`
HppX,FqÑHppX̂Y ,Fq

˘
“ 0. l

Proposition 1.6 We consider the conditions:

(A) Y is a pdimY ´ pq-ample subscheme; (P) Y is pą0.

The following statements hold:

(i) If X̃ is a Cohen-Macaulay scheme, then (A) ñ (P);

(ii) If X̃ is a Gorenstein, then (A) ô (P).
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(iii) For X smooth and Y lci, one has the equivalence:

Y is pą0 ô

"
the normal bundle NY {X is pdimY ´ pq-ample,

the cohomological dimension cdpXzY q ď dimX ´ pp ` 1q.
(1.5)

Proof. (i) Since OX̃p´EY q is relatively ample, for m " 0, it holds:

HtpX,F b ImY q – HtpX̃,F b OX̃p´mEY qq – HdimX´tpX̃, ωX̃ b F_ b OX̃pmEY qq.

(ii) The equation above shows that (1.2) holds for ωX̃ b L, L P PicpXq; let us prove for a

coherent sheaf F̃ on X̃ . Take A P PicpXq ample such that Ap´EY q is ample on X̃ , and c ą 0

such that pF̃bω´1
X̃

q bAp´EY qc is globally generated. The recursion [21, Lemma 2.1] applied

to 0 Ñ F̃1 :“ Kerpεq Ñ
`
ωX̃ b A´c b OX̃pcEY q

˘‘N ε
Ñ F̃ Ñ 0, for some N ą 0, yields

HjpF̃pmEY qq Ă Hj`1pF̃1pmEY qq, j ě codimY ` q, m " 0.

(iii) Apply Proposition 1.4, since X̃ is Gorenstein. �

The Cohen-Macaulay (resp. Gorenstein) property of blow-ups has been investigated by
several authors; combinatorial conditions are determined in [17, 16]. A situation which covers
many geometric applications is when X is Cohen-Macaulay (resp. smooth) and Y is lci.

The proposition above breaks the estimation of the amplitude into a local and a global
problem. The former is easier but, in general, the cohomological dimension is difficult to
control (cf. [1, 20, 7]); in [11] we obtained upper bounds—those of interest—in the presence
of affine stratifications. Below is a manageable situation which will be used in Section 3.

Proposition 1.7 Let V be a projective scheme, X̃
φ

Ñ V a morphism such that OX̃pEY q is

φ-relatively ample. Then Y Ă X is q-ample, for q :“ 1 ` dimφpX̃q ´ codimXpY q.

Proof. For a coherent sheaf F̃ on X̃, one has Rtφ˚pF̃ b OX̃pmEY qq“0, t ą 0,m " 0, so

Hj
`
X̃, F̃ b OX̃pmEY q

˘
“Hj

`
V, φ˚pF̃ b OX̃pmEY qq

˘
“0, j ě q ` δ ą dimφpX̃q. �

1.2. Elementary operations. We study the behaviour of partial ampleness under various
natural operations: intersection, pull-back, product.

Proposition 1.8 Let X 1 f
Ñ X be a morphism, d :“ the maximal dimension of its fibres, and

Y 1 :“ X 1 ˆX Y “ f´1pY q Ă X 1.

(i) If Y Ă X is q-ample, then Y 1 Ă X 1 is pq ` dq-ample.
(ii) If f is flat and surjective and Y is pą0, then so is Y 1.

Proof. (i) The universality property of the blow-up yields the commutative diagram

X̃ 1 “ BlY 1pX 1q

��

f̃
// X̃ “ BlY pXq

��

X 1 f
// X f̃˚OX̃pEY q “ OX̃1 pEY 1q.

Moreover, X̃ 1 Ă X 1 ˆX X̃ is a closed subscheme, so the maximal dimension of the fibres of f̃ is
still d. For a coherent sheaf G̃ on X̃ 1, the projection formula implies Rif̃˚pG̃bOX̃1pmEY 1qq “

Rif̃˚G̃ b OX̃pmEY q, Rj f̃˚G̃ “ 0, j ą d, and the condition (1.2) follows.



PARTIALLY AMPLE SUBVARIETIES 5

(ii) Since f is flat, the diagram is Cartesian. Take Ã1 P PicpX̃ 1q ample such that Rj f̃˚Ã
1k “ 0,

for k, j ą 0; then F̃k :“ f̃˚Ã
1k is locally free on X̃, by Grauert’s criterion. For t ď p, one has

HtpX̃ 1, Ã1kp´mEY 1qq “ HtpX̃, F̃kp´mEY qq, and we conclude by 1.5. l

Proposition 1.9 Suppose X is smooth.

(i) Let Y1, Y2 Ă X be respectively q1-, q2-ample lci subvarieties such that codimpY1 X Y2q “
codimpY1q ` codimpY2q. Then Y1 X Y2 Ă X is pq1 ` q2q-ample.

(ii) Suppose Yj Ă Xj are lci and pą0
j , for j “ 1, 2. Then Y1 ˆY2 Ă X1 ˆX2 is mintp1, p2uą0.

Proof. (i) Note that Y1 X Y2 is lci in X; the sub-additivity property [2, Theorem 3.1] applied
to the normal bundle sequence implies that NY1XY2{X is pq1 ` q2q-ample. The Mayer-Vietoris
sequence for XzpY1 Y Y2q yields the bound on the cohomological dimension.
(ii) The inequality cdpX1 ˆ X2zY1 ˆ Y2q ă dimpX1 ˆ X2q ´ mintp1, p2u follows from the
Mayer-Vietoris sequence for X1 ˆ X2zY1 ˆ Y2 “

`
pX1zY1q ˆ X2

˘
Y
`
X1 ˆ pX2zY2q

˘
.

It remains to show that NY1ˆY2{X1ˆX2
is q-ample, for q “ dimY1 ` dimY2 ´ mintp1, p2u.

We use the equivalent characterization in Definition A.1: let A1,A2 be ample line bundles on
X1,X2, respectively, and A1 b A2 the tensor product of their pull-backs. Then, for a " 0,
k ě 1, and t ą maxtq1 ` dimX2, q2 ` dimX1u, it holds:

Ht
`
Y1 ˆ Y2, pA´k

1 b A´k
2 q b SymapNY1{X1

‘ NY2{X2
q
˘

“
À

t1`t2“t,
a1`a2“a

Ht1
`
Y1,A

´k
1 b Syma1pNY1{X1

q
˘

b Ht2
`
Y2,A

´k
2 b Syma2pNY2{X2

q
˘

“ 0. l

1.3. Weak positivity. Our goal is to prove a transitivity result for the pą0-property.

Definition 1.10 The subscheme Y Ă X is pÁ0—that is, weakly p-positive—if there is a
decreasing sequence of sheaves of ideals tJmum with the following properties:

‚ @m,n ě 1, Dm1 ą m, n1 ą n such that Jm1 Ă ImY , In
1

Y Ă Jn;

‚ for any locally free sheaf F on X,

D ctF ě 1 such that Ht
`
X,F b Jm

˘
“ 0, @ t ď p @m ě ctF .

(1.6)

Obviously, Y is pÁ0 if and only if so is Yred.

Lemma 1.11 Suppose X is smooth, Y is lci and pÁ0. Then cdpXzY qď dimX´pp ` 1q.

Proof. Since X is smooth, [14, Proposition III.3.1] states:

cdpXzY q ă c ô HtpXzY,Lq “ 0, @L P PicpXq, @t ě c.

We have XzY – X̃zEY and HtpX̃zEY ,Lq “ limÝÑHtpX̃,LpmEY qq, cf. [21, (5.1)]. Since

PicpX̃q – PicpXq ‘ ZEY , one has ωX̃ b L´1 – MplEY q for some M P PicpXq, l P Z. By

applying Serre duality—as X̃ is Gorenstein—we find:
limÐÝHjpX,M b ImY q “ limÐÝHjpX,M b Jnq “ 0, @M P PicpXq, j ď p. l

Corollary 1.12 Let Y Ă X be complex, smooth varieties. If Y is pÁ0, then the following
statements hold:
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(i) HtpX;Qq Ñ HtpY ;Qq is

"
an isomorphism, for t ď p ´ 1;

injective, for t “ p.

(ii) For p ě 3, the following maps are isomorphisms:

PicpXq b Q Ñ PicpX̂Y q b Q Ñ PicpY q b Q.

(iii) For p “ dimY ´ q and X,Y as in 1.7, the previous properties hold with Z-coefficients.

Proof. (i) Use the previous lemma and [21, Corollary 5.2].

(ii) One has HjpOXq
–
Ñ HjpX̂Y ;OX̂Y

q, j “ 1, 2. On the other hand, the sequence

H1pY ;Zq Ñ H1pX̂Y ;OX̂Y
q Ñ PicpX̂Y q Ñ H2pY ;Zq Ñ H2pX̂Y ;OX̂Y

q

is exact (cf. [13, Lemma 8.3]). Now use (i) and the exponential sequences of X,Y .

(iii) Note that OX̃pEY q is dimφpX̃q-positive, so A.4(iii) applies. Indeed, consider an em-

bedding X̃
ι

Ñ PN ˆ V over V , such that OX̃pm0EY q “ ι˚pOPN p1q b Mq, for some m0 ą 0,
M P PicpV q. Now take the Fubini-Study metric on OPN p1q and an arbitrary on M. l

Proposition 1.13 Let X be smooth. Suppose Z Ă Y is pą0, Y Ă X is rą0, and they are
both irreducible and lci. Then the following statements hold:

(i) Z Ă X is
`
p ´ pdim Y ´ rq

˘ą0
; more precisely, one has:

"
NZ{X is

`
dimY ` dimZ ´ pr ` pq

˘
-ample,

cdpXzZq ď dimX ´ pmintr, pu ` 1q.
(1.7)

(ii) If Z, Y are smooth, then Z Ă X is mintp, ru Á0.

Proof. (i) The first claim follows from 1.4. For the second, let UZ :“XzZ, UY :“XzY , and G

be a coherent sheaf on X. The left- and right-hand side of the exact sequence

. . . Ñ H i
Y zZpUZ ,Gq Ñ H ipUZ ,Gq Ñ H ipUY ,Gq Ñ . . . ,

vanish for i ě dimX ´ p and i ě dimX ´ r, respectively (cf. [21, Proposition 6.4]).

(ii) Both Y,Z are mintp, ruą0, so we may assume without loss of generality that p “ r.

Consider ξ1, . . . , ξu, ζ1, . . . , ζv P OX,z , whose images in ÔX,z yield independent variables, such
that IY,z “ xξy “ xξ1, . . . , ξuy and IZ,z “ xξ, ζy “ xξ1, . . . , ξu, ζ1, . . . , ζvy. For l ě a, a direct

computation yields IaY,z X IlZ,z “
lř

i“a

xξyi ¨ xζyl´i “ IaY,z ¨ Il´a
Z,z , which implies pIlZ,z ` IaY,zq{IaY,z –

IlZ,z{IaY,z ¨ Il´a
Z,z . We obtain the exact sequences:

0 Ñ
IaY

I
a`1
Y

b

ˆ
IZ

IY

˙l´a

Ñ
IlZ ` I

a`1
Y

I
a`1
Y

Ñ
IlZ ` IaY

IaY
Ñ 0, @ l ě a ` 1. (1.8)

The left side is an OY -module: IZ{IY “ IZĂY is the ideal of Z Ă Y ; IaY {Ia`1
Y “ SymaN_

Y {X .

Let F be locally free on X. By the pą0-property, there is a linear function lpkq “ ct1¨ k`ct2
(with ct1, ct2 independent of F) and kF, lF P N, such that:

HtpF b IkY q “ 0, @ t ď p, @ k ě kF,

HtpFY b IlZĂY q “ 0, @ t ď p, @ l ě lF,

HtpFY b SymaN_
Y {X b Il´a

ZĂY q “ 0, @ t ď p, @ a ď k, @ l ě lpkq.
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The last claim is a consequence of the uniform q-ampleness and the sub-additivity property
of the amplitude (cf. [24, Theorems 7.1], [2, Theorem 3.1]):

– There is a function linearprq such that, for any locally free sheaf F whose regularity
satisfies maxt1, regpFY qu ď r, it holds: HtpFY b IlZĂY q “ 0, @ t ď p, l ě linearprq.

– If a ď k, then regpFY b SymaN_
Y {Xq ď linearpkq.

Recursively for a “ 1, . . . , k, and starting by
IlZ`IY

IY
“ IlZĂY , (1.8) yields:

Ht
´
F b

IlZ`IkY
Ik
Y

¯
“ 0, @t ď p, @ l ě lpkq.

Now tensor 0 Ñ IkY Ñ IlZ ` IkY Ñ
IlZ`IkY
Ik
Y

Ñ 0 by F and deduce:

Ht
`
F b pIkY ` IlZq

˘
“ 0, @ t ď p, @ k ě kF, @ l ě lpkq.

The subschemes defined by IkY ` IlZ are ‘asymmetric’ thickenings of Z in X. The ideals

Jk :“ IkY ` I
k`lpkq
Z satisfy (1.6): Jk1 Ă IkZ , k

1 ě k, Im
1

Z Ă Jm, m1 ě m ` lpmq. l

2. Connectedness properties

Notation 2.1 Let V,X be irreducible projective varieties, V
f

Ñ X a morphism, and Y Ă X

a closed subscheme.

The issue regarding the connectedness of pre-images of subschemes by morphisms was
raised by Fulton-Hansen in the late 70s.

Conjecture (cf. [9, p. 161]) Suppose that dim fpV q ` dimY ą dimX and the normal bundle
NY {X is ample. Then f´1pY q is connected.

Despite its elementary nature, it turns out that the question is surprisingly difficult to
answer. It is known that, in this form, the conjecture is false; a counterexample can be found
in [14]. However, it does hold for subvarieties of various homogeneous spaces (cf. [9, 12, 7, 6]),
so it is interesting to find a framework which yields a positive answer.

2.1. Connectedness of pre-images.

Theorem 2.2 Suppose cdpXzY q ď dimpXq ´ 2 and f is surjective. Then f´1pY q is con-
nected, in particular so is Y .

The statement generalizes [14, Corollary III.3.9] in two directions. First, it allows morphisms
into the picture; this is important, taking into account the Fulton-Hansen-problem. Second,
there is no assumption on the smoothness of the varieties; this is crucial, since one can not
control the regularity of the image of an arbitrary morphism.

Proof. We may assume that V is smooth. Otherwise, let V 1 σ
Ñ V be a (surjective) resolution

of singularities; if pfσq´1pY q is connected, then so is f´1pY q “ σ
`
pfσq´1pY q

˘
.

In order to prove that Z :“ f´1pY q is connected, it suffices to show that

resZ : H0pV,OV q Ñ H0pV̂Z ,OV̂Z
q (2.1)

is an isomorphism. By formal duality [14, Theorem III.3.3], the right-hand side is isomorphic
to HdimV

Z pV, ωV q_ and the dual of resZ fits into the exact sequence:

HdimV ´1pV zZ,ωV q Ñ HdimV
Z pV, ωV q Ñ HdimV pV, ωV q Ñ HdimV pV zZ,ωV q.
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The rightmost cohomology group vanishes, by Lichtenbaum’s theorem.
We claim that the leftmost group vanishes too. This a consequence of Leray’s spectral

sequence for f , combined with Kollár’s higher direct image theorem [18, Theorem 2.1]. Indeed,
the cohomology group Ha`bpV zZ,ωV q can be computed using the spectral sequence whose
E2-term is HapXzY,Rbf˚ωV q. With the ad hoc notation

v :“ dimV, x :“ dimX, so v ´ x “ dimpgeneric fibre of fq,

Kollár’s theorem states that Rbf˚ωV “ 0, for b ě v ´ x ` 1.
The restriction of f to V zZ is proper, so the higher direct images are coherent (in fact

torsion free, by loc. cit.). The assumption on the cohomological dimension of XzY yields
HapXzY,Rbf˚ωV q “ 0, for a ě x ´ 1. l

Corollary 2.3 The induced homomorphism π
alg
1 pf´1pY qq Ñ π

alg
1 pV q between the algebraic

fundamental groups is surjective.

Proof. For any étale morphism W
g

Ñ V , pfgq´1pY q “ g´1
`
f´1pY q

˘
is connected. l

In general, for arbitrary V , there is no control on the homomorphism (2.1).

Proposition 2.4 Let the situation be as above and suppose moreover that V is normal and
has rational singularities. Then resZ : H0pV,OV q Ñ H0pV̂Z ,OV̂Z

q is an isomorphism.

Subschemes satisfying this property are called G1 in Hironaka-Matsumura [15].

Proof. The argument is the same as above. Kempf’s criterion implies that V is Cohen-

Macaulay and, at the first step of the previous proof, the resolution V 1 σ
Ñ V has the property

that σ˚ωV 1 “ ωV . Consequently, formal duality—needed for dualizing (2.1)—holds on V .
(Cohen-Macaulayness suffices for the Serre duality in the proof of [14, Theorem III.3.3].) For
Z 1 :“ σ´1pZq, one has: HjpV 1zZ 1, ωV 1q – HjpV zZ,ωV q, j “ v ´ 1, v; this transfers the
computation from V to V 1, which is smooth. l

Remark 2.5 (i) Lichtenbaum’s theorem states that cdpXzY q ď x ´ 1, but it is unclear
when is maximal. Our result implies that, contrary to the intuition, the cohomological
dimension does not drop by removing effective divisors, the reason is not due to the
existence of ‘disjoint divisors’. Indeed, suppose cdpXzY q “ x ´ 1 and D Ă X is a
(complete) effective divisor, disjoint of Y . Then it still holds cdpXzpY Y Dqq “ x ´ 1;
otherwise Y Y D would be connected, contradicting the hypothesis.

The observation is false if the divisor is allowed to intersect Y : cdpP2zr1:0:0sq “ 1
and it remains the same by removing a line disjoint of r1:0:0s. However, by removing
a line passing through the point, one obtains the affine 2-plane, whose cohomological
dimension vanishes.

(ii) The Fulton-Hansen-conjecture is false in general; a counterexample is due to Hartshorne

(cf. [14, pp. 199]). Let V
f

ÑX be an étale (surjective) morphism, Y 1 a δ-codimensional,
general complete intersection in V , with 2δ ą dimV ; let Y :“fpY 1q. Then NY {X is ample,

f´1pY 1q is disconnected. What (necessarily) fails is cdpXzY qď dimX´2. This shows
that Theorem 2.2 is optimal.
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2.2. Application to partially ample subvarieties. We start discussing the equidimen-
sionality of partially ample subvarieties. In general, they are not so: consider X :“ P2 and

Y :“ tx “ 0u Y ty “ z “ 0u. Then X̃ “ BlY pP2q is isomorphic to the blow-up ĂP2 of P2 at
r1 : 0 : 0s, with exceptional divisor E, and OX̃pEY q “ OP2p1q bOĂP2

pEq. A short computation
shows that Y is 1-ample.

Lemma 2.6 Let X be a projective variety, and suppose that X,Y are both Cohen-Macaulay.
If Y is either 1Á0 or pdimY ´ 1q-ample in X, then Y is equidimensional.

Proof. Suppose Y is 1Á0. Then it is G1: the isomorphism H0pOXq – H0pO
X̂Y

q holds ‘in

finite time’: with notation 1.10, one has H0pJmq “ H1pJmq “ 0, m " 0. In particular, Y is
connected. The same holds if Y is pdimY ´1q-ample. Now conclude by using the unmixedness
property, that local Cohen-Macaulay rings are equidimensional. l

Recall that partial ampleness yields an upper bound for the cohomological dimension of
the complement of a subvariety. Thus we obtain a convenient class of subvarieties for which
Theorem 2.2 does apply. Below is our main result: partial ampleness is a numerical condition
which ensures that pre-images are connected. We stress that, in the generality below, there
are no similar statements in the literature.

Theorem 2.7 Let the situation be as in 2.1.

(i) Let Y Ă X be a
`
dim fpV q ` dimpY q ´ dimpXq ´ 1

˘
-ample closed subscheme. Then the

following properties hold:

f´1pY q Ă V is connected; π
alg
1

`
f´1pY q

˘
Ñ π

alg
1 pV q is surjective.

(ii) In particular, suppose Y Ă X is a pdimY ´ 1q-ample subscheme and f is surjective.
Then f´1pY q is connected.

Proof. Observe that cd
`
fpV qzpY X fpV qq

˘
ď cdpXzY q ď dim fpV q ´ 2, and apply 2.2 to the

surjective morphism f : V Ñ fpV q. l

Corollary 2.8 Let V, Y be closed subschemes of X. Suppose V is connected and Y is q-ample
in X, with 0 ď q ď dimV ` dimY ´ dimX ´ 1.

Then Y X V is non-empty and
`
dimpY X V q ´ 1

˘
-ample in V , hence connected.

The statement reminds a problem of Hartshorne [14, Ch. III, Conjecture 4.5], concerning
the connectedness and non-emptiness of the intersection of smooth subvarieties with ample
normal bundles. According to the survey [22], this issue is currently still wide open.

Proof. The intersection Y X V is non-empty, because

cdpV zY X V q ď cdpXzY q ď codimXY ` q ´ 1 “ dimV ´ 2, (cf. 1.4).

Actually one has dimpY X V q ě 1, since otherwise cdpV zY X V q “ dimV ´ 1: there are
effective divisors avoiding a finite number of points. l

Example 2.9 Suppose Y Ă X is ample. Then, for any subvariety V Ă X of dimension at
least codimpY q ` 1, the intersection Y X V is non-empty—this is already proved in [21]—
and also connected. The Lefschetz-type hyperplane theorem in op. cit., Corollary 5.2—in
particular the connectedness of the intersection—requires the smoothness of V zpY X V q.
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Therefore, by pursuing this path, one can not deduce the connectedness of pre-images, as
we do in Theorem 2.7, because it is not possible to control the smoothness of the image of an
arbitrary morphism.

So far we used only the bound on the cohomological dimension of XzY . The partial
ampleness of Y Ă X actually carries more information.

Theorem 2.10 (i) Let the situation as in 2.8, X,V smooth; suppose Y ĂX and Y XV ĂV

are lci. (The intersection is automatically lci if codimXpV XY q“codimXV `codimXY.)
Then V XY is G3 in V . In particular, a 1ą0 lci subscheme of a smooth variety is G3.

(ii) Let the situation as in 2.1, with fpV q is smooth and Y X fpV q is lci.
If Y is

`
dim fpV q ` dimpY q ´ dimpXq ´ 1

˘
-ample, then f´1pY q is G3 in V .

For the definition of the G3-property, the reader in invited to consult [15].

Proof. (i) First note that if V XY has the expected codimension, then each of its components
has at most that codimension, so V X Y is equidimensional; thus V X Y Ă V is lci.

Back to the general case, the commutative diagram below shows that the exceptional divisor
EY XV is pdimV ´ 2q-ample:

BlY XV pV q �

�

//

��

BlY pXq

��

V
�

�

// X.

Hence NV XY {V is
`
dimpV XY q ´ 1

˘
-ample by 1.6(iii), so V XY is G2 in V (cf. [10, §3]). As

cdpV zV XY q ď dimV ´ 2, Speiser’s result [14, Corollary V.2.2] yields the conclusion.
(ii) The proof of 2.7 above and the previous step imply that Y X fpV q is G3 in fpV q. It
remains to apply [15, Theorem 2.7], since f´1pY q “ f´1pY X fpV qq. l

In Hartshorne’s counterexample 2.5, Y ĂX is not G3, but it is G2. Also, Y does not possess
the 1ą0-property. This indicates that, for being G3, the 1ą0-property is close to optimal;
see [14, Proposition V.2.1]. It has the advantage to be a numerical condition.

3. Examples of partially ample subvarieties

We show that partially ample subvarieties occur in a variety of situations:

(i) zero loci of sections in vector bundles;
(ii) sources of Bialynicki-Birula decompositions;
(iii) subvarieties of rational homogeneous varieties.

3.1. Vanishing loci of sections. Throughout this section, N is a vector bundle of rank ν

on the smooth projective variety X.

3.1.1. q-ample vector bundles.

Proposition 3.1 Suppose N is q-ample and Y is the zero locus of a regular section in it.
Then Y Ă X is a q-ample subvariety.

Proof. We verify (1.3) for a vector bundle F on X. Since s is regular, Y is lci, codimXpY q “ ν,
so 1.6(ii) applies. One has the resolution (cf. [5, Theorem 3.1])

0 Ñ Lν
mpN_q Ñ . . . Ñ Lj

mpN_q Ñ . . . Ñ SymmpN_q
sm

´́ ÝÑ ImY Ñ 0, @m ě 1, (3.1)
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where L
j
mpN_q :“ Im

´
Symm´1pN_q b

jŹ
N_

φ
j
m

Ý́Ñ SymmpN_q b
j´1Ź

N_
¯
, 1 ď j ď ν. The

general linear group is linearly reductive and φ
j
m is equivariant, so L

j
mpN_q is a direct sum-

mand of SymmpN_q b
j´1Ź

N_. For m " 0, one has:

Ht`j´1pX,F b
j´1Ź

N_ b SymmN_q “ 0, for 1 ď j ď ν, t ` ν ´ 1 ď dimX ´ q ´ 1.

It follows that HtpX,F b ImY q “ 0, for 0 ď t ď dimY ´ q. �

3.1.2. Globally generated vector bundles. Henceforth we assume that N is globally generated;
thus the notions of q-ampleness and Sommese-q-ampleness agree (cf. A.2).

Let Y Ă X be lci of codimension δ, the zero locus of s P ΓpNq :“ H0pX,Nq. We do not
require s to be regular, so we allow δ ă ν. We are going to use 1.7 to estimate the ampleness
of Y . We observe that the blow-up fits into the diagram

X̃
�

�

//

σ

��
φ

,,❨❨❨
❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

PpNq“P

´ν´1Ź
N_ b detpNq

¯
�

�

// X ˆ P

´ν´1Ź
ΓpNq_

¯

��

X P :“ P

´ν´1Ź
ΓpNq_

¯
,

(3.2)

and it holds

OX̃pEY q “ OPpNqp´1q
ˇ̌
X̃

“
`
detpNq b OPp´1q

˘ˇ̌
X̃
. (3.3)

Proposition 3.2 Suppose detpNq is ample. If the dimension of the generic fibre of φ over

its image is p ` 1, then OX̃pEY q is dimφpX̃q-positive, and Y is pdimY ´ pq-ample.

Proof. The assumptions of 1.7 are satisfied. �

Note that the proposition applies also when only some symmetric power SymaN is globally
generated. Then s P ΓpNq induces sa P ΓpSymaNq and Itsa“0u “ Iats“0u. By 1.4(i), the

amplitude of tsa “ 0u coincides with that of ts “ 0u.

3.1.3. Special Schubert subvarieties of the Grassmannian. LetW Ď ΓpNq be a vector subspace
generating N, dimW “ ν ` u ` 1. It is equivalent to a morphism f : X Ñ GrpW ; νq to the
Grassmannian of ν-dimensional quotients; detpNq is ample when ϕ is finite.

Henceforth let X “ GrpW ; νq; it is isomorphic to Grpu ` 1;W q, the pu ` 1q-dimensional
subspaces of W ; let N be the universal quotient. The morphism φ in (3.2) is explicit:

PpNq Ñ P, px, xexyq ÞÑ detpNx{xexyq_ Ă
ν´1Ź

N_
x Ă

ν´1Ź
W_. (3.4)

(xexy stands for the line generated by ex P Nx, x P GrpW ; νq.) The restriction to the Grass-
mannian corresponds to the commutative diagram

0 // OGrpW ;νq
s

// W b OGrpW ;νq
//

β��
��

W {xsy b OGrpW ;νq
//

��
��

0

OGrpW ;νq
βs

// N // N{xβsy // 0.

(3.5)

Thus φ is the desingularization of the rational map

gs : GrpW ; νq 99K GrpW {xsy; ν ´ 1q, rW ։ N s ÞÑ rW {xsy ։ N{xβsys, (3.6)
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followed by the Plücker embedding of GrpW {xsy; ν ´ 1q. The indeterminacy locus of φ is
GrpW {xsy; νq, so the latter is uą0 in GrpW ; νq. The observation can be generalized.

Corollary 3.3 For ℓ ď ν, fix an ℓ-dimensional subspace Λℓ Ă W . Consider the Schubert

subvariety Yℓ :“ tU P Grpu ` 1;W q | U X Λℓ ‰ 0u. Then Yℓ is
`
ℓpu ` 1q ´ 1

˘ą0
.

Thus the Chow ring of the Grassmannian is generated by partially ample subvarieties.

Proof. Note that Yℓ is pν ´ ℓ ` 1q-codimensional and is the vanishing locus of

sℓ : O – detpΛℓ b Oq Ñ
ℓŹ
W b O Ñ

ℓŹ
N.

We are in the situation 1.7. The diagram (3.2) corresponds to the rational map

φ : Grpu ` 1;W q 99K Grpu ` 1;W {Λℓq, U ÞÑ pU ` Λℓq{Λℓ,

followed by a large Plücker embedding; its indeterminacy locus is precisely Yℓ. Since φ is
surjective, a dimension counting yields the conclusion. l

Remark 3.4 (i) Propositions 3.1 and 3.2 deal with complementary situations: OPpN_qp1q
is the pull-back of an ample line bundle, while OX̃pEY q is relatively ample.

(ii) The criterion 3.1 is not optimal: by A.2, for X “ Grpν `u`1; νq, the universal quotient
N is q-ample, with q “ dimPpN_q ´ Pν`u “ dimX ´ pu ` 1q. So Y “ Grpν ` u; νq,
the zero locus of a section of N, is pu ` 1 ´ νqą0; this may be negative and the estimate
irrelevant.

On the other hand, 1.7 implies that Y is uą0. Moreover, for ℓ ‰ 1, ν, the section sℓ
above is not regular, so 3.1 does not apply, anyway.

(iii) Subvarieties obtained as zero loci of sections in globally generated vector bundles and
pull-backs of Schubert cycles appear in the recent work [8, §3], in the definition of the
pliant cone of a projective variety, which is a full-dimensional subcone of the nef cone—an
object of central interest. The discussion above, together with Proposition 1.8, implies
that these elements of the pliant cone are in fact partially ample.

3.2. Sources of torus actions. Let X be a smooth projective variety with a faithful action
λ : Gm ˆ X Ñ X of the multiplicative group Gm “ kˆ. This determines the well-known
Bialynicki-Birula—BB for short—decomposition of X (cf. [4]):

‚ The fixed locus Xλ of the action is a disjoint union
Ů

sPSBB

Ys of smooth subvarieties. For

s P SBB, Y
`
s :“ tx P X | lim

tÑ0
λpt, xq P Ysu is locally closed in X (a BB-cell) and it holds:

X “
Ů

sPSBB

Y `
s .

‚ The source Y :“ Ysource and the sink Ysink of the action are uniquely characterized by
the conditions: Y ` “ Y `

source Ă X is open and Y `
sink “ Ysink.

A linearization of the action in a sufficiently ample line bundle yields a Gm-equivariant em-
bedding X Ă PN

k . There are homogeneous coordinates z0 P kN0`1, . . . , zr P kNr`1 such that

the Gm-action on PN
k is:

λ
`
t, rz0, z1, . . . , zrs

˘
“ rz0, t

m1z1, . . . , t
mrzrs, with 0 ă m1 ă . . . ă mr. (3.7)
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The source and sink of PN ,X are respectively:

PN
source “ trz0, 0, . . . , 0su, PN

sink “ tr0, . . . , 0, zrsu,

Y “ Ysource “ X X PN
source, Ysink “ X X PN

sink,

Y ` “ X X pPN
sourceq

`, pPN
sourceq

` “ trzs “ rz0, z1, . . . , zrs | z0 ‰ 0u.

(3.8)

Let m be the lowest common multiple of tmρuρ“1,...,r and lρ :“ m{mρ. Let us denote

z
lρ
ρ :“ pz

lρ
ρ0, . . . , z

lρ
ρNρ

q and I Ă OPN the sheaf of ideals generated by zl11 , . . . , z
lr
r . The choice of

the exponents makes the assignment

PN
99K PN 1

, rz0, z1, . . . , zrs ÞÑ rzl11 , . . . , z
lr
r s, (3.9)

well-defined. It defines a Gm-invariant rational map whose indeterminacy locus is the sub-
scheme determined by I. Then J :“ I b OX defines the subscheme YJ Ă X whose reduction
is pY,OY q. We have the diagram:

X̃ :“ BlYJ
pXq

ι̃
//

σ
��

φX

))

BlIpP
N q

φ
//

B
��

PN 1

X
ι

// PN //❴❴❴❴❴❴ PN 1

(3.10)

Lemma 3.5 The diagram (3.10) has the following properties:

(i) The exceptional divisor of B is φ-relatively ample, hence the exceptional divisor of σ is
φX-relatively ample.

(ii) The morphism φ : BlIpP
N q Ñ PN 1

is Gm-invariant and

dimφXpX̃q “ dimφXpXzY `q ď dimpXzY `q. (3.11)

Proof. (i) The subscheme determined by I is the vanishing locus of a section in a direct sum
of ample line bundles over PN , so 3.2 applies.
(ii) It holds: dimφXpBlJpXqq “ dimφXpXzY q and φXpXzY q “ φXpXzY `q Y φXpY `zY q.
For rz0, z

1s P Y `zY and t P Gm, the Gm-invariance of φX yields:

φX

`
rz0, z

1s
˘

“ φX

`
t ˆ rz0, z

1s
˘

“ φX

`
lim
tÑ8

t ˆ rz0, z
1s
˘
.

But lim
tÑ8

t ˆ rz0, z
1s “ r0, z2s P XzY `, which implies φXpY `zY q Ă φXpXzY `q. l

Now we can estimate the ampleness of the source Y .

Theorem 3.6 Let X be a smooth Gm-variety with source Y , and p :“ codimpXzY `q ´ 1.
The following statements hold:

(i) The thickening YJ of Y in (3.10) is a pdimY ´ pq-ample subscheme of X; in particular,
Y is a pÁ0 subvariety.

(ii) If Gm acts on NY {X by scalar multiplication, then Y Ă X is pą0.

Proof. (i) We apply the Proposition 1.7: YJ is a q-ample subscheme, with

q “ 1 ` dimφpX̃q ´ codimXpY q
(3.11)

ď 1 ` dimpXzY `q ´ codimXpY q.

(ii) In this case we have Y ` – N :“ Spec
`
Sym‚ N_

Y {X

˘
, cf. [4, Remark pp. 491]. Thus

N Ă X is open and Gm acts, fibrewise over Y , by scalar multiplication.
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The inclusions N Ă NPN
source{PN “ t rzN0

, z1s | zN0
‰ 0 u Ă PN are Gm-equivariant. The

scalar multiplication on the coordinates z1 exists globally on PN , so X Ă PN is invariant.
Hence the exponents lρ in (3.9) are all equal one, J “ IY Ă OX . l

Remark 3.7 XzY ` Ă XzY is closed, so 1.11 implies cdpXzY q “ dimpXzY `q. This simple
answer contrasts the elaborate techniques [20, 7].

Example 3.8 (i) Endow W – kw`1, w ` 1 even, with a non-degenerate, symmetric bilinear
form β. Let X :“ o Grpu ` 1;W q be the orthogonal Grassmannian of pu ` 1q-dimensional
isotropic subspaces; in particular, w ` 1 ě 2pu ` 1q. Choose a Lagrangian decomposition
W “ kpw`1q{2 ‘ kpw`1q{2 such that

β “

„
0 1lpw`1q{2

1lpw`1q{2 0


, (1l stands for the identity matrix).

Consider the action Gm
λ

Ñ SOpw`1q{2, λptq “ diag
“
t´1, 1lpw´1q{2, t, 1lpw´1q{2

‰
, whose source is

Y “ tU | s :“ p1, 0, . . . , 0q P Uu – o Grpu;w ´ 1q. For U P Y , λ acts with weight t on

NY {X,U “ Hompxsy, xsyK{Uq.

XzY ` “
 
U P X | s R lim

tÑ0
λptqU

(
“ tU | U Ă W 1 :“ kpw´1q{2 ‘ kpw`1q{2u.

Let xs1y :“ KerpβæW 1q: if w “ 2u ` 1, then s1 P U for all U P XzY `; for larger w, this is not
the case. It follows:

codimpXzY `q “

"
u if w “ 2u ` 1;

u ` 1 if w ě 2u ` 3,
ñ Y Ă X is:

"
pu ´ 1qą0 if w “ 2u ` 1;

uą0 if w ě 2u ` 3.

(ii) With the previous notation, let ω be the skew-symmetric bilinear form

ω “

„
0 1lpw`1q{2

´1lpw`1q{2 0


.

Let X :“ sp Grpu ` 1;W q be the symplectic Grassmannian of pu ` 1q-dimensional isotropic
subspaces of W . The action of λ : Gm Ñ Sppw`1q{2, λptq “ diag

“
t´1, 1lpw´1q{2, t, 1lpw´1q{2

‰
has

the source Y “ tU | s :“ p1, 0, . . . , 0q P Uu – sp Grpu;w ´ 1q.

Note that NY {X,U – Hompxsy,W {Uq, so Gm acts by weight t2 on Hompxsy,W {xsyKq and

weight t on the complement. As before, it holds codimpXzY `q “ 1 ` u. Hence Y is uÁ0;
more precisely, there is a non-reduced scheme with support Y which is uą0.

3.3. Subvarieties of homogeneous varieties. Results due to Faltings, Barth-Larsen, Ogus
show that the subvarieties of homogeneous spaces enjoy positivity properties.

Theorem Given a rational homogeneous variety X “ G{P , with G is semi-simple; let ℓ be
the minimal rank of its simple factors. Let Y Ă X be a smooth subvariety of codimension δ.
The following statements hold:

(i) (cf. [7, Satz 5, Satz 7]) Y is pℓ ´ 2δ ` 1qą0.
(ii) Y Ă Pn is pą0 ô restY : HtpPn;Qq Ñ HtpY ;Qq is an isomorphism, @ t ă p.

Proof. (i) cdpXzY q ď dimX ´ ℓ ` 2δ ´ 2 and TX is pdimX ´ ℓq-ample. Since NY {X is a
quotient of TX , we conclude by 1.4.
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(ii) NY {Pn is ample. By [20, Theorem 4.4, 2.13], cdpPnzY q ă n ´ p if and only if restY is an
isomorphism and the local cohomological dimension of Y Ă Pn is at most n ´ p. The latter
equals codimPnY “ n ´ dimY , since Y is smooth. l

Note that the techniques in [7] used for proving (i) above are involved, yet the estimate is not
optimal: 3.3 shows that the special Schubert cycles are actually much more positive.

Appendix A. Background material

A.1. Cohomological q-ampleness. This notion was introduced by Arapura and Totaro.

Definition A.1 Let Y be a projective scheme, A P PicpY q an ample line bundle.

(i) [24, Theorem 7.1] An invertible sheaf L on Y is q-ample if, for any coherent sheaf G on
X, holds: D ctG @ a ě ctG @ t ą q, HtpY,G b Laq “ 0.
It’s enough to verify the property for G “ A´k, k ě 1 (cf. [24, Theorem 6.3, 7.1]).

(ii) [2, Lemma 2.1, 2.3] A locally free sheaf E on Y is q-ample if OPpE_qp1q on PpE_q :“
ProjpSym‚

OY
Eq is q-ample. It is equivalent saying that, for any coherent sheaf G on Y ,

there is ctG ą 0 such that: HtpY,G b SymapEqq “ 0, @t ą q, @a ě ctG .
The q-amplitude of E, denoted by qE, is the smallest integer q with this property. Note
that E is q-ample if and only if so is EYred

(cf. [24, Corollary 7.2]). Also, any locally free
quotient F of E is still q-ample; indeed, OPpF_qp1q “ OPpE_qp1q b OPpF_q.

A.2. q-positivity.

Proposition A.2 [23, Proposition 1.7] For a globally generated, locally free sheaf E on Y ,
the following statements are equivalent:

(i) E is q-ample (cf. Definition A.1);
(ii) The fibres of the morphism PpE_q Ñ |OPpE_qp1q| are at most q-dimensional.

We say that E is Sommese-q-ample if it satisfies any of these conditions.

Definition A.3 (cf. [1]) Suppose X is a smooth, complex projective variety. A line bundle
L on X is q-positive, if it admits a Hermitian metric whose curvature is positive definite on
a subspace of TX,x of dimension at least dimX ´ q, for all x P X; equivalently, the curvature
has at each point x P X at most q negative or zero eigenvalues.

Theorem A.4 (i) [1, Proposition 28] q-positive line bundles are q-ample.
(ii) [19, Theorem 1.4] Assume E is globally generated. Then it holds:

E is Sommese-q-ample ô OPpE_qp1q is q-positive.

(iii) [3, 21] Let L P PicpXq be q-positive and Y P |L| a smooth divisor. Then it holds:

HtpX;Zq Ñ HtpY ;Zq is

"
an isomorphism, for t ď dimX ´ q ´ 2;

injective, for t “ dimX ´ q ´ 1.
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