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ASCENDING CHAIN CONDITION FOR F-PURE THRESHOLDS
WITH FIXED EMBEDDING DIMENSION

KENTA SATO

ABSTRACT. In this paper, we prove that the set of all F-pure thresholds of ideals with
fixed embedding dimension satisfies the ascending chain condition. As a corollary,
given an integer d, we verify the ascending chain condition for the set of all F-pure
thresholds on all d-dimensional normal l.c.i. varieties. In the process of proving these
results, we also show the rationality of F-pure thresholds of ideals on non-strongly
F-regular pairs.

1. INTRODUCTION

A ring R of characteristic p > 0 is said to be F'-finite if the Frobenius morphism
F: R — R is finite. Suppose that X is a normal variety over an F-finite field k
of characteristic p > 0. We further assume that X is sharply F-pure, that is, the
Frobenius homomorphism Ox — F,Ox locally splits. Then, for every coherent ideal
sheaf a C Oy, we can define the F-pure threshold fpt(X; a) € R- in terms of Frobenius
splittings (see Definition 2.7 below). Recent studies ([T'WO04], [Tak13], [HnBWZ16])
reveal that F-pure thresholds have a strong connection to log canonical thresholds
in characteristic 0. Moreover, as seen in [T'WO04], [MTWO05] and [BS15], the F-pure
threshold itself is an interesting invariant in both commutative algebra and algebraic
geometry in positive characteristic.

In [Sat17], motivated by the ascending chain condition for log canonical thresholds in
characteristic 0 ([Sho92], [dFEM10], [dFEMI1] and [HMX14]), the author studied the
ascending chain condition for F-pure thresholds. In loc. cit., it was proved that the set
of all F-pure thresholds of ideals on a fixed germ of a strongly F-regular pair satisfies
the ascending chain condition, where strong F-regularity is a stronger condition than
sharp F-purity (see Definition 2.2).

In this paper, we extend the result of [Sat17] to the case of sharply F-pure pair
under some conditions. The first result in this paper deals with the ascending chain
condition for F-pure thresholds on l.c.i. varieties, which is an positive characteristic
analogue of [{FEN10, Theorem 1.3].

Theorem 1.1 (Corollary 4.10). Fixz an integer n > 1 and an F-finite field k of charac-
teristic p > 0. Let T be a set of all n-dimensional normal l.c.i. varieties over k which
are sharply F-pure. Then the set

{fpt(X;a) | X € T,a € Ox}
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satisfies the ascending chain condition.

In the proof of [dFENMI0, Theorem 1.3], they use Inversion of Adjunction, which
is the reason why they consider l.c.i. varieties. On the other hand, the theory of F-
adjunction, introduced by Schwede ([Sch09]), can be applied even if the variety is not
a locally complete intersection. Therefore, we can employ the same strategy in a more
general setting as that of [dFENM10].

Suppose that (R, m) is an F-finite Noetherian normal local ring of characteristic
p > 0 and A is an effective Q-Weil divisor on Spec R. We further assume that the pair
(R, A) is sharply F-pure (see Definition 2.2). In this case, we can define the F-pure
threshold fpt(R, A;a) € Roq for every proper ideal a C R. The following is the main
theorem of this paper, which extends the main theorem of [Sat17].

Main Theorem (Theorem 4.7). Fiz positive integers e and N. Suppose that T is any
set such that every element of T is an F'-finite Noetherian normal local ring (R, m, k)
with dimy,(m/m?) < N. Let FPT(T,e) C Rsq be the set of all F-pure thresholds
fpt(R, A;a) such that

e R is an element of T,

e a is a proper ideal of R, and

o A is an effective Q-Weil divisor on X = Spec R such that (R,A) is sharply
F-pure and (p¢ — 1)(Kx + A) is Cartier, where Kx is a canonical divisor on
X.

Then the set FPT(T, e) satisfies the ascending chain condition.

In the process of proving the main theorem, we treat the rationality problem for
F-pure thresholds. In characteristic 0, since log canonical thresholds can be computed
by a single log resolution, it is obvious that the log canonical threshold of any ideal on
any log Q-Gorenstein pair is a rational number. In [dFENM10], they use the rationality
to reduce the ascending chain condition for log canonical thresholds on l.c.i. varieties
to that on smooth varieties.

However, in positive characteristic, the rationality of F-pure thresholds is a more
subtle problem. In [ST14], Schwede and Tucker proved that the F-pure threshold
of any ideal on any log Q-Gorenstein strongly F-regular pair is a rational number.
In this paper, we generalize their result to the case where the pair is not necessarily
strongly F-regular, under the assumption that the Gorenstein index is not divisible by
the characteristic.

Theorem 1.2 (Corollary 4.2). Suppose that (R,m) is an F-finite Noetherian normal
local ring of characteristic p > 0 and A is an effective Q- Weil divisor on X = Spec R
such that (R, A) is sharply F-pure and Kx + A is Q-Cartier with index not divisible by
p. Then the F-pure threshold fpt(R, A; a) is a rational number for every proper ideal
aCR.

In the proof of Theorem 1.2, we introduce a new variant of parameter test modules.
Assume that A is Q-Cartier and ¢ > 0 is a real number. Then, we define the submodule
T(wx,A_g,a') C wx as an approximation of the parameter test module 7(wy, A, a*) C
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wy by small perturbations of A (see Definition 3.3). A real number ¢ > 0 is called an
F-jumping number of (wx, A_g; a) if one of the following hold:

(1) for every € > 0, we have 7(wx, A_g,a') C 7(wx, A_g,a"™), or
(2) for every € > 0, we have 7(wx, A_g,a') D 7(wx, A_g, a’™).

The key ingredient of the proof of Theorem 1.2 is the rationality of F-jumping num-
bers of (wx,A_g;a) (Corollary 3.8). Theorem 1.2 follows from the rationality and
F-adjunction because the F-pure threshold fpt(R, A;a) is equal to the first F-jumping
number if X = Spec R is regular (Proposition 4.1). We use Theorem 1.2 to reduce the
main theorem to the ascending chain condition for F-pure thresholds of ideals on a
fixed F-finite regular local ring, which has already been proved in [Sat17].

Acknowledgments. The author wishes to express his gratitude to his supervisor Profes-

sor Shunsuke Takagi for his encouragement, valuable advice and suggestions. He was
supported by JSPS KAKENHI Grant Number 17J04317.

2. PRELIMINARIES

2.1. F-singularities. In this subsection, we recall the definitions and some basic prop-
erties of F-singularities.

A ring R of characteristic p > 0 is said to be F'-finite if the Frobenius morphism
F : R — R is a finite ring homomorphism. A scheme X is said to be F'-finite if for
every open affine subscheme U C X, Oy is F-finite. If R is an F-finite Noetherian
normal domain, then R is excellent ([[<un76]) and X = Spec R has a dualizing complex
w, a canonical module wy and a canonical divisor Kx (see for example [ST17, p.4]).

Through this paper, all rings will be assumed to be F-finite of characteristic p > 0.

Definition 2.1. A pair (R, A) consists of an F-finite Noetherian normal local ring
(R,m) and an effective Q-Weil divisor A on X. A triple (R, A, a') consists of a pair
(R,A) and a symbol a’, where a C R is an ideal and ¢ > 0 is a real number.

Definition 2.2. Let (R, A, a’) be a triple.

(1) (R,A,a") is said to be sharply F-pure if there exist an integer e > 0 and a
morphism ¢ € Homg(FCR([(p® — 1)A]), R) such that o(Feal*® =V = R,

(2) (R, A, a") is said to be strongly F-regular if for every non-zero element ¢ € R,
there exist an integer e > 0 and a morphism ¢ € Homg(FfR([(p® — 1)A]), R
such that p(F¢(calt® V1)) = R,

Lemma 2.3. Let (R, A, a") be a triple. Then the following hold.

(1) If (R, A, a") is strongly F-regular, then it is sharply F-pure.

(2) Suppose that 0 < A" < A is an Q-Weil divisor and 0 < t' < t is a real number.
If (R, A\, at) is strongly F-reqular (resp. sharply F-pure), then so is (R, A, a").

(3) If (R, A) is strongly F-regular and (R, A, a") is sharply F-pure, then (R, A, a®)
15 strongly F-reqular for every 0 < s < t.

(4) Let f € R be a non-zero element and b := f-a C R. Then, (R, A+tdivg(f),a’)
is strongly F-regular if and only if (R, A, b") is strongly F-regular.
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(5) Let R be the m-adic completion and A the flat pullback of A to Spec R. Then,
(R, A, a) is sharply F-pure if and only if (ﬁ, A, (aﬁ)t) is sharply F-pure.

Proof. (1) and (2) follow from definitions. The proof of (3) is similar to that of [TW04,

Proposition 2.2 (5)]. (4) follows from [Schll, Lemma 3.1]. For (5), we define I :=

S P(Feal @Vl C R (vesp. I' == Y, @(Fe(aR)" DTy C R), where e runs

through all positive integers and ¢ runs through all elements in Hom(F°R([(p® —

1)A1), R) (resp. in Homz(FCR([(p° —1)A]), R)). Then the triple (R, A, a') (resp. the
triple (R, A, (aR)")) is sharply F-pure if and only if I = R (resp. I’ = R). Since

Homp(F/R([(p* — 1)A]), R) = Hom(F/R([(p° — 1)A]), R) @r R,
we have I' =1 }A%, which completes the proof. O

Suppose that R is a ring of characteristic p > 0, e > 0 is a positive integer and a C R
is an ideal. Then we denote by alP’l the ideal of R generated by {f*" € R | f € a}.
The following lemma is a variant of Fedder-type criteria.

Lemma 2.4 (cf. [Fed83], [HW02, Proposition 2.6]). Suppose that (A, m) is an F-finite
reqular local ring of characteristic p > 0, a C A is an ideal and A = diva(f)/(p® — 1)
is an effective Q-divisor with f € A and e > 0. Then, the triple (A, A, a) is sharply
F-pure if and only if there exists an integer n > 0 such that

f ::71 a p _1-| g
Proof. By the proof of [Sch08, Proposition 3.3], the triple (A, A, a) is sharply F-pure
if and only if there exists an integer n > 0 and ¢ € Homg(FA((p™ — 1)A), A) such
that @(Femalt®"=D1) = A, Since

€7L —1

(p" = 1)A = diva(f 77 ),

the assertion follows from [Fed83, Lemma 1.6]. O

Suppose that X is an F-finite Noetherian normal connected scheme, A is an effective
Q-Weil divisor on X, a C Ox is a coherent ideal sheaf and ¢t > 0 is a real number. For
any point x € X, we denote by A, the flat pullback of A to Spec Ox ;.

Definition 2.5. With the notation above, we say that (X, A, a') is sharply F-pure if
(Ox.z, Az, al) is sharply F-pure for every point = € X.

Remark 2.6. Suppose that X = Spec R is an affine scheme. Then, the above definition
differs from the one given in [Sch08]. See [Sch10b].

Definition 2.7. With the notation above, assume that (X, A) is sharply F-pure. We
define the F'-pure threshold of (X, A;a) by

fpt(X, Aja) :=inf {¢t > 0| (X, A, a") is not sharply F-pure} € R-qU {oc}.
When X = Spec R is an affine scheme, we denote it by fpt(R, A;a).

Lemma 2.8. With the notation above, we assume that (X, A) is sharply F-pure. Then,
fpt(X, A; a) = min {fpt(Ox ., As;a,) |z € X}
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Proof. We may assume that X = Spec R. For every t > 0, we consider [, :=
> e, @(Foal®™ =) C R as in the proof of Lemma 2.3 (5). Then, the set

Zy:={x € X | (Ox.4, A, a.) is not sharply F-pure} C X

is a closed set defined by the ideal I;. Since R is Noetherian, there exists a real number
e > 0 such that Z; is constant for all fpt(X, A;a) <t < fpt(X, A;a) 4+ . Take a point
x € Z; for such t. Then we have fpt(X, A;a) = fpt(Ox ., As; a,), which completes the
proof. O

Proposition 2.9 ([Sch09, Theorem 5.5]). Suppose that A is an F-finite reqular local
ring, R = A/I is a normal ring and Ag is an effective Q-Weil divisor on Spec R.
Assume that the pair (R, Ag) is sharply F-pure and there exists an integer e > 0 such
that (p© — 1)(Kx + Ag) is Cartier. Then, there exists an effective Q- Weil divisor A4
on Spec A with the following properties:

(1) (p¢ — 1)A4 is Cartier, and

(2) Suppose that a C R is an ideal and a C A is the lift of a. Then we have

fpt(R, Ag;a) = fpt(A, Aa;a).

2.2. Test ideals and parameter test modules. In this subsection, we recall the
definitions and basic properties of test ideals and parameter test modules.

Definition 2.10. Suppose that R is an F-finite Noetherian normal domain, A is
an effective Q-Weil divisor on X = Spec R, a,b C R are non-zero ideals and t,s >
0 are real numbers. The test ideal T(R,A,a'b®) (resp. the parameter test module
T(wx, A, a'b®)) is the unique smallest non-zero ideal J C R (resp. non-zero submodule
J C wy) such that

(Fe(altP*=DIpls™=DI 1)) C g

for every integer e > 0 and every morphism ¢ € Hompg(FER([(p® — 1)A]), R) (resp.
¢ € Homp(Fiwx([(p° — 1)A]), wx)).

The test ideal and the parameter test module always exist ([Schl0a, Theorem 6.3]
and [ST14, Lemma 4.2]). If b = R, then we write 7(R, A, a’) (resp. 7(wx,A,a’)).
If a = b = R, then we write 7(R,A) (resp. T(wx,A)). If a = 0, then we define
T(wx, A, a") = 7(R, A, a") := (0).

Lemma 2.11. With the notation above, we assume that A is Q-Cartier. Then the
following hold.
(1) Ift <t and A < A, then T(wx, A, a”) C 7(wx, A, at).
(2) ([ST14, Lemma 6.1]) There exists a real number ¢ > 0 such that if t <t < t+e,
then T(wx, A, a’) = 7(wx, A, a').
(3) ([ST14, Lemma 6.2]) There ezists a real number e > 0 such that ift—e <t <t,
then T(wx, A, a’) = T(wx, A, al™9).
(4) ([ST14, Lemma 4.4]) Suppose that Trg : Fiwx — wx is the Grothendieck trace
map ([BST15, Proposition 2.18]). Then we have

TrR(F*T(WXa A> at)) = T(wX> A/pa at/p)‘
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(5) ([HT04, Theorem 4.2], cf. [BSTZ10, Lemma 3.26]) If a is generated by [ ele-
ments and | < t, then T(wx, A, a'b®) = ar(wy, A, al~16%).

(6) ([Schll, Lemma 3.1)) If b = (f) is a non-zero principal ideal, then we have
T(wx, A, a'b®) = 7(wx, A + sdiv(f), a’).

(7) For an integer r > 1, we have T(wx, A, a™) = 7(wx, A, (a™)).

Proof. Take a canonical divisor Kx such that —Kx is effective. Then we have
T(wx, A, a'b®) = 7(R, A — Kx,a'b®) ([ST14, Lemma 4.2]). Therefore, the assertions in
(5) and (6) follow from the same assertions for test ideals. The proof of (7) is similar
to the proof of (6). O

Remark 2.12. Suppose that X is an F-finite Noetherian normal connected scheme
which has a canonical module wx, a,b C Ox are coherent ideals, and t,s > 0 are
real numbers. Since parameter test modules are compatible with localization ([HT04,
Proposition 3.1]), we can define the parameter test module 7(wx, A, a'b®) C wy.

Lemma 2.13. Let (A, A, a') be a triple such that A is a regular local ring.
(1) If (A, A, a") is sharply F-pure, then for any rational numbers 0 < e,&" < 1, the
triple (A, (1 — e)A, a'==)) is strongly F-regular.
(2) If (p° — 1)A is Cartier for an integer e > 0 and (A, (1 — e)A, a') is strongly
F-reqular for every 0 < e < 1, then the triple (A, A, a"==)) is sharply F-pure
for every 0 < &’ < 1.

Proof. For (1), we assume that the triple (A4, A,a’) is sharply F-pure. Since A is
strongly F-regular ([[H1189]), it follows from Lemma 2.3 (2) and (3) that (A, (1 —¢)A)
is strongly F-regular for every 0 < & < 1. Then applying Lemma 2.3 (2) and (3) again,
we see that (A, (1 —&)A, a?1==)) is strongly F-regular for every 0 < £,¢’ < 1.

For (2), set ¢ := p® and suppose that A = div(f)/(¢ — 1) for some non-zero element
f € A. Take an integer | > t such that a is generated by at most [ elements and set
a, == (I —t)/(¢" — 1) for every integer n > 0. Since for any triple, it is strongly F-
regular if and only if the test ideal is trivial ([Tak04, Corollary 2.10], see also [Schl0a,
Corollary 4.6]), we have 7(A4, ((¢" — 1)/q™)A/, a') = A for every integer n > 0.

Since A is regular local, we may identify test ideals on A with parameter test modules.
Set o := Tr (Fe(f-—)) € Homa(FfA((g—1)A, A)). Then it follows from Lemma 2.11
(4), (5) and (6) that

A = T(A> ((qn - 1)/qn)A> at)
TIZ”(F:"T(A, f(q"—l)/(q—l)atq"))
Q" (F'r(A a'"))

" (Femalte =)
wn(F*ena((t—an)(Q"—lﬂ ),

M 1N

which proves that (A, A,a’"%) is sharply F-pure for every integer n > 0. Since
lim,, o0 @y = 0, the triple (A, A, a’==)) is sharply F-pure for every 0 < ¢’ < 1. [

2.3. Ultraproduct. In this subsection, we define the catapower of a Noetherian local
ring and recall some properties.
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Definition 2.14. Let 4 be a collection of subsets of N. il is called an ultrafilter if the
following properties hold:

(1) 0 & sL.

(2) For every subsets A, B C N, if A€ 4 and AC B, then B € .
(3) For every subsets A, B C N, if A, B € 4, then AN B € 4L

(4) For every subset A C N, if A ¢ 4L then N\ A € {L.

An ultrafilter i is called non-principal if the following holds:
(5) If A is a finite subset of N, then A ¢ 4.

By Zorn’s Lemma, there exists a non-principal ultrafilter. From now on, we fix a
non-principal ultrafilter 4.

Definition 2.15. Let 7" be a set. We define the equivalence relation ~ on the set TV
by
(@m)m ~ (bm)m if and only if {m € N | a,, = b,,} € 4L
We define the ultrapower of T as
T =TV ~.

The class of (a,,), € TV is denoted by ulim,, a,,. If T is a ring (resp. local ring,
field), then so is *T". Moreover, if T" is an F-finite field of characteristic p > 0, then so
is *T". (see [Satl7, Proposition 2.14]).

Definition 2.16 ([Schol0]). Suppose that (R,m) is a Noetherian local ring and
(*R,*m) is the ultrapower. We define the catapower Ry as the quotient ring

Ry = *R/(Na("m)").

Proposition 2.17 ([Schol0, Theorem 8.1.19]). Suppose that (R, m, k) is a Noetherian
local ring of equicharacteristic and R is the m-adic completion of R. We fix a coefficient
field k C R. Then we have

Ry = R @k(*k‘)
In particular, if (R,m) is an F-finite reqular local ring, then so is Ry.
Suppose that (R, m) is a Noetherian local ring, Ry is the catapower and a,, € R for
every m. We denote by [a,,]m € Ry the image of (a,,), € R by the natural projection

RN —» R,. Let a,, C R be an ideal for every m € N. We denote by [a,,],, € R4 the
image of the ideal [] a,, C R" by the projection RN — Ry.

Proposition-Definition 2.18 ([Gol98, Theorem 5.6.1]). Let {a,, }men be a sequence
of real numbers such that there exist real numbers M;, My which satisfies M; < a,, <
My for every m € N. Then there exists an unique real number w € R such that for
every real number € > 0, we have

{meN||w—a,| <e} el

We denote this number w by sh(ulim,, a,,) and call it the shadow of ulim,, a,, € *R.
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3. A VARIANT OF PARAMETER TEST MODULES

In this section, we define a variant of parameter test modules and prove the ratio-
nality of F-jumping numbers.

Proposition 3.1. Let (X = Spec R, A, a') be a triple such that A = sD for some
Cartier divisor D and t = s = 1/(p® — 1) for some integer e > 0. Then T(wx, (s —
e)D, a') is constant for all sufficiently small rational numbers 0 < ¢ < 1.

Proof. The proof is essentially the same as that of [ST14, Lemma 6.2]. We may assume
that a # 0. Set ¢ = p°. For every integer [ > 0, we define the [-th truncation of s in
the base g by
¢ -1
W= €@
Since the sequence {(s);}ien is a strictly ascending chain which converges to s, it is
enough to prove that 7(wx, (s); - D, a") is constant for all sufficiently large [.

Take the normalized blowup 7 : Y — X along a. Let G be the Cartier divisor on
Y such that Oy (—G) = a- Oy. Take the Grothendieck trace maps Tr, : mwy — wy,
Try : Fiwy — wyx and Try : Fiwy — wy ([BST15, Proposition 2.18]). As in
[BST'15, p.4], we have Tryx o Fi,(Tr;) = Tr om.(Try) and Tr, is injective. In particular,
we may consider m,wy as a submodule of wy.

By [ST14, Theorem 5.1], for every integer [ > 0, there exists an integer m; such that

7(wx, (s} - D,a') = T (F" (7 (wy, ¢ ((s) - 7D + tG)))) (1)
for all m > my.
By Lemma 2.11 (3) and (6), there exists [y such that 7(wy, (s);-7*D+tG) is constant
for all I > ly. For every integer [ > 0, it follows from Lemma 2.11 (4) that the morphism
B = Ti5 : Fo(m(wy, q((s);- 7D +tQG)))) — T(wy, (s); - D + tQ)

is surjective. We denote the kernel by N;. Since N is constant for all [ > [y and —G
is m-ample, there exists an integer m’ such that

Rlﬂ'*(M ®(9Y Oy(—MG)) =0

for all integers [ > 0 and M > (¢™ —1)/(q — 1).

Take integers m,n > 1 and consider the surjection

Yoom = Tr5 0 FE(T(wx, ¢"((8)nm* D + tG))) — T(wx, ¢ ({(s),7* D + t@G)).

By Lemma 2.11 (5) and (6), ¥y.m coincides with 8,_,, @Oy (—(¢"—1)/(¢—1)-(7*D+G))
if m < n and with By ® Oy (—¢™(s),7*D — (¢ — 1)/(q¢ — 1) - G) if m > n. Therefore,
T Yn,m 1S surjective if m > m/.

Combining with the equation (1), we have

T(wx, (s); - D, at) = Te (F™ 1, (1(wy, ¢™ ({s); - 7D + t@))))

for every [. By the definition of [y, the right hand side is constant for all [ > [o+m/. O

Corollary 3.2. Let (X = Spec R, A, a') be a triple such thatt € Q and A is Q-Cartier.
Then T(wx, (1 —e)A, a') is constant for all 0 < € < 1.
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Proof. By Lemma 2.11 (4) and (7), we may assume that there exists an integer e > 0
such that (p® — 1)A is Cartier and ¢ = 1/(p® — 1). Then the assertion follows from
Proposition 3.1. 0

We define the new variant of the parameter test module as the left limit of the map
s — T(wx, sA,a') at s = 1.

Definition 3.3. Let (X = Spec R, A, a’) be a triple such that ¢ € Q and A is Q-
Cartier. Then we define the submodule 7(wx, A_g,a") C wy by T(wy, (1 —¢)A,af) for
sufficiently small 0 < ¢ < 1.

Lemma 3.4. Let (X = Spec R, A, a') be a triple such that t € Q and A is Q-Cartier.
Then the following hold.
(1) For any rational number t < t', we have T(wx, A_g,a") C T(wx, Ao, at).
(2) For any real number s > 0, there exists 0 < & such that T(wx,A_g,a®) is
constant for every rational number s < s’ < s+ ¢.
(3) For any rational number s > 0, there exists 0 < & such that T(wx, A_g,a®) is
constant for every rational number s —e < s’ < s.
(4) If a is generated by | elements and t > 1, then we have T(wx,A_g,a') =
ar(wx, A_g,at™t).
(5) Trx (F(r(wx, A o,0)) = r(wx, (A/p)_g, a').
(6) If rA is Cartier, then T(wx, (r +1)A_, a") = T(wx, A_g, a") @ Ox(—rA).

Proof. (1), (4), (5) and (6) follow from Lemma 2.11. (2) follows from (1) and the
ascending chain condition for the set of ideals in R.

For (3), we take a positive integer r such that rs is integer and rA is Cartier. By
Lemma 2.11 (3), there exists § > 0 such that 7(wx, (a"*Ox (—rA))1=9)/") is constant
for all rational numbers 0 < € < §. We denote this module by M.

It follows from Lemma 2.11 (6) and (7) that for every rational number 0 < & < ¢,
we have

T((UX, (1 — g)A’ as(l—e)) — T<WX7 as(l—a)OX(_rA)(l—e)/r)
= 7(wx, (@ Ox(—rA))=9/)

By Lemma 2.11 (1), 7(wx, (1 — €)A, a*0==)) = M for every 0 < ¢, < 6. Therefore,
we have T(wx, A_g, a*!=¢)) = M for every rational number 0 < ¢ < 4. O

Definition 3.5. Let (X = Spec R, A, a*) be a triple such that ¢ is not a rational number
and A is Q-Cartier. By Lemma 3.4 (2), there exists ¢ > 0 such that the submodule
T(wx,A_p,a%) C wy is constant for every rational number ¢ < s < t + . We denote
this submodule of wx by 7(wx, A_g, a).

<

We note that even if ¢, ¢/, s, and s’ are not rational, the same assertions as in Lemma
3.4 (1), (2), (4), (5) and (6) hold.

Definition 3.6. Let (X = Spec R, A, a) be a triple such that A is Q-Cartier. A real
number ¢ > 0 is called an F-jumping number of (wx,A_g; a) if one of the following
hold:



10 KENTA SATO

(1) for every € > 0, we have T(wx, A _o,a") C 7(wx, A_g,a"¢), or
(2) for every € > 0, we have 7(wx, A_g,a") D 7(wx, A_g, a’™).

Lemma 3.7. Let ¢ > 2 and |l > 1 be integers and B C Ry a subset. B is a discrete
set of rational numbers if the following four properties hold:
(1) For any x € B, qx € B.
(2) For any x € B, if v > [, thenx — 1 € B.
(3) For any real number t € Rxq, there exists € > 0 such that BN (t,t +¢) = 0.
(4) For any rational number t € Qxq, there exists € > 0 such that BN (t—e,t) = 0.

Proof. Let D be the set of all accumulation points of B. By [BST7Z10, Proposition
5.5], we have D = (). This proves that B is a discrete set. If B contains a non-rational
number, then by the assumptions (1) and (2), we have infinitely many elements in
B N[l —1,1], which contradicts to the discreteness of B. O

Corollary 3.8. Let (X = Spec R, A, a) is a triple such that A is Q-Cartier. Then the
set of all F-jumping numbers of (wx, A_g;a) is a discrete set of rational numbers.

Proof. 1t follows from Lemma 3.4 (5) that if ¢ is an F-jumping number of (wx, A_¢; a),
then pt is an F-jumping number of (wx, (pA)_,;a). Therefore, we may assume that
there exists an integer e > 0 such that (p® — 1)A is Cartier.

Let [ be the number of minimal generators of a and B be the set of all F-jumping
numbers of (wy, A_g;a). Then it follows from Lemma 3.4 that B, ¢ = p® and [ satisfy
the assumptions in Lemma 3.7. O

4. PROOF OF MAIN THEOREM

In this section, applying Corollary 3.8, we prove the rationality of F-pure thresholds
(Corollary 4.2). We also prove that the shadow of F-pure thresholds coincides with
the F-pure threshold on the catapower (Theorem 4.5). By combining them, we give
the proof of the main theorem (Theorem 4.7).

Proposition 4.1. Suppose that (X = Spec A, A) is a sharply F-pure pair such that A
is reqular and (p® — 1)A is Cartier for some e > 0, and a C A is a non-zero proper
ideal. Then the F-pure threshold fpt(A, A;a) coincides with the first jumping number
of (wx,A_g;a). In particular, it is a rational number.

Proof. 1t is enough to show the equation
fpt(A7 A? (1) = sup {S P 0 ‘ T(va A—07 as) = WX} . (2)
Set t := fpt(A, A;a). Since A is regular local, we may identify wyx with A. By Lemma
2.13 (1), we have 7(wx, A_g, atl79)) = wy for every 0 < & < 1.
On the other hand, take any rational number s such that 7(wyx, A_g,a°) = wx. It

follows from Lemma 2.13 (2) that (A4, A, a*1=9)) is sharply F-pure for every 0 < e < 1,
which proves the equation (2). O

Corollary 4.2 (Theorem 1.2). Suppose that (R, A) is a sharply F'-pure pair such that
(p¢ — 1)(Kgr + A) is Cartier for some integer e > 0 and a C R is an ideal. Then the
F-pure threshold fpt(R, A; a) is a rational number.
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Proof. By Lemma 2.3 (5), we may assume that R is a complete local ring. By Propo-
sition 2.9, we may assume that R is a regular local ring. Hence, the assertion follows
from Proposition 4.1. O

Lemma 4.3. Suppose that A is an F-finite reqular local ring, f € A is a non-zero
element, a C A is an ideal, e > 0 is an integer and t = u/v > 0 is a rational number
with integers u,v > 0. Set b := fv-a® =V C A and A := diva(f)/(p® — 1). Assume
that (A, A) is sharply F-pure. Then t < fpt(A, Asa) if and only if 1/(v(p® — 1)) <
fpt(A; b).

Proof. We may assume that a # (0). First, we assume that ¢t < fpt(A, A;a). By Lemma
2.13 (1), the triple (A, (1 — ¢)A, a’=9?) is strongly F-regular for every 0 < ¢ < 1. It
follows from Lemma 2.3 (4) that the triple (A4, b0=2)/C@°=D)) is strongly F-regular,
which proves the inequality 1/(v(p® — 1)) < fpt(A4;b).

On the other hand, we assume that 1/(v(p® — 1)) < fpt(A;b). By Lemma 2.3 (3)
and (4), the triple (A, (1 — ¢)A, a'=9)) is strongly F-regular for every 0 < e < 1. It
follows from 2.3 (2) that the triple (A4, (1 —&)A, a=<) is strongly F-regular for every
0 <e,& < 1. By Lemma 2.13 (2), we have t < fpt(A4, A; a). O

Proposition 4.4. Suppose that A is an F-finite reqular local ring, e > 0 is an integer,
A, = diva(fm)/(p¢ — 1) is an effective Q-divisor on Spec A for every m € N and
a, € A is a proper ideal for every m € N. Fix a non-principal ultrafilter 2. Let Ay
be the catapower of A and 0o := [A]m € Ay. Assume that (A, A,,) is sharply F-pure
for every integer m. Then the following hold.

(1) foo := [fim)m € Ay is a non-zero element.

(2) Set A = diva,(fo)/(p° —1). Then, (Ay, As) is sharply F-pure.

(3) For every rational number t > 0, we have t < fpt(Ay, A as) if and only if
{meN |t <Ipt(A, A an)} €4

Proof. By Lemma 2.4, we have f,, € m”] for every m. It follows from [Sat17, Lemma
2.19] that f., ¢ mlPl, which proves (1) and (2). For (3), take integers u,v > 0 such
that t = u/v and set b, := f" - a7 for every m € NU{co}. It follows from Lemma
4.3 that {m € N | t < fpt(A, Ay an)} € Yif and only if {m € N | 1/(v(p® — 1)) <
fpt(A; b,,)} € U We first assume that {m € N | 1/(v(p® — 1)) < fpt(A4;b,,)} € L.
Since we have sh(ulim,, fpt(A4;b,,)) = fpt(As; b)) ([Satl7, Theorem 4.7]), we have
1/(v(p®—1)) < fpt(Ag; bs). Applying Lemma 4.3 again, we have ¢ < fpt(Ay, Aso; ).

For the converse implication, we assume that {m € N | 1/(v(p®—1)) < fpt(A4;b,,)} &
i, In this case, we have {m € N | 1/(v(p® — 1)) > fpt(A4;b,,)} € U and hence we have
1/((p° — 1)) > fot(Ag; buo). T 1/(0(p" — 1)) = fpt(Ay; buw) = shi(ulimy, Ept(4; b,y),
then by replacing by a subsequence, we may assume that the sequence {fpt(A;b,,)}., is
a strictly ascending chain, which is contradiction to [Sat17, Main Theorem|. Therefore,
we have 1/(v(p® — 1)) > fpt(Ay; boo), which proves ¢ > fpt(Ay, As; ). O

Theorem 4.5. With the notation above, we have

sh(ulim,, fpt(A, A, a,,)) = Ipt(Ag, A, ) € Q.
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In particular, if the limit lim,, . fpt(A, A,.; a,,) exists, then we have

lim fpt(A, Ay ar,) = pt(Ay, A, as)-
m—r00

Proof. We first note that the shadow always exists because we have fpt(A, A,,; a,,) <
fpt(A;m) = dim A for all m. For any rational number ¢ > 0, it follows from Proposi-
tion 4.4 that ¢ < sh(ulim,, fpt(A, A,,; a,,)) if and only if ¢t < fpt(Ay, A a), which
completes the proof. O

Corollary 4.6. Suppose that e > 0 is an integer and (A, m) is an F-finite reqular local
ring of characteristic p > 0. Then the set

FPT(A,e) := {fpt(A,A;a) | (A, A) is sharply F-pure, (p© — 1)A is Cartier, a C A}
satisfies the ascending chain condition.

Proof. We assume the contrary. Then there exist sequences {A,,},, and {a,,} such
that {fpt(A, An; a) bmen is a strictly ascending chain. Set t := lim,, fpt(A, Ay ayy,).
By Corollary 4.2 and Corollary 4.5, we have t = fpt(Ax, Aw; ts) € Q.

Since t is rational and fpt(A, A,,; a,,) < t for all m, it follows from Proposition 4.4
that fpt(A, Aw; as) < t, which is contradiction. O

For a Noetherian local ring (R, m), we denote by emb(R) the embedding dimension
of R.

Theorem 4.7 (Main Theorem). Fiz positive integers e and N. Suppose that T is any
set such that every element of T is an F-finite Noetherian normal local ring (R, m)
with emb(R) < N. Let FPT(T,e) be the set of all F-pure thresholds fpt(R, A; a) such
that

e R is an element of T,

e a is a proper ideal of R, and

o A is an effective Q-Weil divisor on X = Spec R such that (R, A) is sharply
F-pure and (p® — 1)(Kx + A) is Cartier.

Then the set FPT (T, e) satisfies the ascending chain condition.

Proof. Take an F-finite field k& such that for every (R,m) € T, there exists a field
extension R/m C k. Set A := E[[zy,...,zx]]. Then it follows from Lemma 2.3 (6),
Proposition 2.9 and Lemma 2.4 that we have the inclusion FPT(T,e) C FPT(A,e),
which proves that the set FPT(T) e) satisfies the ascending chain condition. U

Corollary 4.8. Suppose that X is a normal variety over an F-finite field. Fix an
integer e > 0. Let FPT(X,e) be the set of all fpt(X, A;a) such that

e a is a proper coherent ideal sheaf on X and
o A is an effective Q- Weil divisor on X such that (X, A) is sharply F-pure and
(p° — 1)(Kx + A) is Cartier.
The set FPT(X, e) satisfies the ascending chain condition.

Proof. Set T := {Ox, | * € X}. It follows from Lemma 2.8 that FPT(X,e) C
FPT(T,e), which completes the proof. O
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Lemma 4.9 (cf. [dFEMI0, Proposition 6.3]). Let (R,m) be an F-finite Noetherian
normal local ring of dimension d. If R is a complete intersection and sharply F-pure,
then emb(R) < 2d.

Proof. Set N := emb(R) and ¢ := N — d. There exists an F-finite regular local ring A
and a regular sequence fi,..., f. € A with f; € m? such that R = A/(f,..., f.). By
[W02, Proposition 2.6], we have (f;--- f.)P~! & mll.

Since f; € m? for every 4, we have (fi---f.)P~! € m?*®=1 It follows from the
inclusion mN®=1+1 C mlP! that we have 2¢ < N, which proves N < 2d. O

Corollary 4.10 (Theorem 1.1). Let n > 1 be an integer. Suppose that T' is any set
such that every element of T is an n-dimensional Noetherian normal connected I.c.1.
scheme which is sharply F-pure. Then, the set

{fpt(X;a) [ X € T,a € Ox}
satisfies the ascending chain condition.

Proof. 1t follows from Lemma 4.9 that emb(Ox,) < 2n for every X € T and every

x € X. Since every X € T is Gorenstein, we apply the main theorem. U
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