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ASCENDING CHAIN CONDITION FOR F -PURE THRESHOLDS

WITH FIXED EMBEDDING DIMENSION

KENTA SATO

Abstract. In this paper, we prove that the set of all F -pure thresholds of ideals with
fixed embedding dimension satisfies the ascending chain condition. As a corollary,
given an integer d, we verify the ascending chain condition for the set of all F -pure
thresholds on all d-dimensional normal l.c.i. varieties. In the process of proving these
results, we also show the rationality of F -pure thresholds of ideals on non-strongly
F -regular pairs.

1. Introduction

A ring R of characteristic p > 0 is said to be F -finite if the Frobenius morphism
F : R −→ R is finite. Suppose that X is a normal variety over an F -finite field k
of characteristic p > 0. We further assume that X is sharply F -pure, that is, the
Frobenius homomorphism OX −→ F∗OX locally splits. Then, for every coherent ideal
sheaf a ( OX , we can define the F -pure threshold fpt(X ; a) ∈ R>0 in terms of Frobenius
splittings (see Definition 2.7 below). Recent studies ([TW04], [Tak13], [HnBWZ16])
reveal that F -pure thresholds have a strong connection to log canonical thresholds
in characteristic 0. Moreover, as seen in [TW04], [MTW05] and [BS15], the F -pure
threshold itself is an interesting invariant in both commutative algebra and algebraic
geometry in positive characteristic.

In [Sat17], motivated by the ascending chain condition for log canonical thresholds in
characteristic 0 ([Sho92], [dFEM10], [dFEM11] and [HMX14]), the author studied the
ascending chain condition for F -pure thresholds. In loc. cit., it was proved that the set
of all F -pure thresholds of ideals on a fixed germ of a strongly F -regular pair satisfies
the ascending chain condition, where strong F -regularity is a stronger condition than
sharp F -purity (see Definition 2.2).

In this paper, we extend the result of [Sat17] to the case of sharply F -pure pair
under some conditions. The first result in this paper deals with the ascending chain
condition for F -pure thresholds on l.c.i. varieties, which is an positive characteristic
analogue of [dFEM10, Theorem 1.3].

Theorem 1.1 (Corollary 4.10). Fix an integer n > 1 and an F -finite field k of charac-
teristic p > 0. Let T be a set of all n-dimensional normal l.c.i. varieties over k which
are sharply F -pure. Then the set

{fpt(X ; a) | X ∈ T, a ( OX}
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2 KENTA SATO

satisfies the ascending chain condition.

In the proof of [dFEM10, Theorem 1.3], they use Inversion of Adjunction, which
is the reason why they consider l.c.i. varieties. On the other hand, the theory of F -
adjunction, introduced by Schwede ([Sch09]), can be applied even if the variety is not
a locally complete intersection. Therefore, we can employ the same strategy in a more
general setting as that of [dFEM10].

Suppose that (R,m) is an F -finite Noetherian normal local ring of characteristic
p > 0 and ∆ is an effective Q-Weil divisor on SpecR. We further assume that the pair
(R,∆) is sharply F -pure (see Definition 2.2). In this case, we can define the F -pure
threshold fpt(R,∆; a) ∈ R>0 for every proper ideal a ⊆ R. The following is the main
theorem of this paper, which extends the main theorem of [Sat17].

Main Theorem (Theorem 4.7). Fix positive integers e and N . Suppose that T is any
set such that every element of T is an F -finite Noetherian normal local ring (R,m, k)
with dimk(m/m2) 6 N . Let FPT(T, e) ⊆ R>0 be the set of all F -pure thresholds
fpt(R,∆; a) such that

• R is an element of T ,
• a is a proper ideal of R, and
• ∆ is an effective Q-Weil divisor on X = SpecR such that (R,∆) is sharply
F -pure and (pe − 1)(KX + ∆) is Cartier, where KX is a canonical divisor on
X.

Then the set FPT(T, e) satisfies the ascending chain condition.

In the process of proving the main theorem, we treat the rationality problem for
F -pure thresholds. In characteristic 0, since log canonical thresholds can be computed
by a single log resolution, it is obvious that the log canonical threshold of any ideal on
any log Q-Gorenstein pair is a rational number. In [dFEM10], they use the rationality
to reduce the ascending chain condition for log canonical thresholds on l.c.i. varieties
to that on smooth varieties.

However, in positive characteristic, the rationality of F -pure thresholds is a more
subtle problem. In [ST14], Schwede and Tucker proved that the F -pure threshold
of any ideal on any log Q-Gorenstein strongly F -regular pair is a rational number.
In this paper, we generalize their result to the case where the pair is not necessarily
strongly F -regular, under the assumption that the Gorenstein index is not divisible by
the characteristic.

Theorem 1.2 (Corollary 4.2). Suppose that (R,m) is an F -finite Noetherian normal
local ring of characteristic p > 0 and ∆ is an effective Q-Weil divisor on X = SpecR
such that (R,∆) is sharply F -pure and KX +∆ is Q-Cartier with index not divisible by
p. Then the F -pure threshold fpt(R,∆; a) is a rational number for every proper ideal
a ⊆ R.

In the proof of Theorem 1.2, we introduce a new variant of parameter test modules.
Assume that ∆ is Q-Cartier and t > 0 is a real number. Then, we define the submodule
τ(ωX ,∆−0, a

t) ⊆ ωX as an approximation of the parameter test module τ(ωX ,∆, at) ⊆
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ωX by small perturbations of ∆ (see Definition 3.3). A real number t > 0 is called an
F -jumping number of (ωX ,∆−0; a) if one of the following hold:

(1) for every ε > 0, we have τ(ωX ,∆−0, a
t) ( τ(ωX ,∆−0, a

t−ε), or
(2) for every ε > 0, we have τ(ωX ,∆−0, a

t) ) τ(ωX ,∆−0, a
t+ε).

The key ingredient of the proof of Theorem 1.2 is the rationality of F -jumping num-
bers of (ωX ,∆−0; a) (Corollary 3.8). Theorem 1.2 follows from the rationality and
F -adjunction because the F -pure threshold fpt(R,∆; a) is equal to the first F -jumping
number if X = SpecR is regular (Proposition 4.1). We use Theorem 1.2 to reduce the
main theorem to the ascending chain condition for F -pure thresholds of ideals on a
fixed F -finite regular local ring, which has already been proved in [Sat17].

Acknowledgments. The author wishes to express his gratitude to his supervisor Profes-
sor Shunsuke Takagi for his encouragement, valuable advice and suggestions. He was
supported by JSPS KAKENHI Grant Number 17J04317.

2. Preliminaries

2.1. F -singularities. In this subsection, we recall the definitions and some basic prop-
erties of F -singularities.

A ring R of characteristic p > 0 is said to be F -finite if the Frobenius morphism
F : R −→ R is a finite ring homomorphism. A scheme X is said to be F -finite if for
every open affine subscheme U ⊆ X , OU is F -finite. If R is an F -finite Noetherian
normal domain, then R is excellent ([Kun76]) and X = SpecR has a dualizing complex
ω•
X , a canonical module ωX and a canonical divisor KX (see for example [ST17, p.4]).
Through this paper, all rings will be assumed to be F -finite of characteristic p > 0.

Definition 2.1. A pair (R,∆) consists of an F -finite Noetherian normal local ring
(R,m) and an effective Q-Weil divisor ∆ on X . A triple (R,∆, at) consists of a pair
(R,∆) and a symbol at, where a ⊆ R is an ideal and t > 0 is a real number.

Definition 2.2. Let (R,∆, at) be a triple.

(1) (R,∆, at) is said to be sharply F -pure if there exist an integer e > 0 and a
morphism ϕ ∈ HomR(F

e
∗R(⌈(pe − 1)∆⌉), R) such that ϕ(F e

∗ a
⌈t(pe−1)⌉) = R.

(2) (R,∆, at) is said to be strongly F -regular if for every non-zero element c ∈ R,
there exist an integer e > 0 and a morphism ϕ ∈ HomR(F

e
∗R(⌈(pe − 1)∆⌉), R)

such that ϕ(F e
∗ (ca

⌈t(pe−1)⌉)) = R.

Lemma 2.3. Let (R,∆, at) be a triple. Then the following hold.

(1) If (R,∆, at) is strongly F -regular, then it is sharply F -pure.
(2) Suppose that 0 6 ∆′ 6 ∆ is an Q-Weil divisor and 0 6 t′ 6 t is a real number.

If (R,∆, at) is strongly F -regular (resp. sharply F -pure), then so is (R,∆′, at
′

).
(3) If (R,∆) is strongly F -regular and (R,∆, at) is sharply F -pure, then (R,∆, as)

is strongly F -regular for every 0 6 s < t.
(4) Let f ∈ R be a non-zero element and b := f ·a ⊆ R. Then, (R,∆+t divR(f), a

t)
is strongly F -regular if and only if (R,∆, bt) is strongly F -regular.
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(5) Let R̂ be the m-adic completion and ∆̂ the flat pullback of ∆ to Spec R̂. Then,

(R,∆, at) is sharply F -pure if and only if (R̂, ∆̂, (aR̂)t) is sharply F -pure.

Proof. (1) and (2) follow from definitions. The proof of (3) is similar to that of [TW04,
Proposition 2.2 (5)]. (4) follows from [Sch11, Lemma 3.1]. For (5), we define I :=∑

e,ϕ ϕ(F
e
∗ a

⌈t(pe−1)⌉) ⊆ R (resp. I ′ :=
∑

e,ϕ ϕ(F
e
∗ (aR̂)⌈t(p

e−1)⌉) ⊆ R̂), where e runs

through all positive integers and ϕ runs through all elements in Hom(F e
∗R(⌈(pe −

1)∆⌉), R) (resp. in HomR̂(F
e
∗ R̂(⌈(pe−1)∆̂⌉), R̂)). Then the triple (R,∆, at) (resp. the

triple (R̂, ∆̂, (aR̂)t)) is sharply F -pure if and only if I = R (resp. I ′ = R̂). Since

HomR̂(F
e
∗ R̂(⌈(pe − 1)∆̂⌉), R̂) ∼= Hom(F e

∗R(⌈(pe − 1)∆⌉), R)⊗R R̂,

we have I ′ = IR̂, which completes the proof. �

Suppose that R is a ring of characteristic p > 0, e > 0 is a positive integer and a ⊆ R
is an ideal. Then we denote by a

[pe] the ideal of R generated by {f pe ∈ R | f ∈ a}.
The following lemma is a variant of Fedder-type criteria.

Lemma 2.4 (cf. [Fed83], [HW02, Proposition 2.6]). Suppose that (A,m) is an F -finite
regular local ring of characteristic p > 0, a ⊆ A is an ideal and ∆ = divA(f)/(p

e − 1)
is an effective Q-divisor with f ∈ A and e > 0. Then, the triple (A,∆, at) is sharply
F -pure if and only if there exists an integer n > 0 such that

f
pen−1

pe−1 a
⌈t(pen−1)⌉ 6∈ m

[pen].

Proof. By the proof of [Sch08, Proposition 3.3], the triple (A,∆, at) is sharply F -pure
if and only if there exists an integer n > 0 and ϕ ∈ HomR(F

en
∗ A((pen − 1)∆), A) such

that ϕ(F en
∗ a

⌈t(pen−1)⌉) = A. Since

(pen − 1)∆ = divA(f
pen−1

p−1 ),

the assertion follows from [Fed83, Lemma 1.6]. �

Suppose that X is an F -finite Noetherian normal connected scheme, ∆ is an effective
Q-Weil divisor on X , a ⊆ OX is a coherent ideal sheaf and t > 0 is a real number. For
any point x ∈ X , we denote by ∆x the flat pullback of ∆ to SpecOX,x.

Definition 2.5. With the notation above, we say that (X,∆, at) is sharply F -pure if
(OX,x,∆x, a

t
x) is sharply F -pure for every point x ∈ X .

Remark 2.6. Suppose that X = SpecR is an affine scheme. Then, the above definition
differs from the one given in [Sch08]. See [Sch10b].

Definition 2.7. With the notation above, assume that (X,∆) is sharply F -pure. We
define the F -pure threshold of (X,∆; a) by

fpt(X,∆; a) := inf
{
t > 0 | (X,∆, at) is not sharply F -pure

}
∈ R>0 ∪ {∞}.

When X = SpecR is an affine scheme, we denote it by fpt(R,∆; a).

Lemma 2.8. With the notation above, we assume that (X,∆) is sharply F -pure. Then,
fpt(X,∆; a) = min {fpt(OX,x,∆x; ax) | x ∈ X}.
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Proof. We may assume that X = SpecR. For every t > 0, we consider It :=∑
e,ϕ ϕ(F

e
∗ a

⌈t(pe−1)⌉) ⊆ R as in the proof of Lemma 2.3 (5). Then, the set

Zt := {x ∈ X | (OX,x,∆x, a
t
x) is not sharply F -pure} ⊆ X

is a closed set defined by the ideal It. Since R is Noetherian, there exists a real number
ε > 0 such that Zt is constant for all fpt(X,∆; a) < t < fpt(X,∆; a) + ε. Take a point
x ∈ Zt for such t. Then we have fpt(X,∆; a) = fpt(OX,x,∆x; ax), which completes the
proof. �

Proposition 2.9 ([Sch09, Theorem 5.5]). Suppose that A is an F -finite regular local
ring, R = A/I is a normal ring and ∆R is an effective Q-Weil divisor on SpecR.
Assume that the pair (R,∆R) is sharply F -pure and there exists an integer e > 0 such
that (pe − 1)(KX +∆R) is Cartier. Then, there exists an effective Q-Weil divisor ∆A

on SpecA with the following properties:

(1) (pe − 1)∆A is Cartier, and
(2) Suppose that a ⊆ R is an ideal and ã ⊆ A is the lift of a. Then we have

fpt(R,∆R; a) = fpt(A,∆A; ã).

2.2. Test ideals and parameter test modules. In this subsection, we recall the
definitions and basic properties of test ideals and parameter test modules.

Definition 2.10. Suppose that R is an F -finite Noetherian normal domain, ∆ is
an effective Q-Weil divisor on X = SpecR, a, b ⊆ R are non-zero ideals and t, s >

0 are real numbers. The test ideal τ(R,∆, atbs) (resp. the parameter test module
τ(ωX ,∆, atbs)) is the unique smallest non-zero ideal J ⊆ R (resp. non-zero submodule
J ⊆ ωX) such that

ϕ(F e
∗ (a

⌈t(pe−1)⌉
b
⌈s(pe−1)⌉J)) ⊆ J

for every integer e > 0 and every morphism ϕ ∈ HomR(F
e
∗R(⌈(pe − 1)∆⌉), R) (resp.

ϕ ∈ HomR(F
e
∗ωX(⌈(pe − 1)∆⌉), ωX)).

The test ideal and the parameter test module always exist ([Sch10a, Theorem 6.3]
and [ST14, Lemma 4.2]). If b = R, then we write τ(R,∆, at) (resp. τ(ωX ,∆, at)).
If a = b = R, then we write τ(R,∆) (resp. τ(ωX ,∆)). If a = 0, then we define
τ(ωX ,∆, at) = τ(R,∆, at) := (0).

Lemma 2.11. With the notation above, we assume that ∆ is Q-Cartier. Then the
following hold.

(1) If t 6 t′ and ∆ 6 ∆′, then τ(ωX ,∆
′, at

′

) ⊆ τ(ωX ,∆, at).
(2) ([ST14, Lemma 6.1]) There exists a real number ε > 0 such that if t 6 t′ 6 t+ε,

then τ(ωX ,∆, at
′

) = τ(ωX ,∆, at).
(3) ([ST14, Lemma 6.2]) There exists a real number ε > 0 such that if t−ε 6 t′ < t,

then τ(ωX ,∆, at
′

) = τ(ωX ,∆, at−ε).
(4) ([ST14, Lemma 4.4]) Suppose that TrR : F∗ωX −→ ωX is the Grothendieck trace

map ([BST15, Proposition 2.18]). Then we have

TrR(F∗τ(ωX ,∆, at)) = τ(ωX ,∆/p, at/p).
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(5) ([HT04, Theorem 4.2], cf. [BSTZ10, Lemma 3.26]) If a is generated by l ele-
ments and l 6 t, then τ(ωX ,∆, atbs) = aτ(ωX ,∆, at−1bs).

(6) ([Sch11, Lemma 3.1]) If b = (f) is a non-zero principal ideal, then we have
τ(ωX ,∆, atbs) = τ(ωX ,∆+ s div(f), at).

(7) For an integer r > 1, we have τ(ωX ,∆, art) = τ(ωX ,∆, (ar)t).

Proof. Take a canonical divisor KX such that −KX is effective. Then we have
τ(ωX ,∆, atbs) = τ(R,∆−KX , a

tbs) ([ST14, Lemma 4.2]). Therefore, the assertions in
(5) and (6) follow from the same assertions for test ideals. The proof of (7) is similar
to the proof of (6). �

Remark 2.12. Suppose that X is an F -finite Noetherian normal connected scheme
which has a canonical module ωX , a, b ⊆ OX are coherent ideals, and t, s > 0 are
real numbers. Since parameter test modules are compatible with localization ([HT04,
Proposition 3.1]), we can define the parameter test module τ(ωX ,∆, atbs) ⊆ ωX .

Lemma 2.13. Let (A,∆, at) be a triple such that A is a regular local ring.

(1) If (A,∆, at) is sharply F -pure, then for any rational numbers 0 < ε, ε′ < 1, the
triple (A, (1− ε)∆, at(1−ε′)) is strongly F -regular.

(2) If (pe − 1)∆ is Cartier for an integer e > 0 and (A, (1 − ε)∆, at) is strongly
F -regular for every 0 < ε < 1, then the triple (A,∆, at(1−ε′)) is sharply F -pure
for every 0 < ε′ < 1.

Proof. For (1), we assume that the triple (A,∆, at) is sharply F -pure. Since A is
strongly F -regular ([HH89]), it follows from Lemma 2.3 (2) and (3) that (A, (1− ε)∆)
is strongly F -regular for every 0 < ε < 1. Then applying Lemma 2.3 (2) and (3) again,
we see that (A, (1− ε)∆, at(1−ε′)) is strongly F -regular for every 0 < ε, ε′ < 1.

For (2), set q := pe and suppose that ∆ = div(f)/(q− 1) for some non-zero element
f ∈ A. Take an integer l > t such that a is generated by at most l elements and set
an := (l − t)/(qn − 1) for every integer n > 0. Since for any triple, it is strongly F -
regular if and only if the test ideal is trivial ([Tak04, Corollary 2.10], see also [Sch10a,
Corollary 4.6]), we have τ(A, ((qn − 1)/qn)∆/, at) = A for every integer n > 0.

Since A is regular local, we may identify test ideals onA with parameter test modules.
Set ϕ := TreA(F

e
∗ (f ·−)) ∈ HomA(F

e
∗A((q−1)∆, A)). Then it follows from Lemma 2.11

(4), (5) and (6) that

A = τ(A, ((qn − 1)/qn)∆, at)

= TrenA (F en
∗ τ(A, f (qn−1)/(q−1)

a
tqn))

= ϕn(F en
∗ τ(A, atq

n

))

⊆ ϕn(F en
∗ a

⌈tqn−l⌉)

⊆ ϕn(F en
∗ a

⌈(t−an)(qn−1)⌉),

which proves that (A,∆, at−an) is sharply F -pure for every integer n > 0. Since
limn−→∞ an = 0, the triple (A,∆, at(1−ε′)) is sharply F -pure for every 0 < ε′ < 1. �

2.3. Ultraproduct. In this subsection, we define the catapower of a Noetherian local
ring and recall some properties.
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Definition 2.14. Let U be a collection of subsets of N. U is called an ultrafilter if the
following properties hold:

(1) ∅ 6∈ U.
(2) For every subsets A,B ⊆ N, if A ∈ U and A ⊆ B, then B ∈ U.
(3) For every subsets A,B ⊆ N, if A,B ∈ U, then A ∩ B ∈ U.
(4) For every subset A ⊆ N, if A 6∈ U, then N \ A ∈ U.

An ultrafilter U is called non-principal if the following holds:

(5) If A is a finite subset of N, then A 6∈ U.

By Zorn’s Lemma, there exists a non-principal ultrafilter. From now on, we fix a
non-principal ultrafilter U.

Definition 2.15. Let T be a set. We define the equivalence relation ∼ on the set TN

by

(am)m ∼ (bm)m if and only if {m ∈ N | am = bm} ∈ U.

We define the ultrapower of T as

∗T := TN/ ∼ .

The class of (am)m ∈ TN is denoted by ulimm am. If T is a ring (resp. local ring,
field), then so is ∗T . Moreover, if T is an F -finite field of characteristic p > 0, then so
is ∗T . (see [Sat17, Proposition 2.14]).

Definition 2.16 ([Scho10]). Suppose that (R,m) is a Noetherian local ring and
(∗R, ∗m) is the ultrapower. We define the catapower R# as the quotient ring

R# := ∗R/(∩n(
∗
m)n).

Proposition 2.17 ([Scho10, Theorem 8.1.19]). Suppose that (R,m, k) is a Noetherian

local ring of equicharacteristic and R̂ is the m-adic completion of R. We fix a coefficient

field k ⊆ R̂. Then we have

R#
∼= R̂ ⊗̂k(

∗k).

In particular, if (R,m) is an F -finite regular local ring, then so is R#.

Suppose that (R,m) is a Noetherian local ring, R# is the catapower and am ∈ R for
every m. We denote by [am]m ∈ R# the image of (am)m ∈ RN by the natural projection
RN −→ R#. Let am ⊆ R be an ideal for every m ∈ N. We denote by [am]m ⊆ R# the
image of the ideal

∏
m am ⊆ RN by the projection RN −→ R#.

Proposition-Definition 2.18 ([Gol98, Theorem 5.6.1]). Let {am}m∈N be a sequence
of real numbers such that there exist real numbers M1,M2 which satisfies M1 < am <
M2 for every m ∈ N. Then there exists an unique real number w ∈ R such that for
every real number ε > 0, we have

{m ∈ N | |w − am| < ε} ∈ U.

We denote this number w by sh(ulimm am) and call it the shadow of ulimm am ∈ ∗R.
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3. A variant of parameter test modules

In this section, we define a variant of parameter test modules and prove the ratio-
nality of F -jumping numbers.

Proposition 3.1. Let (X = SpecR,∆, at) be a triple such that ∆ = sD for some
Cartier divisor D and t = s = 1/(pe − 1) for some integer e > 0. Then τ(ωX , (s −
ε)D, at) is constant for all sufficiently small rational numbers 0 < ε ≪ 1.

Proof. The proof is essentially the same as that of [ST14, Lemma 6.2]. We may assume
that a 6= 0. Set q = pe. For every integer l > 0, we define the l-th truncation of s in
the base q by

〈s〉l :=
ql − 1

ql(q − 1)
∈ Q.

Since the sequence {〈s〉l}l∈N is a strictly ascending chain which converges to s, it is
enough to prove that τ(ωX , 〈s〉l ·D, at) is constant for all sufficiently large l.

Take the normalized blowup π : Y −→ X along a. Let G be the Cartier divisor on
Y such that OY (−G) = a · OY . Take the Grothendieck trace maps Trπ : π∗ωY −→ ωX ,
TrX : F∗ωX −→ ωX and TrY : F∗ωY −→ ωY ([BST15, Proposition 2.18]). As in
[BST15, p.4], we have TrX ◦F∗(Trπ) = Trπ ◦π∗(TrY ) and Trπ is injective. In particular,
we may consider π∗ωY as a submodule of ωX .

By [ST14, Theorem 5.1], for every integer l > 0, there exists an integer ml such that

τ(ωX , 〈s〉l ·D, at) = TremX (F em
∗ π∗(τ(ωY , q

m(〈s〉l · π
∗D + tG)))) (1)

for all m > ml.
By Lemma 2.11 (3) and (6), there exists l0 such that τ(ωY , 〈s〉l ·π∗D+tG) is constant

for all l > l0. For every integer l > 0, it follows from Lemma 2.11 (4) that the morphism

βl := TreY : F e
∗ (τ(ωY , q(〈s〉l · π

∗D + tG)))) −→ τ(ωY , 〈s〉l · π
∗D + tG)

is surjective. We denote the kernel by Nl. Since Nl is constant for all l > l0 and −G
is π-ample, there exists an integer m′ such that

R1π∗(Nl ⊗OY
OY (−MG)) = 0

for all integers l > 0 and M > (qm
′

− 1)/(q − 1).
Take integers m,n > 1 and consider the surjection

γn,m := TreY : F e
∗ (τ(ωX , q

m(〈s〉nπ
∗D + tG))) −→ τ(ωX , q

m−1(〈s〉nπ
∗D + tG)).

By Lemma 2.11 (5) and (6), γn,m coincides with βn−m⊗OY (−(qm−1)/(q−1)·(π∗D+G))
if m < n and with β0 ⊗OY (−qm〈s〉nπ∗D − (qm − 1)/(q − 1) ·G) if m > n. Therefore,
π∗γn,m is surjective if m > m′.

Combining with the equation (1), we have

τ(ωX , 〈s〉l ·D, at) = Trem
′

X (F em′

∗ π∗(τ(ωY , q
m′

(〈s〉l · π
∗D + tG))))

for every l. By the definition of l0, the right hand side is constant for all l > l0+m′. �

Corollary 3.2. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and ∆ is Q-Cartier.
Then τ(ωX , (1− ε)∆, at) is constant for all 0 < ε ≪ 1.
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Proof. By Lemma 2.11 (4) and (7), we may assume that there exists an integer e > 0
such that (pe − 1)∆ is Cartier and t = 1/(pe − 1). Then the assertion follows from
Proposition 3.1. �

We define the new variant of the parameter test module as the left limit of the map
s 7−→ τ(ωX , s∆, at) at s = 1.

Definition 3.3. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and ∆ is Q-
Cartier. Then we define the submodule τ(ωX ,∆−0, a

t) ⊆ ωX by τ(ωX , (1− ε)∆, at) for
sufficiently small 0 < ε ≪ 1.

Lemma 3.4. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and ∆ is Q-Cartier.
Then the following hold.

(1) For any rational number t < t′, we have τ(ωX ,∆−0, a
t′) ⊆ τ(ωX ,∆−0, a

t).
(2) For any real number s > 0, there exists 0 < ε such that τ(ωX ,∆−0, a

s′) is
constant for every rational number s < s′ < s+ ε.

(3) For any rational number s > 0, there exists 0 < ε such that τ(ωX ,∆−0, a
s′) is

constant for every rational number s− ε < s′ < s.
(4) If a is generated by l elements and t > l, then we have τ(ωX ,∆−0, a

t) =
aτ(ωX ,∆−0, a

t−1).
(5) TrX(F∗(τ(ωX ,∆−0, a

t))) = τ(ωX , (∆/p)−0, a
t/p).

(6) If r∆ is Cartier, then τ(ωX , (r + 1)∆−0, a
t) = τ(ωX ,∆−0, a

t)⊗OX(−r∆).

Proof. (1), (4), (5) and (6) follow from Lemma 2.11. (2) follows from (1) and the
ascending chain condition for the set of ideals in R.

For (3), we take a positive integer r such that rs is integer and r∆ is Cartier. By
Lemma 2.11 (3), there exists δ > 0 such that τ(ωX , (a

rsOX(−r∆))(1−ε)/r) is constant
for all rational numbers 0 < ε < δ. We denote this module by M .

It follows from Lemma 2.11 (6) and (7) that for every rational number 0 < ε < δ,
we have

τ(ωX , (1− ε)∆, as(1−ε)) = τ(ωX , a
s(1−ε)OX(−r∆)(1−ε)/r)

= τ(ωX , (a
rsOX(−r∆))(1−ε)/r)

= M.

By Lemma 2.11 (1), τ(ωX , (1 − ε)∆, as(1−ε′)) = M for every 0 < ε, ε′ < δ. Therefore,
we have τ(ωX ,∆−0, a

s(1−ε)) = M for every rational number 0 < ε < δ. �

Definition 3.5. Let (X = SpecR,∆, at) be a triple such that t is not a rational number
and ∆ is Q-Cartier. By Lemma 3.4 (2), there exists ε > 0 such that the submodule
τ(ωX ,∆−0, a

s) ⊆ ωX is constant for every rational number t < s < t + ε. We denote
this submodule of ωX by τ(ωX ,∆−0, a

t).

We note that even if t, t′, s, and s′ are not rational, the same assertions as in Lemma
3.4 (1), (2), (4), (5) and (6) hold.

Definition 3.6. Let (X = SpecR,∆, a) be a triple such that ∆ is Q-Cartier. A real
number t > 0 is called an F -jumping number of (ωX ,∆−0; a) if one of the following
hold:
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(1) for every ε > 0, we have τ(ωX ,∆−0, a
t) ( τ(ωX ,∆−0, a

t−ε), or
(2) for every ε > 0, we have τ(ωX ,∆−0, a

t) ) τ(ωX ,∆−0, a
t+ε).

Lemma 3.7. Let q > 2 and l > 1 be integers and B ⊆ R>0 a subset. B is a discrete
set of rational numbers if the following four properties hold:

(1) For any x ∈ B, qx ∈ B.
(2) For any x ∈ B, if x > l, then x− 1 ∈ B.
(3) For any real number t ∈ R>0, there exists ε > 0 such that B ∩ (t, t+ ε) = ∅.
(4) For any rational number t ∈ Q>0, there exists ε > 0 such that B∩ (t−ε, t) = ∅.

Proof. Let D be the set of all accumulation points of B. By [BSTZ10, Proposition
5.5], we have D = ∅. This proves that B is a discrete set. If B contains a non-rational
number, then by the assumptions (1) and (2), we have infinitely many elements in
B ∩ [l − 1, l], which contradicts to the discreteness of B. �

Corollary 3.8. Let (X = SpecR,∆, a) is a triple such that ∆ is Q-Cartier. Then the
set of all F -jumping numbers of (ωX ,∆−0; a) is a discrete set of rational numbers.

Proof. It follows from Lemma 3.4 (5) that if t is an F -jumping number of (ωX ,∆−0; a),
then pt is an F -jumping number of (ωX , (p∆)−0; a). Therefore, we may assume that
there exists an integer e > 0 such that (pe − 1)∆ is Cartier.

Let l be the number of minimal generators of a and B be the set of all F -jumping
numbers of (ωX ,∆−0; a). Then it follows from Lemma 3.4 that B, q = pe and l satisfy
the assumptions in Lemma 3.7. �

4. Proof of Main Theorem

In this section, applying Corollary 3.8, we prove the rationality of F -pure thresholds
(Corollary 4.2). We also prove that the shadow of F -pure thresholds coincides with
the F -pure threshold on the catapower (Theorem 4.5). By combining them, we give
the proof of the main theorem (Theorem 4.7).

Proposition 4.1. Suppose that (X = SpecA,∆) is a sharply F -pure pair such that A
is regular and (pe − 1)∆ is Cartier for some e > 0, and a ⊆ A is a non-zero proper
ideal. Then the F -pure threshold fpt(A,∆; a) coincides with the first jumping number
of (ωX ,∆−0; a). In particular, it is a rational number.

Proof. It is enough to show the equation

fpt(A,∆; a) = sup {s > 0 | τ(ωX ,∆−0, a
s) = ωX} . (2)

Set t := fpt(A,∆; a). Since A is regular local, we may identify ωX with A. By Lemma
2.13 (1), we have τ(ωX ,∆−0, a

t(1−ε)) = ωX for every 0 < ε < 1.
On the other hand, take any rational number s such that τ(ωX ,∆−0, a

s) = ωX . It
follows from Lemma 2.13 (2) that (A,∆, as(1−ε)) is sharply F -pure for every 0 < ε < 1,
which proves the equation (2). �

Corollary 4.2 (Theorem 1.2). Suppose that (R,∆) is a sharply F -pure pair such that
(pe − 1)(KR +∆) is Cartier for some integer e > 0 and a ⊆ R is an ideal. Then the
F -pure threshold fpt(R,∆; a) is a rational number.
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Proof. By Lemma 2.3 (5), we may assume that R is a complete local ring. By Propo-
sition 2.9, we may assume that R is a regular local ring. Hence, the assertion follows
from Proposition 4.1. �

Lemma 4.3. Suppose that A is an F -finite regular local ring, f ∈ A is a non-zero
element, a ⊆ A is an ideal, e > 0 is an integer and t = u/v > 0 is a rational number
with integers u, v > 0. Set b := f v · a(p

e−1)u ⊆ A and ∆ := divA(f)/(p
e − 1). Assume

that (A,∆) is sharply F -pure. Then t 6 fpt(A,∆; a) if and only if 1/(v(pe − 1)) 6

fpt(A; b).

Proof. Wemay assume that a 6= (0). First, we assume that t 6 fpt(A,∆; a). By Lemma
2.13 (1), the triple (A, (1 − ε)∆, a(1−ε)t) is strongly F -regular for every 0 < ε < 1. It
follows from Lemma 2.3 (4) that the triple (A, b(1−ε)/(v(pe−1))) is strongly F -regular,
which proves the inequality 1/(v(pe − 1)) 6 fpt(A; b).

On the other hand, we assume that 1/(v(pe − 1)) 6 fpt(A; b). By Lemma 2.3 (3)
and (4), the triple (A, (1 − ε)∆, a(1−ε)t) is strongly F -regular for every 0 < ε < 1. It
follows from 2.3 (2) that the triple (A, (1− ε)∆, a(1−ε′)t) is strongly F -regular for every
0 < ε, ε′ < 1. By Lemma 2.13 (2), we have t 6 fpt(A,∆; a). �

Proposition 4.4. Suppose that A is an F -finite regular local ring, e > 0 is an integer,
∆m = divA(fm)/(p

e − 1) is an effective Q-divisor on SpecA for every m ∈ N and
am ⊆ A is a proper ideal for every m ∈ N. Fix a non-principal ultrafilter U. Let A#

be the catapower of A and a∞ := [am]m ⊆ A#. Assume that (A,∆m) is sharply F -pure
for every integer m. Then the following hold.

(1) f∞ := [fm]m ∈ A# is a non-zero element.
(2) Set ∆∞ := divA#

(f∞)/(pe − 1). Then, (A#,∆∞) is sharply F -pure.
(3) For every rational number t > 0, we have t 6 fpt(A#,∆∞; a∞) if and only if

{m ∈ N | t 6 fpt(A,∆m; am)} ∈ U.

Proof. By Lemma 2.4, we have fm 6∈ m[pe] for every m. It follows from [Sat17, Lemma
2.19] that f∞ 6∈ m

[pe], which proves (1) and (2). For (3), take integers u, v > 0 such

that t = u/v and set bm := f v
m ·au(p

e−1)
m for every m ∈ N∪{∞}. It follows from Lemma

4.3 that {m ∈ N | t 6 fpt(A,∆m; am)} ∈ U if and only if {m ∈ N | 1/(v(pe − 1)) 6

fpt(A; bm)} ∈ U. We first assume that {m ∈ N | 1/(v(pe − 1)) 6 fpt(A; bm)} ∈ U.
Since we have sh(ulimm fpt(A; bm)) = fpt(A#; b∞) ([Sat17, Theorem 4.7]), we have
1/(v(pe−1)) 6 fpt(A#; b∞). Applying Lemma 4.3 again, we have t 6 fpt(A#,∆∞; a∞).

For the converse implication, we assume that {m ∈ N | 1/(v(pe−1)) 6 fpt(A; bm)} 6∈
U. In this case, we have {m ∈ N | 1/(v(pe − 1)) > fpt(A; bm)} ∈ U and hence we have
1/(v(pe − 1)) > fpt(A#; b∞). If 1/(v(pe − 1)) = fpt(A#; b∞) = sh(ulimm fpt(A; bm)),
then by replacing by a subsequence, we may assume that the sequence {fpt(A; bm)}m is
a strictly ascending chain, which is contradiction to [Sat17, Main Theorem]. Therefore,
we have 1/(v(pe − 1)) > fpt(A#; b∞), which proves t > fpt(A#,∆∞; a∞). �

Theorem 4.5. With the notation above, we have

sh(ulimm fpt(A,∆m; am)) = fpt(A#,∆∞, a∞) ∈ Q.
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In particular, if the limit limm−→∞ fpt(A,∆m; am) exists, then we have

lim
m−→∞

fpt(A,∆m; am) = fpt(A#,∆∞, a∞).

Proof. We first note that the shadow always exists because we have fpt(A,∆m; am) 6
fpt(A;m) = dimA for all m. For any rational number t > 0, it follows from Proposi-
tion 4.4 that t 6 sh(ulimm fpt(A,∆m; am)) if and only if t 6 fpt(A#,∆∞; a∞), which
completes the proof. �

Corollary 4.6. Suppose that e > 0 is an integer and (A,m) is an F -finite regular local
ring of characteristic p > 0. Then the set

FPT(A, e) := {fpt(A,∆; a) | (A,∆) is sharply F -pure, (pe − 1)∆ is Cartier, a ( A}

satisfies the ascending chain condition.

Proof. We assume the contrary. Then there exist sequences {∆m}m and {am} such
that {fpt(A,∆m; am)}m∈N is a strictly ascending chain. Set t := limm fpt(A,∆m; am).
By Corollary 4.2 and Corollary 4.5, we have t = fpt(A#,∆∞; a∞) ∈ Q.

Since t is rational and fpt(A,∆m; am) < t for all m, it follows from Proposition 4.4
that fpt(A,∆∞; a∞) < t, which is contradiction. �

For a Noetherian local ring (R,m), we denote by emb(R) the embedding dimension
of R.

Theorem 4.7 (Main Theorem). Fix positive integers e and N . Suppose that T is any
set such that every element of T is an F -finite Noetherian normal local ring (R,m)
with emb(R) 6 N . Let FPT(T, e) be the set of all F -pure thresholds fpt(R,∆; a) such
that

• R is an element of T ,
• a is a proper ideal of R, and
• ∆ is an effective Q-Weil divisor on X = SpecR such that (R,∆) is sharply
F -pure and (pe − 1)(KX +∆) is Cartier.

Then the set FPT(T, e) satisfies the ascending chain condition.

Proof. Take an F -finite field k such that for every (R,m) ∈ T , there exists a field
extension R/m ⊆ k. Set A := k[[x1, . . . , xN ]]. Then it follows from Lemma 2.3 (6),
Proposition 2.9 and Lemma 2.4 that we have the inclusion FPT(T, e) ⊆ FPT(A, e),
which proves that the set FPT(T, e) satisfies the ascending chain condition. �

Corollary 4.8. Suppose that X is a normal variety over an F -finite field. Fix an
integer e > 0. Let FPT(X, e) be the set of all fpt(X,∆; a) such that

• a is a proper coherent ideal sheaf on X and
• ∆ is an effective Q-Weil divisor on X such that (X,∆) is sharply F -pure and
(pe − 1)(KX +∆) is Cartier.

The set FPT(X, e) satisfies the ascending chain condition.

Proof. Set T := {OX,x | x ∈ X}. It follows from Lemma 2.8 that FPT(X, e) ⊆
FPT(T, e), which completes the proof. �
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Lemma 4.9 (cf. [dFEM10, Proposition 6.3]). Let (R,m) be an F -finite Noetherian
normal local ring of dimension d. If R is a complete intersection and sharply F -pure,
then emb(R) 6 2d.

Proof. Set N := emb(R) and c := N − d. There exists an F -finite regular local ring A
and a regular sequence f1, . . . , fc ∈ A with fi ∈ m2 such that R ∼= A/(f1, . . . , fc). By
[HW02, Proposition 2.6], we have (f1 · · · fc)p−1 6∈ m[p].

Since fi ∈ m
2 for every i, we have (f1 · · · fc)

p−1 ∈ m
2c(p−1). It follows from the

inclusion mN(p−1)+1 ⊆ m[p] that we have 2c 6 N , which proves N 6 2d. �

Corollary 4.10 (Theorem 1.1). Let n > 1 be an integer. Suppose that T is any set
such that every element of T is an n-dimensional Noetherian normal connected l.c.i.
scheme which is sharply F -pure. Then, the set

{fpt(X ; a) | X ∈ T, a ( OX}

satisfies the ascending chain condition.

Proof. It follows from Lemma 4.9 that emb(OX,x) 6 2n for every X ∈ T and every
x ∈ X . Since every X ∈ T is Gorenstein, we apply the main theorem. �
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[dFEM10] T. de Fernex, L. Ein and M. Mustaţă, Shokurov’s ACC conjecture for log canonical
thresholds on smooth varieties, Duke Math. J. 152 (2010), no. 1, 93–114.
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