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A PIERCE REPRESENTATION THEOREM FOR VARIETIES WITH
BFC

WILLIAM ZULUAGA

Abstract. We generalize the Pierce representation theorem for (commutative) rings
with unit to other algebraic categories with Definable Factor Congruences by using tools
from topos theory. Of independent interest, we prove that an algebraic category with
right existential definable factor congruences is coextensive if and only if has center
stable by complements.
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1. Introduction

By a variety with ~0 and ~1 we understand a varietyV for which there are 0-ary terms 01 , ...,
0n , 11 , ..., 1n such that V |= ~0 ≈ ~1 → x ≈ y, where ~0 = (01, ..., 0n) and ~1 = (11, ..., 1n).

If ~a ∈ An and ~b ∈ Bn, we write [~a,~b] for the n-uple ((a1, b1), ..., (an, bn)) ∈ (A × B)n.
If A ∈ V then we say that ~e = (e1, ..., en) ∈ An is a central element of A if there
exists an isomorphism τ : A → A1 × A2, such that τ(~e) = [~0,~1]. Also, we say that ~e

and ~f are a pair of complementary central elements of A if there exists an isomorphism
τ : A → A1 × A2 such that τ(~e) = [~0,~1] and τ(~f) = [~1,~0]. As it is well known, the
direct product representations A → A1 × A2 of an algebra A are closely related to the
concept of factor congruence. A pair of congruences (θ, δ) of an algebra A is a pair of
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2 WILLIAM ZULUAGA

complementary factor congruences of A if θ ∩ δ = ∆ and θ ◦ δ = ∇. In such case θ and δ
are called factor congruences. In most cases, the direct decompositions of an algebra are
not unique; moreover, in general the pair (~e, ~f) of complementary central elements does
not determine the pair of complementary factor congruences (ker(π1τ), ker(π2τ)) where
the π′

is are the canonical projections and τ is the isomorphism between A and A1 × A2.
We call such property the determining property (DP).

(DP) For every pair (~e, ~f) of complementary central elements, there is a unique pair (θ, δ)
of complementary factor congruences such that, for every i = 1, ..., n

(ei, 0i) ∈ θ and (ei, 1i) ∈ δ and (fi, 0i) ∈ δ and (fi, 1i) ∈ θ

Observe that (DP) is in some sense the most general condition guaranteeing that
central elements have all the information about direct product decompositions in the
variety. In [SanchezVaggione2009] it was proved that (DP) is equivalent to each one of
the following conditions:

(DFC) V has definable factor congruences; i.e, there is a first order formula ψ(~z, x, y) such
that for every A,B ∈ V

A×B |= ψ([~0,~1], (a, b), (a′, b′)) iff a = a′

(BFC) V has Boolean factor congruences, i.e., the set of factor congruences of any algebra
in V is a Boolean sublattice of its congruence lattice.

Let V a variety with BFC. If the formula ψ of (DFC) is existencial we will say that
V is a variety with exDFC. The aim of this work is to exhibit a representation theorem
for varieties with exDFC in terms of internal conected models in toposes of sheaves over
a Bolean algebra. The present work is motivated by the Pierce’s representation theorem
for integral rigs [Zuluaga2016] and Lawvere’s strategic ideas about the topos-theoretic
analysis of coextensive algebraic categories [Lawvere2008].

2. Preliminaries

2.1. Notation and basic results. If A is an algebra, we denote the congruence
lattice of A by Con(A). As usual, the join operation of Con(A) is denoted by ∨. If
f : A → B is an homomorphism we write Ker(f) for the congruence of A, defined by
{(a, b) ∈ A × A | f(a) = f(b)}. The universal congruence on A is denoted by ∇A and
∆A denotes the identity congruence on A (or simply ∇ and ∆ when the context is clear).

If S ⊆ A, we write θA(S) for the least congruence containing S × S. If ~a,~b ∈ An, then

θA(~a,~b) denotes the congruence generated by C = {(ak, bk) | 1 ≤ k ≤ n}. If ~a,~b ∈ An and

θ ∈ Con(A), we write ~a ≡ ~b(θ) or [~a,~b] ∈ θ to express that (ai, bi) ∈ θ, for i = 1, ..., n. We
use FC(A) to denote the set of factor congruences of A. A variety V has Boolean factor
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congruences if for every A ∈ V, the set FC(A) is a distributive sublattice of Con(A). We
write θ ⋄ δ in Con(A) to denote that θ and δ are complementary factor congruences of A.
If θ ∈ FC(A), we use θ⋆ to denote the factor complement of θ. If θ, δ ∈ Con(A) we say
that θ and δ permutes if θ ◦ δ = δ ◦ θ.

A system over Con(A) is a 2n-ple (θ1, ..., θn, x1, ..., xn) such that (xi, xj) ∈ θi ∨ θj , for
every i, j. A solution of the system (θ1, ..., θn, x1, ..., xn) is an element x ∈ A such that
(x, xi) ∈ θi for every 1 ≤ i ≤ n. Observe that if θ1 ∩ ... ∩ θn = ∆A, thus the system
(θ1, ..., θn, x1, ..., xn) has at least one solution.

2.2. Lemma. Let θ and δ be congruences of A. The following are equivalent:

1. θ and δ permutes.

2. θ ∨ δ = θ ◦ δ

3. For every x, y ∈ A, the system (θ, δ, x, y) has a solution.

Given two sets A1,A2 and a relation δ in A1 × A2, we say that δ factorizes if there
exist sets δ1 ⊆ A1 ×A1 and δ2 ⊆ A2 × A2 such that δ = δ1 × δ2, where

δ1 × δ2 = {((a, b), (c, d)) | (a, c) ∈ δ1, (b, d) ∈ δ2}

So, if δ ∈ Con(A1 × A2) factorizes in δ1, δ2 it follows that δi ∈ Con(Ai), for i = 1, 2.

2.3. Lemma. [BigelowBurris1990] Let V be a variety. The following are equivalent:

1. V has BFC.

2. V has factorable factor congruences. I.e. If A,B ∈ V and θ ∈ FC(A× B), then θ
factorizes.

We say that a variety has the Fraser-Horn property (see [FraserHorn1970]) (FHP) if
every congruence on a (finite) direct product of algebras factorizes.

Given a variety V and a set of variables X , we use FV(X) to denote the free algebra
of V freely generated by X (or simply F(X), if the context is clear). If X = {x1, ..., xn},
then we use FV(x1, ..., xn) instead of FV({x1, ..., xn}).
As a final remark we should recall that all the algebras considered along this work will
always have finite n-ary function symbols and its type (unless necessary) will be omitted.

2.4. Generalities about Varieties with DFC. Let V a variety with ~0 and ~1 and
suppose that has DFC. For every A ∈ V, we write Z(A) to denote the set of central

elements of A and ~e⋄A ~f to denote that ~e and ~f are complementary central elements of A.
If ~e is a central element of A we write θA~0,~e and θ

A
~1,~e

for the unique pair of complementary

factor congruences satisfying ~e ≡ ~0(θA~0,~e) and ~e ≡
~1(θA~1,~e). It follows that

~0 and ~1 are central
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elements in every algebra A and the factor congruences associated to them are θA~0,~0 = ∆A,

θA~1,~0 = ∇A and θA~0,~1 = ∇A, θA~1,~1 = ∆A, respectively. If there is no place to confusion, we

write θA~0,~e and θ
A
~1,~e

simply as θ~0,~e and θ~1,~e. Since V has BFC, factor complements are unique

so we obtain the following fundamental result

2.5. Theorem. Let V a variety with DFC. The map g : Z(A) → FC(A), defined by
g(e) = θA~0,~e is a bijection and its inverse h : FC(A)→ Z(A) is defined by h(θ) = ~e, where

~e is the only ~e ∈ An such that ~e ≡ ~0(θ) and ~e ≡ ~1(θ∗).

As a consequence of Lemma 2.2, the we obtain the following result for varieties with
BFC

2.6. Lemma. In every algebra A of a variety V with BFC every pair of factor congruences
permutes.

Those facts, allows us to define some operations in Z(A) as follows: Given ~e ∈ Z(A),
the complement ~ecA of ~e, is the only solution to the equations ~z ≡ ~1(θ~0,~e) and ~z ≡ ~0(θ~1,~e).

Given ~e, ~f ∈ Z(A), the infimum ~e∧A ~f is the only solution to the equations ~z ≡ ~0(θ~0,~e∩θ~0, ~f)

and ~z ≡ ~1(θ~1,~e ∨ θ~1, ~f). Finally, the supremum ~e ∨A ~f is the only solution to the equations

~z ≡ ~0(θ~0,~e ∨ θ~0, ~f) and ~z ≡
~1(θ~1,~e ∩ θ~1, ~f).

As result, we obtain that Z(A) = (Z(A),∧A,∨A,
cA ,~0,~1) is a Boolean algebra which

is isomorphic to (FC(A),∨,∩,∗ ,∆A,∇A). Also notice that ~e ≤A
~f iff θA~0,~e ⊆ θA~0, ~f iff

θA~1, ~f ⊆ θA~1,~e. If the context is clear enough, we will not use the subscripts in the operations

of Z(A).

We conclude this section with a result which will be useful in Section 9.7.

2.7. Lemma. [Badano2012] Let V be a variety with DFC, A ∈ V. For every ~e, ~f ∈ Z(A),
the following holds:

1. ~a = ~e ∧A ~f if and only if [~0,~a] ∈ θ~0,~e and [~a, ~f ] ∈ θ~1,~e.

2. ~a = ~e ∨A ~f if and only if [~1,~a] ∈ θ~1,~e and [~a, ~f ] ∈ θ~0,~e.

3. The universal property

In the Introduction we saw that for every variety with ~0 and ~1, having BFC is equivalent
to the variety having definable factor congruences. In this section we introduce several
definitions concerning with the different sorts of definability that arise at the light of this
context. In addition, we present some useful results that arise from the universal property
of principal congruences in varieties with BFC.
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3.1. Definition. Let V a variety with BFC.

1. A formula ρ(~z, x, y) defines θ~1,~e in terms of ~e if for every A,B ∈ V, a, b ∈ A and
c, d ∈ B

A×B |= ρ([~0,~1], (a, c), (b, d)) iff c = d

2. A formula λ(~z, x, y) defines θ~0,~e in terms of ~e if for every A,B ∈ V, a, b ∈ A and
c, d ∈ B

A×B |= λ([~0,~1], (a, c), (b, d)) iff a = b

In the last case, we also say that ρ defines θ~0,~e in terms of ~ec.

Notice that if a formula ρ defines θ~1,~e in terms of ~e, for every algebra A ∈ V and

~e ∈ Z(A), it follows that θA~1,~e = {(a, b) | A |= ρ(~1, a, b)}. A similar statement is obtained

when a formula λ defines θ~0,~e in terms of ~e.

Altough in [SanchezVaggione2009], it was proved that the items 1. and 2. of the Def-
inition 3.1 are equivalent (which is not trivial, since in general ~0 and ~1 are not inter-
changeables), such equivalence does not preserve the complexity of the formulas (c.f.
[BadanoVaggione2013]). This situation motivates the need of introducing several defini-
tions in terms of the complexity of the formulas envolved.

We say that a variety V with ~0 and ~1 has right existentially defined factor congruences
(RexDFC) if the formula that defines θ~1,~e in terms of ~e is existential. Analogously, if
the formula that defines θ~0,~e in terms of ~e is existential, we say that V has left existen-
tially defined factor congruences (LexDFC). If V has RexDFC and LexDFC, we say that
V has twice existentially defined factor congruences (TexDFC). Similar definitions arise
when the considered formula is positive or equational (a finite conjunction of equations).
In the positive case, we use the acronyms RpDFC, LpDFC and TpDFC to mean that
the variety has right positively defined factor congruences, left positively defined factor
congruences and twice positively defined factor congruences, respectively. For a further
reading about varieties with equationally definable factor congruences the reader can con-
sult [BadanoVaggione2013] and [BadanoVaggione2017].

3.2. Lemma. [Sanchez2010] For every variety V with BFC the following holds:

1. RexDFC implies RpDFC.

2. LexDFC implies LpDFC.

3. TexDFC implies TpDFC.

The following result expose the intimate relation between θ~0,~e, and the complexity of
the formula that defines it.
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3.3. Lemma. [Badano2012] Let V be variety with BFC.

1. If V has RpDFC, then for every A ∈ V and ~e central element of A we get that
θA~1,~e = θA(~1, ~e).

2. If V has LpDFC, then for every A ∈ V and ~e central element of A we get that
θA~0,~e = θA(~0, ~e).

3. If V has TpDFC, then for every A ∈ V and ~e central element of A we get that
θA~1,~e = θA(~1, ~e) and θA~0,~e = θA(~0, ~e).

We will say that an homomorphism f : A→ P has the universal property of identify
the elements of S, if for every homomorphism g : A→ C, such that g(a) = g(b), for every
a, b ∈ S; there exists a unique homomorphism h : B → C, such that the diagram

A
f //

g
��❅

❅❅
❅❅

❅❅
❅ B

h
��✤
✤

✤

C

commutes.

The following Lemma is an standard result in universal algebra. Nevertheless it is a
key observation which will be useful for the rest of this paper.

3.4. Lemma. Let A be an algebra with finite n-ary function symbols and S ⊆ A. Then,
the canonic homomorphism νS : A → A/θ(S) has the universal property of identify all
the elements of S.

Recall that, as a consequence of Lemma 3.4, we get that, for every ~a,~b ∈ An, the canon-
ical homomorphism A→ A/θ(~a,~b) has the universal property of identify the elements of

the set [~a,~b].

3.5. Corollary. Let V a variety with BFC. Then:

1. If V has RexDFC, for every A ∈ V and ~e central element of A, the canonical
morphism A→ A/θ(~1, ~e) has the universal property of identify ~e with ~1.

2. If V has LexDFC, for every A ∈ V and ~e central element of A, the canonical
morphism A→ A/θ(~0, ~e) has the universal property of identify ~e with ~0.

Proof. Apply Lemmas 3.2, 3.3 and 3.4.
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3.6. Lemma. Let A and B be algebras with finite n-ary function symbols and f : A→ B
an homomorphism. Then, for every S ⊆ A, the diagram

A
νS //

f

��

A/θA(S)

��
B νf(S)

// B/θB(f(S))

is a pushout.

Proof. Let a, b ∈ S and consider the following diagram:

A
hS //

f

��

A/θA(S)

k
�� α

��

B
hf(S) //

β //

B/θB(f(S))

γ
%%❑

❑
❑

❑
❑

❑

C

Observe that,
hf(S)(f(a)) = hf(S)(f(b)).

Then, by Lemma 3.4, there exists a unique k : A/θA(S) → B/θB(f(S)), such that
the inner square commutes. Suppose now that αhS = βf . Thus, for a, b ∈ S given, since
(a, b) ∈ θA(S), we have that

β(f(a)) = α(hS(a))) = α(hS(b)) = β(f(b))

so again by Lemma 3.4, there exists a unique γ : B → C, suh that the downward
triangle commutes. Finally, to verify that the upper triangle commutes, notice that

(γk)hS = γ(khS) = γ(hf(S)f) = βf = αhS

Since hS is epi, we conclude that γk = α.

3.7. Corollary. Let V be a variety with BFC, A,B ∈ V, f : A→ B be an homomor-
phism, ~e be a central element of A and f(~e) = (f(e1), ..., f(en)), then:

1. If V has RexDFC, the diagram

A
νe //

f

��

A/θA(~1, ~e)

��

B νf(e)
// B/θB(~1, f(~e))

is a pushout.
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2. If V has LexDFC, the diagram

A
νe //

f

��

A/θA(~0, ~e)

��

B νf(e)
// B/θB(~0, f(~e))

is a pushout.

Proof. Apply Lemmas 3.2, 3.3 and 3.6.

4. Coextensivity and Center Stability

In the context of varieties with BFC one may be tempted to think that in general, ho-
momorphisms preserves central elements and even complementary central elements. Un-
fortunately that is not case. Even in varieties with BFC having good properties like
the Frasier Horn ones, the preservation of central elements is restricted to surjective ho-
momorphisms (c.f. [Vaggione1996]). In this section we prove that the coextensivity of
algebraic categories associated to varieties with RexDFC and center stable is equivalent
to ask the variety having center stable by complements.

4.1. Definition. A category with finite limits C is called extensive if has finite coproducts
and the canonical functors 1→ C/0 and C/X × C/Y → C/(X + Y ) are equivalences.

If the opposite Cop of a category C is extensive, we will say that C is coextensive.
Classical examples of coextensive categories are the categories Ring and dLat of com-
mutative rings with unit and bounded distributive lattices. In the following, we will use
a characterization proved in [Carboni1993].

4.2. Proposition. A category C with finite coproducts and pullbacks along its injections
is extensive if and only if the following holds:

1. (Coproducts are disjoint.) For every X and Y , the square below is a pullback

0
! //

!
��

Y

in1

��
X

in0

// X + Y

2. (Coproducts are universal.) For every X,Xi, Yi with i = 0, 1 and f : X → Y0 + Y1,
if the squares below are pullbacks

X0
x0 //

h0

��

X

f

��

X1
x1oo

h1

��
Y0 y0

// Y0 + Y1 Y1y1
oo
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then the cospan X0 → X ← X1 is a coproduct.

Let V be a variety with BFC, A,B ∈ V and f : A→ B an homomorphism. We will
say that f preserves pairs of complementary central elements if preserves central elements;
i.e, for all e ∈ Z(A) it follows that f(e) ∈ Z(B) and furthermore,

e1 ⋄A e2 ⇒ f(e1) ⋄B f(e2)

If every homomorphism between the algebras of V preserves central elements, we
say that V has stable center (SC). If V has SC and every homomorphism between the
algebras of V preserves central elements, we say that V has center stable by complements
(CSC).

4.3. Remark. Observe that the definitions above are not trivial. For instance, let L be
the variety of bounded lattices. It is known (see [Vaggione1999] and [FraserHorn1970])
that L is a variety with BFC. If L = 2 × 2 (with 2 the chain of two elements) and
M = {0, 1, a, b, c}, with {a, b, c} not comparables, it easily follows that L is subalgebra of
M , but L is directly decomposable while M is not. So L is a variety which has not SC
nor CSC.

Let V be a variety with BFC. We write V to denote the algebraic category associated
to V.

4.4. Lemma. Let V be a variety with BFC. If V has RexDFC and CSC then, in V the
products are stable by pushouts.

Proof. Let A,B ∈ B and f : A → B be an homomorphism. If A ∼= A1 × A2, let us
consider de diagram:

A1

��

Aoo //

��

A2

��
P1 Boo // P2

Where P1 and P2 are the pushouts from the left and the right squares, respectively. If i
denotes the isomorphism between A and A1×A2, then Aj

∼= A/Ker(πji) (with j = 1, 2).
Since Ker(π1i) ⋄ Ker(π2i) in Con(A), if ~ej denotes the central element corresponding
to Ker(πji), thus from Lemmas 3.2 and 3.3 we have that Ker(π1i) = θA(~1, ~e2) and
Ker(π2i) = θA(~1, ~e1). From, item 1. of Corollary 3.7, we get that P1

∼= B/θB(~1, f(~e2))
and P2

∼= B/θB(~1, f(~e1)). The universal property of pushouts implies that B → P1

coincides with B → θB(~1, f(~e2)) and B → P2 with B → θB(~1, f(~e1)). Since f pre-
seserves pairs of complementary central elements by assumption, we can conclude that
B ∼= B/θB(~1, f(~e2))× B/θ

B(~1, f(~e1)) ∼= P1 × P2.
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4.5. Lemma. Let V be a variety with BFC, A,B ∈ V and f : A→ B an homomorphism
that preserves central elements. If V has RexDFC and in V the binary products are stable
by pushouts along f , thus f preserves pairs of complementary central elements.

Proof. Let A ∈ V and ~e a central element of A. If ~g denotes the complementary
central element of ~e we get that θA~0,~e = θA(~1, ~g), so by Lemmas 3.2 and 3.3, we get that

A ∼= A/θA(~1, ~g)×A/θA(~1, ~e). Let us, consider the diagram

A/θA(~1, ~g)

��

Aoo //

f

��

A/θA(~1, ~e)

��

B/θB(~1, f(~g)) Boo // B/θB(~1, f(~e))

By Corollary 3.7, both squares are pushouts, so, since the binary products are stable
by pushouts along f by assumption, the span B/θB(~1, f(~g)) ← B → B/θB(~1, f(~e)) is
a product. This fact implies directly that θB(~1, f(~g)) ⋄ θB(~1, f(~e)) in Con(B). Since f
preserves central elements by hypothesis, both f(~e) and f(~g) are central elements of B
so, we conclude that f(~e) ⋄B f(~g).

4.6. Lemma. If V is a variety with ~0 and ~1, then, in V the pushout of the projections of
binary products is the terminal object.

Proof. For every pair of A,B ∈ V the pushout of the projections A ← A × B → B
belongs to V. It is clear that the projections send [~0,~1] ∈ A×B to ~0 in A and to ~1 in B,
so ~0 = ~1 in the pushout. Since V is a variety with ~0 and ~1, it follows that the pushout
must be the terminal object.

4.7. Proposition. Let V be a variety with BFC. If V has RexDFC with SC, the fol-
lowing are equivalent:

1. V has CSC.

2. V is coextensive.

Proof. Since V has BFC, thus is a variety with ~0 and ~1. So, by Lemma 4.6, we get that
the pushout of the projections of binary products is the terminal object. Let us assume
that V has SCC. From the Lema 4.4, the products are stable by pushouts. Hence, by the
dual of the Proposition 4.2, V is coextensive. The reciprocal follows from Lemma 4.5.

5. An axiomatization for connected models

In this section we prove that a variety with BFC has RexDFC (LexDFC) if and only if
the factor congruence θ~1,~e associated to a central element ~e, coincides with the principal

congruence that identifies ~1 with ~e (~0 with ~e). This fact will allows us to prove that the
theory of connected models for varieties with RexDFC (LexDFC) is definable by a finite
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set of first order formulas.

We will use the following (Grätzer) version of Maltsev’s key observation on principal
congruences.

5.1. Lemma. Let A be an algebra and a, b ∈ A, ~c, ~d ∈ An. Then (a, b) ∈ θA(~c, ~d) if and

only if there exist (n+m)-ary terms t1(~x, ~u),...,tk(~x, ~u) with k odd and ~λ ∈ Am such that:

a = t1(~c, ~λ) b = tk(~d,~λ)

ti(~c, ~λ) = ti+1(~c, ~λ), i even, ti(~d,~λ) = ti+1(~d,~λ), i odd.

We recall that a principal congruence formula is a formula π(x, y, ~u, ~v) of the form

∃~w(x ≈ t1(~u, ~w) ∧
∧

i∈Ek

(ti(~u, ~w) ≈ ti+1(~u, ~w)) ∧
∧

i∈Ok

(ti(~v, ~w) ≈ ti+1(~v, ~w)) ∧ tk(~v, ~w) ≈ y))

where k is odd and ti are terms of type τ . This fact allows us to restate the latter
Lemma as

5.2. Lemma. Let A be an algebra, a, b ∈ A, ~c, ~d ∈ An. Then (a, b) ∈ θA(~c, ~d) if and only

if there exists a principal congruence formula π, such that A |= π(a, b,~c, ~d).

5.3. Lemma. Let V be a variety with DFC, A ∈ V and ~e ∈ Z(A):

1. If θA~1,~e = θA(~1, ~e) then θ~1,~e is definible by a formula of the form ∃
∧
p ≈ q.

2. If θA~0,~e = θA(~0, ~e) then θ~0,~e is definible by a formula of the form ∃
∧
p ≈ q.

Proof. We only prove 1. because the proof of 2. is essentially the same. Let us write
P = F(x, y)×F(y), where F(x, y) and F(y) are the free algebras generated by {x, y} and
{y}, respectively. By hyphotesis, Ker(π2) = θP

[~1,~1],[~0,~1]
= θP ([~1,~1], [~0,~1]). Since the pair

((x, y), (y, y)) ∈ Ker(π2), from Lema 5.1, there exist (n+m)-ary terms t1(~x, ~u),...,tk(~x, ~u)
with k odd and ~u ∈ Pm such that:

(x, y) = tP1 [[~1,~1], ~u] (y, y) = tPk [[~0,~1], ~u]

tPi [[~1,~1], ~u] = tPi+1[[~1,~1], ~u], i ∈ Ek, tPi [[~0,~1], ~u] = tPi+1[[~0,~1], ~u], i ∈ Ok.
(1)

where Ek and Ok refer to the even and odd naturals less or equal to k, respectively.

Since ~u ∈ P , there are ~P (x, y) ∈ F (x, y) and ~Q(y) ∈ F (x, y), such that ~u = [~P , ~Q].

Recall that tPi [[
~R, ~S], [~P , ~Q]] = (t

F (x,y)
i [~R, ~P ], t

F (y)
i [~S, ~Q]), for 1 ≤ i ≤ k and [~R, ~S] ∈ P ,

thus, from equation (1), we obtain that there exist (n +m)-ary terms t1(~x, ~u),...,tk(~x, ~u)

with k odd, ~P (x, y) ∈ F (x, y) and ~Q(y) ∈ F (y), such that:

y = t
F (y)
i [~0, ~Q(y)], for every 1 ≤ i ≤ k
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and

x = t
F (x,y)
1 [~1, ~P (x, y)] y = t

F (x,y)
k [~0, ~P (x, y)]

t
F (x,y)
i [~1, ~P (x, y)] = t

F (x,y)
i+1 [~1, ~P (x, y)], i ∈ Ek t

F (x,y)
i [~0, ~P (x, y)] = t

F (x,y)
i+1 [~0, ~P (x, y)], i ∈ Ok

Let ϕ(x, y, ~z) = π(x, y,~1, ~z). In order to to check that ϕ defines θA~1,~e in terms of ~e let us

assume A,B ∈ V and (a, b), (c, d) ∈ A×B. Since the free algebra functor F : Set→ V is
left adjoint to the forgetful functor, in the case of b = d, the assingments αA : {x, y} → A
and αB : {y} → B, defined by αA(x) = a, αA(y) = c and αB(y) = b generate a unique
pair of homomorphisms βA : F(x, y) → A and βB : F(y) → B extending αA and αB,
respectively. Therefore, since P |= ϕ((x, y), (y, y), [~0,~1]), by applying g = βA × βB in (1),
we obtain as result that A × B |= ϕ((a, b), (c, b), [~0,~1]). On the other hand, if A × B |=

ϕ((a, b), (c, d), [~0,~1]), then there exist [~ε, ~δ] ∈ A×B, such that

(a, b) = tA×B
1 [[~1,~1], [~ε,~δ]] (c, d) = tA×B

k [[~0,~1], [~ε,~δ]]

tA×B
i [[~1,~1], [~ε,~δ]] = tA×B

i+1 [[~1,~1], [~ε,~δ]], i ∈ Ek, tA×B
i [[~0,~1], [~ε,~δ]] = tA×B

i+1 [[~0,~1], [~ε,~δ]], i ∈ Ok.

(2)

So, since tA×B
i [[~j, ~r], [~ε, ~δ]] = (tAi [~j, ~ε], t

B
i [~r,

~δ]), for every [~j, ~r] ∈ A× B and 1 ≤ i ≤ k,
from (2), we conclude that

b = tB1 [~1, ~ε] d = tBk [~1, ~ε]

tBi [~1, ~ε] = tBi+1[~1, ~ε], i ∈ Ek tBi [~1, ~ε] = tBi+1[~1, ~ε], i ∈ Ok.

Which by Lemma 5.1 means that (b, d) ∈ θB(~1,~1). Since θB(~1,~1) = θB~1,~1 by assumption

and θB(~1,~1) = ∆B, we get that b = d. This concludes the proof.

5.4. Corollary. Let V be a variety with DFC. The following are equivalent:

1. V has RexDFC if and only if, for every A ∈ V and ~e ∈ Z(A), θA~1,~e = θA(~1, ~e).

2. V has LexDFC if and only if, for every A ∈ V and ~e ∈ Z(A), θA~0,~e = θA(~0, ~e).

Proof. In each item, the first implication follows from Lemmas 3.2, 3.3 and the last one
is a consequence of Lemma 5.3.

We say that a set of formulas Σ(~z, ~u) defines the property ~e ⋄A ~f in V if for every

A ∈ V and ~e, ~f ∈ An it follows that ~e ⋄A ~f if and only if A |= σ[~e, ~f ], for every σ ∈ Σ.

Let ~e, ~f ∈ An and ϕ be the formula used in the proof of Lemma 5.3. We consider the
following formulas:
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τr(~z, ~u) = (∀x)(ϕ(x, x, ~z))
τs(~z, ~u) = (∀x,y)(ϕ(x, y, ~z)→ ϕ(y, x, ~z))
τt(~z, ~u) = (∀x,y,v)(ϕ(x, v, ~z) ∧ ϕ(v, y, ~z)→ ϕ(x, y, ~z))
τi(~z, ~u) = (∀x,y)(ϕ(x, y, ~z) ∧ ϕ(x, y, ~u)→ x ≈ y)
τp(~z, ~u) = (∀x,y)(∃v)(ϕ(x, v, ~z) ∧ ϕ(v, y, ~u))
τk(~z, ~u) =

∧
1≤j≤n ϕ(1j, zj , ~z) ∧

∧
1≤j≤n ϕ(0j, uj, ~z)

And for every function symbol f in the languange of A:

τf (~z, ~u) = (∀l1,...,lm,v1,...,vm)(
∧

1≤α≤m ϕ(lα, vα, ~z)→ ϕ(f(l1, ..., lm), f(v1, ..., vm), ~z))

If we call E0 = {τβ(~z, ~u) | β ∈ {r, s, t, i, p, k}}, E1 = {τβ(~u, ~z) | β ∈ {r, s, t, i, p, k}},
C = {τf (~z, ~u) | f ∈ τ}, where τ is the type of A, let Σ(~z, ~u) = E0 ∪ E1 ∪ C.

5.5. Lemma. Let V a variety with BFC.

1. If V has RexDFC, there exists a set of formulas Σ(~z, ~u) defining the property ~e ⋄A ~f
in V.

2. If V has LexDFC, there exists a set of formulas Σ(~z, ~u) defining the property ~e ⋄A ~f
in V.

Proof. We prove 1. Let A ∈ V, ~e, ~f ∈ An and suppose that V has LexDFC. We define
the following relations in A:

L~e = {(a, b) ∈ A×A | A |= ϕ[~e, a, b]} L~f = {(a, b) ∈ A× A | A |= ϕ[~f, a, b]}

Let ~e, ~f ∈ An. Observe that formulas τr, τs and τt say that L~e is an equivalence
relation on A. The set {τf | f is a symbol of function in the lenguage of A} says is that
L~e is a congruence. The formula τi says that L~e ∩ L~f = ∆A and the formula τi says that

L~e ◦ L~f = ∇A. Finally, the formula τk says that [~1, ~e] ∈ L~e and [~0, ~f ] ∈ L~e.

It is clear that if A |= σ[~e, ~f ] for every σ ∈ Σ, then L~e and L~f are factor congruences

of A such that ~e ≡ ~0(L~e), ~f ≡ ~1(L~e), ~f ≡ ~0(L~f ), ~e ≡
~1(L~f ). That is, L~e = θA~0,~e and

L~f = θA~0, ~f . Hence, ~e, ~f ∈ Z(A) and ~e ⋄A ~f . On the other hand, if ~e ⋄A ~f , from Lemmas

3.2, 3.3 and 5.3, we get that L~e = θA~0,~e = θA(~0, ~e) and L~f = θA~0, ~f = θA(~0, ~f), so A |= σ[~e, ~f ]

for every σ ∈ Σ. The proof of 2. is similar.

Again, let V be a variety with BFC. We write VC to denote the class of connected
(directly idecomposable) algebras of V. If A ∈ VC , then we also say that A is a V-
connected algebra.

5.6. Corollary. If V has RexDFC (or LexDFC), the class VC is axiomatizable by a
set of first order formulas.
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Proof. Suppose that V has RexDFC. Consider the set Σ from Proposition 5.5. It is
immidiate that A ∈ VDI if and only if in A the following axioms hold

~0 6= ~1 and ∀~e, ~f
∧
Σ(~e, ~f)→ ((~e = ~0 ∧ ~f = ~1) ∨ (~e = ~1 ∧ ~f = ~0)).

6. Connected models in a Topos

Let V be a variety and Σ(~x, ~y) the set of formulas of item 1. in Lemma 5.5. We call V to
the theory given by the equations holding in V and the axiom

⊤ ⊢
∧

Σ(~1,~0) (3)

For a given topos E , let V(E) be the category of internal models in E respect to V.
Observe that in Set, axiom (3) is equivalent to say that V is a variety with ~0 and ~1.

With the aim of understand what is a variety with RexDFC in a topos E , observe that
the proof of Lemma 5.3 suggest that we can get a weaker condition to make a variety
with ~0 and ~1 be variety with BFC. That is: Let V be a variety with ~0 and ~1; and let
A,B ∈ V. Consider the projection πB : A×B → B. If Ker(πB) = θA×B([~1,~1], [~0,~1]) for
every A,B ∈ V, then V has BFC. Furthermore, V has RexDFC. The proof of this fact
uses the same arguments of the one given for Lemma 5.3 in order to obtain an existential
formula defining Ker(πB). This entails that V has (DFC) and consecuently (see the In-
troduction) V has (BFC).

So, let A be in V(E) and for every 1 ≤ i ≤ n consider the following composites:

1
~0 //

0i

77An πi // A 1
~1 //

1i

77An πi // A

Thus, for every i and B in V(E) we obtain a morphism

1
fi // (A× B)× (A× B)

where fi = 〈〈1i, 1i〉, 〈0i, 1i〉〉. Consider the projection πB : A × B → B and let
b : Ker(πB)→ (A×B)2 be the morphism induced by the span A×B ← Ker(πB)→ A×B.
It easily follows that every fi factors through b.

6.1. Definition.A category of internal V-models in E has the kernel determinig property
(KDP) if for every pair of objects A,B in V(E), Ker(πB) is the least subobject of (A×B)2
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in V(E) through which the collection {fi | 1 ≤ i ≤ n} factors. I,e:

1
fi //

li
##❍

❍❍
❍❍

❍❍
❍❍

❍❍

ai

##

(A× B)2

C
m

88♣♣♣♣♣♣♣♣♣♣♣♣

Ker(πB)

b

HH

k

OO✤
✤

✤

If m : C → (A × B)2 is a subobject such that mli = fi for every 1 ≤ i ≤ n, then there
exists a morphims k : Ker(πB)→ C (necessarily unique), such that mk = b and kai = li.

Inspired in Corollary 5.6 we introduce the following definition

6.2. Definition. Let V(E) a category of internal V-models in E with KDP. An internal
V-model A is connected if the following sequents hold

(C1) ~0 = ~1 ⊢⊥

(C2)
∧

Σ(~x, ~y) ⊢~x,~y (~x = ~0 ∧ ~y = ~1) ∨ (~x = ~1 ∧ ~y = ~0)

in the internal logic of E .

In the following, we write CV(E) for the theory of internal connected V-models in E .

Suppose A is in CV(E). Observe that, from axiom (3), there exists a morphism g such
that the diagram below

1
〈~1,~0〉 //

��

An × An

Im(〈~1,~0〉) g
// [
∧
Σ(~x, ~y)]

OO

commutes. Since Im(〈~1,~0〉) ∼= [~x = ~1∧~y = ~0], we get that [~x = ~1∧~y = ~0] ≤ [
∧
Σ(~x, ~y)]

in Sub(An × An). Thus, by completeness (c.f. D1.4.11 in [Johnstone2002]) we get that
the sequent (~x = ~1 ∧ ~y = ~0) ⊢~x,~y [

∧
Σ(~x, ~y)] holds in the internal logic of E . Moreover,

since
Im(〈~1,~0〉) ∼= Im(〈~0,~1〉) ∼= 1 ∼= [~x = ~0 ∧ ~y = ~1]

from axiom (3), Im(〈~0,~1〉) ≤ [Σ(~x, ~y)] in Sub(An × An), so the sequent ⊤ ⊢
∧
Σ(~0,~1)

holds in the internal logic of E . By proceeding as before, we can deduce that the sequent
(~x = ~0 ∧ ~y = ~1) ⊢~x,~y [

∧
Σ(~x, ~y)] also holds in the internal logic of E . We have proved the

following
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6.3. Lemma. In CV(E) the sequent (~x = ~1 ∧ ~y = ~0) ∨ (~x = ~0 ∧ ~y = ~1) ⊢~x,~y [
∧
Σ(~x, ~y)]

holds.

Let us consider the points 〈~0,~1〉 : 1→ An×An and 〈~1,~0〉 : 1→ An×An. From axiom
(3) it follows that, for every σ ∈ Σ, there exist a morphism lσ : 1 + 1 → [σ(~x, ~y)], such
that the diagram below

1 + 1
lσ //

[〈~0,~1〉,〈~1,~0〉] %%❑❑
❑❑

❑❑
❑❑

❑❑
[σ(~x, ~y)]

��
An ×An

commutes, so 1+1 ≤ [σ(~x, ~y)] for every σ ∈ Σ. Hence, 1+1 ≤ [
∧

Σ(~x, ~y)] in Sub(An×An).
Let us call α : 1 + 1 → [Σ(~x, ~y)] to the morphism that arise from the factorization of
1 + 1→ An × An along [Σ(~x, ~y)]→ An × An.

Since [(~x = ~1 ∧ ~y = ~0) ∨ (~x = ~0 ∧ ~y = ~1)] ∼= 1 + 1, as result of the latter discution, we
obtain a characterization for the internal connected V-models in E .

6.4. Lemma. Let V(E) a category of internal V-models in E with KDP. An internal
V-model A in E is connected if and only if the diagram below

0
! //1

~1 //

~0

//An

is an equalizer in E , and the morphism α : 1 + 1→ [Σ(~x, ~y)] is an iso.

Proof. Since 1 + 1 ≤ [Σ(~x, ~y)] in Sub(An × An), the result follows from apply Lemma
6.3 and the interpretations of the axioms (C1) and (C2) of Definition 6.2 in the internal
logic of E .

7. Connected models in Coherent topoi

It is known that every distributive lattice D can be treaten as a coherent category (A1.4
in [Johnstone2002]). Its coherent coverage (A2.1.11(b) in [Johnstone2002]) is the function
that sends each d ∈ D to the set of finite families {di ≤ d | i ∈ I} such that

∨
i∈I di = d. As

usual, the resulting topos of sheaves will be denoted by Shv(D). Binary covers a∨b = d of
d ∈ D will play an important role because in order to check that a presheaf P : Dop → Set

is a sheaf, it is enough to check the sheaf condition for binary covers.
Recall that every variety V, is an algebrabic category over Set. Thus a V-model in

Shv(D) is a functor Dop → V such that the composite presheaf Dop → V → Set is a
sheaf.

The aim of this section is to characterize internal connected V-models in Shv(D).
Since the set of formulas Σ of Lemma 5.3 is not composed by equations, the theory V

is not algebraic. So, we need to understand first what an internal V-model in Shv(D)
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is. Observe that, from axiom (3), it follows that a V-model A in Shv(D) is an internal
V-model in Shv(D) if and only if axiom (3) holds in A(d), for every d ∈ D. Hence an
internal V-model in Shv(D) is just a sheaf A such that A(d) is an algebra of V with ~0
and ~1, for every d ∈ D.

7.1. Lemma. Let V be a variety with ~0 and ~1 in Set. If V has RexDFC then V(D̂) has
KDP.

Proof. Since V is a variety with ~0 and ~1 then the axiom (3) holds. Let F,G in D̂.

Since limits in D̂ are calculated pointwise, then if πG : F × G → G, it follows that
Ker(πG)(d) = Ker(πG(d)), for every d ∈ D. Thus, since V has RexDFC by hypothesis,

Ker(πG)(d) = θF (d)×G(d)([~1F (d),~1G(d)], [~0F (d),~1G(d)]) = θF×G([~1,~1], [~0,~1])(d)

That is, Ker(πG) is the least subobject of (F ×G)
2 in V(D̂) through which the collection

{fi | 1 ≤ i ≤ n} factors. This concludes the proof.

7.2. Corollary. Let V be a variety with ~0 and ~1 in Set. If V has RexDFC then
V(Shv(D)) has KDP.

Proof. Let F,G in Shv(D), and let H → (F ×G)2 be a subobject in Shv(D) such that
upper triangle in the diagram below

1
fi //

li ##❍
❍❍

❍❍
❍❍

❍❍
❍❍

ai

##

(F ×G)2

H
m

88♣♣♣♣♣♣♣♣♣♣♣♣

Ker(πG)

b

HH

k

OO✤
✤

✤

commutes in D̂, for every 1 ≤ i ≤ n. From Lemma 7.1, V(D̂) has KDP, so there exists
a unique k : Ker(πG) → H , such that the left and the right triangles in the diagram

above, commutes. Let a : D̂ → Shv(D) be the sheafification respect to the coherent
site. Since a preserves finite limits, then a(Ker(πG)) is the kernel of πG in Shv(D). This
concludes the proof.

It is clear that CV neither is an algebraic theory; so to achieve our goal, we will require
a little more effort. To do so, we will use specifically, a suitable description of binary
coproducts in Shv(D) proved in ([CastiglioniMenniZuluaga2016]).

7.3. Lemma. [Binary coproducts in Shv(D)] For every X, Y in Shv(D), the coproduct
X + Y may be defined by

(X + Y )(d) = {(a, b, x, y) | a ∨ b = d, a ∧ b = ⊥, x ∈ X(a), y ∈ Y (b)}
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and, for any (a, b, x, y) ∈ (X + Y )(d),

(X + Y )(c ≤ d)(a, b, x, y) = (a, b, x, y) · c = (a ∧ c, b ∧ c, x · (a ∧ c), y · (b ∧ c))

where x · c = X(c ≤ d)(x) ∈ X(c) and y · c = Y (c ≤ d)(y) ∈ Y (c).

In particular, from Lemma 7.3, (1 + 1)(d) = {(a, b) | a ∨ b = d, a ∧ b = 0}. That is,
1 + 1 is the “object of partitions” of D.

Recall that the variety of bounded distributive lattices is a variety with DFC, so
for a bounded distributive lattice D the subobject (1 + 1)(d) is isomorphic to the set
Z(↓ d); i.e, the center of ↓ d = {a ∈ D | a ≤ d}. On the other hand, if V is a variety
with RexDFC, Corollary 7.2 tells us that V(Shv(D)) has KDP, so if A : Dop → Set

is an internal V-model in Shv(D), then, A(d) has BFC for every d ∈ D. This fact
combined with Corollary 5.6 allows to say that, for every d ∈ D, the interpretation of
[
∧

Σ(~x, ~y)](d) brings an isomorphic description of Z(A(d)). Finally, from Lemma 6.4,
we get that α : 1 + 1 → [

∧
Σ(~x, ~y)] is a natural iso, so for every d ∈ D, the map

αd : Z(↓ d)→ Z(A(d)) is bijective.

7.4. Proposition. Let V be a variety with RexDFC. An internal V-model A is connected
in Shv(D) if and only if the following conditions hold:

1. If A(d) = 1 then d = 0.

2. For every c ≤ d ∈ D, the diagram below

Z(A(d))
αd //

kd
��

Z(↓ d)

jd
��

Z(A(c)) αc

// Z(↓ c)

commutes, where, for every c ∈ D, jc(a) = a ∧ c, kc(~e) = ~e · c and αc is an
isomorphism.

Proof. A restatement of Lemma 6.2 in the case of Shv(D).

8. The category of representations

8.1. Definition. A representation (of a V-model) is a pair (D,X), consisting of a dis-
tributive lattice D and a V-model in Shv(D) satisfying the equivalent conditions of Propo-
sition 7.4.

We now define a category R whose objects are representations in the above sense.
To describe the arrows in R first recall that any morphism f : D → E between dis-
tributive lattices is in fact a morphism of sites (in the sense of Theorem VII.10.1 in
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[MacLaneMoerdijk2012]) when D and E are considered as small categories equipped with
the coherent topology. From Theorem VII.10.1 in loc. cit. there exists a geometric mor-
phism f : Shv(E) → Shv(D), whose direct image f∗ is defined as f∗(X) = X ◦ f , for
every X ∈ Shv(D); i.e. f∗(X)(d) = X(f(d)), for every d ∈ D.

We define now the maps in R. For representations (D,X) and (E, Y ), an arrow
(D,X) → (E, Y ) in R is a pair (f, ϕ) with f : D → E a morphism in dLat(Set)
and ϕ : X → f∗Y a morphism in V(Shv(D)). If (f, ϕ) : (D,X) → (E, Y ) and
(g, γ) : (C,W ) → (D,X) are maps in R then we define the composite (g, γ)(f, ϕ) :
(C,W ) → (E, Y ) as the pair (fg, (g∗ϕ)γ). From the functoriality of f and the fact of
(fg)∗ = g∗f∗, it follows that composition in R is well defined and is associative. Moreover,
for every D in dLat(Set), the identity morphism idD (as a morphism of sites) induces
the identity morphism in Shv(D) so it easily follows that for every pair (D,X) in R,
id(D,X) = (idD, idX).

For each morphism (D,X) in R we define Γ(D,X) as X(1), and for every (f, ϕ) :
(D,X) → (E, Y ) in R, define Γ(f, ϕ) = ϕ1 : X(1) → Y (f(1)) = Y (1). It easily follows
that Γ : R→ V is a functor.

9. The representation of V-models

In this section we prove that every algebra with RexDFC and CSC in Set can be repre-
sented as an object of the category R.

Let V a variety with RexDFC and CSC. If A is in V and ~e ∈ Z(A), recall that from
Lemmas 3.2 and 3.3 we get that θA~1,~e = θA(~1, ~e).

9.1. Lemma. Let A be in V and ~e, ~f ∈ Z(A). The following holds:

1. θA(~1, ~e ∧A ~f) = θA(~1, ~e) ∨ θA(~1, ~f).

2. θA(~1, ~e ∨A ~f) = θA(~1, ~e) ∩ θA(~1, ~f).

Proof.We prove 1. By definition (Subsection 2.4), it is clear that θA(~1, ~e∧A ~f) ⊆ θA(~1, ~e)∨

θA(~1, ~f). On the other hand, since ~e ∧A ~f ≤A ~e, ~f thus θA(~1, ~e), θA(~1, ~f) ⊆ θA(~1, ~e ∧A ~f),

hence θA(~1, ~e) ∨ θA(~1, ~f) ⊆ θA(~1, ~e ∧A ~f). The proof of 2. is similar.

9.2. Remark. Since θA(~1,~1) = ∆A and θA(~1,~0) = ∇A, as a direct application of Lemma
9.1 it follows that the map φ : Z(A)op → FC(A) defined by φ(~e) = θA(~1, ~e) is an iso of
Boolean algebras.
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9.3. Lemma. Let V be a variety with DFC and A an algebra of V. If θ ⋄ δ in Con(A),
then for every ~e ∈ A, the following are equivalent:

1. ~e ∈ Z(A)

2. ~e/θ ∈ Z(A/θ) and ~e/δ ∈ Z(A/δ).

Proof. Let us assume θ ⋄ δ in Con(A) and suppose ~e ∈ Z(A). Without loss of generality
we can assume ~e = (~0,~1) in A = A1×A2. Since DFC implies BFC (see the Introduction),
from Lemma 2.3 there exist αi ∈ Con(Ai), (i = 1, 2) such that θ = α1 × α2. Thereby,
via the canonical isomorphism between A/θ and A/α1 × A/α2 we can conclude that
~e/θ = (~0/α1,~1/α2), so ~e/θ ∈ Z(A/θ). The proof for ~e/δ ∈ Z(A/δ) is analogue. On
the other hand, if ~e ∈ Z(A/θ) and ~e ∈ Z(A/δ), there exist A1, A2, B1, B2 ∈ V and
isomorphisms τθ : A/θ → A1 × A2, τδ : A/θ → B1 × B2, such that τθ(~e/θ) = (~0A1,~1A2)
and τδ(~e/δ) = (~0B1 ,~1B2). Since θ ⋄ δ by assumption, then A ∼= A/θ × A/δ, so, since
(A1 × A2) × (B1 × B2) ∼= (A1 × B1) × (A2 × B2) = C, if we write C1 = A1 × B1 and
C2 = A2 ×B2 there exists an isomorphism κ : A→ C1×C2 such that κ(~e) = (~0,~1). This
concludes the proof.

9.4. Lemma. Let V be a variety with BFC and A and algebra of V. If θ ∈ FC(A) and
~z/θ ∈ Z(A/θ), then there exists an ~e ∈ Z(A) such that ~e/θ = ~z/θ.

Proof. Let δ be the factor congruence complementary to θ. Since ∇A = θ ◦ δ and
(~z,~1) ∈ ∇A, then, there exists an e ∈ A such that (~z, ~e) ∈ θ and (~e,~1) ∈ δ. It is clear that
~z/θ = ~e/θ ∈ Z(A/θ) and ~e/δ = ~1/δ ∈ Z(A/δ). Hence, by Lemma 9.3 we conclude that
~e ∈ Z(A).

9.5. Lemma. Let V be a variety with RexDFC and CSC. For every A algebra of V and
every ~e, ~f ∈ Z(A), if ~f ≤A ~e there exists a (necessarily unique map) A/θ~1,~e → A/θ~1, ~f such
that the diagram below

A //

!!❈
❈❈

❈
❈
❈❈

❈
❈ A/θ~1,~e

��
A/θ~1, ~f

commutes, where the horizontal and diagonal arrows are the respective canonical homo-
morphisms. Thereby, if ~e = ~f then A/θ~1,~e is canonically iso to A/θ~1, ~f .

Proof.Again, from Lemmas 3.2 and 3.3, we obtain that for every ~e ∈ Z(A), θ~1,~e = θ(~1, ~e).

If ~f ≤A ~e, then θ(~1, ~e) ⊆ θ(~1, ~f), so by Lemma 3.5 the result follows.

As result, the assignment that sends ~e ∈ Z(A) to A/θ~1,~e is well defined so we obtain

a functor Z(A)op → V. In conclusion, we have obtained a V-model A in Ẑ(A).

9.6. Lemma. For every V-model in Set the presheaf A in Ẑ(A) is a sheaf (respect to the
coherent coverage on the lattice Z(A)).
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Proof. Since Z(A) is a Boolean algebra, to prove the statement it is enough to verify
the sheaf condition for binary partitions, but this leads to a reformulation of item 3. in
Lemma 2.2.

9.7. Lemma. For every V-model in Set the pair (Z(A), A) is an object of R.

Proof. We use Lemma 7.4. Since A is an algebra with ~0 and ~1, it follows that for
every ~e ∈ Z(A), A(~e) such condition also holds. Observe that, in the case of Shv(D),

the map α~e : Z(↓ ~e) → Z(A/θ(~1, ~e)), is canonically defined as α~e(~f) = f/θ(~1, ~e). We

verify that α~e is biyective. If α~e(~f) = α~e(~g), then [~f,~g] ∈ θ(~1, ~e). From Lemma 9.1,

we have θ(~1, ~e) ∨ θ(~1, ~f) = θ(~1, ~e ∧A ~f) so θ(~1, ~e) ⊆ θ(~1, ~e ∧A ~f). Since ~e ∧A ~g = ~g and

[~1, ~g] ∈ θ(~1, ~g), from the transitivity of θ(~1, ~g) we obtain that [~1, ~f ] ∈ θ(~1, ~g) so ~g ≤A
~f .

The verification of ~f ≤A ~g is similar. Thus αe is injective. To check the surjectivity
of α~e, let ~f/θ(~1, ~e) ∈ Z(A/θ(~1, ~e)). From Lemma 9.4, there exists a ~z ∈ Z(A), such

that [~f, ~z] ∈ θ(~1, ~e). Since [~z,~1] ∈ θ(~1, ~z), then [~f,~1] ∈ θ(~1, ~e) ∨ θ(~1, ~z) = θ(~1, ~e ∧A ~f),

again by Lemma 9.1. Thus we obtain that θ(~f,~1) ⊆ θ(~1, ~e ∧A ~f). From Lemma 2.7,

[~e∧A ~z, ~z] ∈ θ(~1, ~e), so, since [~f, ~z] ∈ θ(~1, ~e), we get that [~f, ~e∧A ~z] ∈ θ(~1, ~e). Hence, since

~e∧A ~z ≤A
~f and θ(~f,~1) ⊆ θ(~1, ~e∧A ~f), we conclude that α~e(~e∧A ~z) = f/θ(~1, ~e). Finally, if

A/θ(~1, ~e) is trivial, it follows that [~0,~1] ∈ θ(~1, ~e), thus θ(~1,~0) = θ(~1, ~e). Hence, by Remark
9.2, ~e must be ~0. This concludes the proof.

10. RexDFC and CSC induce homomorphisms of Boolean algebras

As we saw in Section 4, not every variety with BFC has center stable. In this section
we prove that a variety with RexDFC having center stable by complements is in fact a
variety with the Fraser Horn Property. This result will allow us to prove that the every
homomorphism f in the variety induces a Boolean algebra homomorphism between the
centers of dom(f) and cod(f).

10.1. Lemma. [Theorem 1 [FraserHorn1970]] Let K be a variety and A, B be algebras of
K. The following are equivalent:

1. K has FHP.

2. For every A,B ∈ K and γ ∈ Con(A×B),

Π1 ∩ (Π2 ∨ γ) ⊆ γ and Π2 ∩ (Π1 ∨ γ) ⊆ γ

where Π1 is the kernel of the projection on A and Π2 is the kernel of the projection
on B.

10.2. Lemma. [Theorem 3 [FraserHorn1970]] Let A and B be similar algebras. The
following are equivalent:

1. A× B has FHP.
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2. For every a, c ∈ A and b, d ∈ B,

θA×B((a, b), (c, d)) = θA(a, c)× θB(b, d)

10.3. Lemma. Let A and B be algebras with finite n-ary function symbols and f : A→ B
an homomophism. If (a, b) ∈ θA(~c, ~d), then (f(a), f(b)) ∈ θB(f(~c), f(~d)). Thus, if [~a,~b] ∈

θA(~c, ~d) then [f(~a), f(~b)] ∈ θA(f(~c), f(~d)).

Proof. Apply Lemma 5.1.

Let V be a variety with DCF. As we have seen, for every algebra A ∈ V and
~e ∈ Z(A) the span A/θ~0,~e ← A→ A/θ~1,~e is a product. Notice that in this case Π1 = θ~0,~e
and Π2 = θ~1,~e.

10.4. Lemma. Let V be a variety with RexDFC, A ∈ V and ~e, ~f ∈ Z(A) such that ~e⋄A ~f .

If for every γ ∈ Con(A), ~e/γ ⋄A/γ
~f/γ, then V has the FHP.

Proof. Since V has RexDFC, from Lemmas 3.2 and 3.3, then, for every ~e ∈ Z(A),

θA~1,~e = θA(~1, ~e). So, if ~e ⋄A ~f then θA~0,~e = θA(~1, ~f). We use Lemma 10.1. To do so, we prove

θA(~1, ~e)∩ (θA(~1, ~f)∨ γ) ⊆ γ. Suppose (x, y) ∈ θA(~1, ~e)∩ (θA(~1, ~f)∨ γ) ⊆ γ, then, (x, y) ∈
θA(~1, ~e) and there are c0, ..., cN ∈ A, with c0 = x and cN = y, such that (c2i, c2i+1) ∈

θA(~1, ~f) and (c2i+1, c2(i+1)) ∈ γ. Since A → A/γ is clearly an homomorphism, from

Lemma 10.3, we obtain that (x/γ, y/γ) ∈ θA/γ(~1/γ,~e/γ), (c2i/γ, c2i+1/γ) ∈ θ
A/γ(~1/γ, ~f/γ)

and c2i+1/γ = c2(i+1)/γ. From transitivity of θA/γ(~1/γ, ~f/γ), we get that (x/γ, y/γ) ∈

θA/γ(~1/γ, ~f/γ). Therefore, (x/γ, y/γ) ∈ θA/γ(~1/γ,~e/γ) ∩ θA/γ(~1/γ, ~f/γ) = ∆A/γ , since

~e/γ ⋄A/γ
~f/γ by assumption, so (x, y) ∈ γ. The proof of θA(~1, ~f) ∩ (θA(~1, ~e) ∨ γ) ⊆ γ is

similar. This concludes the proof.

10.5. Corollary. Let V be a variety with RexDFC. If V has SCC then has FHP.

Proof. Inmmediate from Lemma 10.4.

10.6. Lemma. Every variety V with FHP is TexDFC.

Proof. We want to prove there exists an existential formula ϕ which defines θ~0,~e in terms

of ~e. To do so, let C ∈ V and ~e ∈ Z(C). Let us consider ϕ(x, y, ~z) = π(x, y,~0, ~z), where
π(x, y,~0, ~z) is the formula of Lemma 5.2. It is clear that ϕ is existential. Let A,B ∈ V

and (a, b), (c, d) ∈ A × B. If A × B |= ϕ((a, b), (c, d), (~0,~1)), then from Lemma 5.2,
((a, b), (c, d)) ∈ θA×B((~0,~0), (~0,~1)). Since V has FHP by hypothesis, then from Lemma
10.2 θA×B((~0,~0), (~0,~1)) = θA(~0,~0)×θB(~0,~1) = ∆A×∇B. Hence, a = c. On the other hand,
suppose a = c. Let P = F(x) × F(x, y), and consider the pair ((x, x), (x, y)) ∈ P . Since
V has FHP by assumption, thus, again by Lemma 10.2, θP ((~0,~0), (~0,~1)) = θF(x)(~0,~0) ×
θF(x,y)(~0,~1) = ∆F(x)×∇F(x,y). Observe that ((x, x), (x, y)) ∈ θP ((~0,~0), (~0,~1)) and consider
the assignments αA : {x} → A and αB : {x, y} → B, defined as αA(x) = a and αB(x) = b,
αB(y) = d, respectively. From the left adjointness of the free functor F : Set → V to
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the forgetful functor, there exist a unique pair of homomorphisms βA : F(x) → A and
βB : F(x, y)→ B extending αA and αB. Consider the morphism g = βA×βB : P → A×B.
From Lemma 10.3 we obtain that (g(x, x), g(x, y)) = ((a, b), (a, c)) ∈ θA×B((~0,~0), (~0,~1)).
Hence, by Lemma 5.2, A × B |= ϕ((a, b), (c, d), (~0,~1)). Therefore, V has LexDFC. The
proof for V has RexDFC is analogue. This concludes the proof.

As a straight consequence of Corollary 10.5 and Lemma 10.6 we obtain

10.7. Corollary. Every variety V with RexDFC and CSC is TexDFC.

10.8. Lemma. Let V be a variety with RexDFC, A,B ∈ V and f : A → B be an
homomorphism. If f preserves central elements, then f |Z(A) : Z(A)→ Z(B) is a bounded
lattice homomorphism.

Proof. First of all, observe that from Corollary 10.7; and Lemmas 3.2 and 3.3, we get
that for every ~e ∈ A, θA~0,~e = θA(~0, ~e) and θA~1,~e = θA(~1, ~e). Now, since f is homomorphism,

it is clear that preserves ~0 and ~1. So, if ~e1, ~e2 ∈ Z(A), and ~a = ~e1∧A ~e2, thus from Lemma
2.7, [~0,~a] ∈ θA(~0, ~e1) and [~a,~e2] ∈ θA(~1, ~e1). Thus, since f(~e) ∈ Z(A) for every ~e ∈ A
by hypothesis; from Lemma 10.3 we get that [~0, f(~a)] ∈ θA(~0, f(~e1)) and [f(~a), f(~e2)] ∈
θB(~1, f(~e1)) so again by Lemma 2.7 we can conclude that f(a) = f(~e1) ∧B f(~e2). The
proof for the preservation of the join is similar.

A direct application of Lemma 10.8 gives as result

10.9. Corollary. Let V be a variety with RexDFC and SCC. Then, for every A,B ∈ V

and every homomorphism f : A → B, the map f |Z(A) : Z(A) → Z(B) is an homomor-
phism of Boolean algebras.

11. The representation theorem

For the rest of this section V will be a variety with RexDFC and CSC. Next we show
that the functor Γ : R→ V has a fully faithful left adjoint.

Let A and B be V-models in Set and let f : A −→ B be a V. Since V is CSC,
from Corollary 10.9, the restriction of f to Z(A) determines a morphism of boolean
algebras f : Z(A) → Z(B). Such morphism is also a morphism of lattices so determines
a geometric morphism f : Shv(Z(B)))→ Shv(Z(B)) whose direct image f∗ is defined as
f∗(G)(~e) = G(f(~e)), for every G ∈ Shv(Z(B)).

11.1. Lemma. Every morphism f : A → B in V determines a natural transformation
f : A −→ f∗(B) in Shv(Z(A)).

Proof. Let ~e ∈ Z(A). If i~e : A → A/θA(~1, ~e) and if(~e) : B → A/θA(~1, f(~e)) are the
canonical homomorphisms, from Corollary 3.5
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A
f //

i~e
��

B

if(~e)
��

A/θA(~1, ~e)
fe

// B/θB(~1, f(~e))

it follows that there exists a unique morphism f~e : A/θA(~1, ~e) → B/θB(~1, f(~e)) in
V, such that the diagram above commutes. Consider the assigment f : A −→ f∗(B),
defined as f~e = f~e. We prove that f is natural in Shv(Z(A)). Let ~e1, ~e2 ∈ Z(A) with
~e2 ≤A ~e1. From Lemma 10.8 it follows that f(~e2) ≤B f(~e1), so again by Corollary
3.5, the diagram below (where the rows of the right square are the canonical morphisms
A/θA(~1, ~e1)→ A/θA(~1, ~e2) and B/θ

B(~1, f(~e1))→ B/θB(~1, f(~e2)), respectively),

A

f

��

i~e1 // A/θA(~1, ~e2) //

f~e1
��

A/θA(~1, ~e1)

f~e2
��

B
if(~e1)

// B/θB(~1, f(~e1)) // B/θB(~1, f(~e2))

commutes. Since B/θB(~1, f(~e1)) = f∗(B)(~e), the result follows.

Lemmas 9.7 and 11.1 allows us to define an assigment F : V → R as F(A) = (Z(A), A)
and F(f : A→ B) = (f, f).

11.2. Lemma. The assignment F : V → R is functorial.

Proof. It is clear that F(idA) = (idA, idA) = idF(A). So, let f : A → B and h : B → C

be morphisms in V. Then, we get that F(hf) = (hf, hf) and F(h)F(f) = (hf, f∗(h)f)).

A
f //

i~e
��

B
h //

if(~e)
��

C

ihf(~e)
��

A/θA(~1, ~e)
f~e

//

hf~e

55
B/θB(~1, f(~e))

hf(~e)

// C/θC(~1, hf(~e))

Since ihf(~e) = ih(f(~e)) and hf(~e) = h(f(~e)), then from Corollary 3.5, the diagram

above commutes for every ~e ∈ Z(A). Hence, since hf(~e)f~e = f∗(h)~ef~e, then f∗(h)f = hf .
Thereby F(h)F(f) = F(hf).

11.3. Lemma. Let A be an algebra of V in Set and P be a V-model in Ẑ(A). For every
homomorphism g : A→ P (~1) in V, the following are equivalent:

1. For every ~e ∈ Z(A), g(~e) · ~e = ~1 ∈ P (~1),

2. There exist a unique morphism of V-models φ : A→ P in Ẑ(A), such that φ~1 = g.
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Proof. Let us assume g(~e) · ~e = ~1 ∈ P (~1), for every ~e ∈ Z(A). Since ~1 · ~e = ~1 for
every ~e ∈ Z(A), from the universal property of A→ A/θA(~1, ~e) (Corollary 3.5), for every
~e ∈ Z(A), there exists a unique homomorphism A/θA(~1, ~e) → P (~e) in V such that the
diagram below

A ∼= A(~1)

��

//

g
))
P (1)

��
A/θA(~1, ~e) = A(~e)

φ~e

// P (~e)

commutes. Observe that Corollary 3.5 also grants that the collection {φ~e | ~e ∈ Z(A)}
is natural. The proof of the last part follows from the naturality of φ.

11.4. Lemma. Let A be an algebra of V in Set and (E, Y ) in R. For every g : A→ Y (1)
in V, the following are equivalent:

1. There is a unique lattice morphism f : Z(A) → E, such that, for every ~e ∈ Z(A),
g(~e) · f(~e) = ~1 ∈ f∗(Y )(~e).

2. There exists a unique (f, ϕ) : (Z(A), A)→ (E, Y ) in R, such that φ~1 = g.

Proof. If we assume 2. then 1. is granted for the naturality of φ. On the other hand,
by assuming 1., it follows that f∗(Y ) is in Shv(Z(A)), so from Lemma 11.3, for the map
g : A→ Y (f(~1)) = f∗(Y )(~1) there exists a unique morphism of V-models φ : A→ f∗(Y )
such that φ~1 = g. Thereby, the uniqueness of (f, ϕ) : (Z(A), A) → (E, Y ) in R, easily
follows. This concludes the proof.

Coming up next, we prove the main result of this paper.

11.5. Theorem. The functor Γ : R→ V has a full and faithful left adjoint.

Proof. Let A be an arbitrary algebra of V. From Lemma 9.7, (Z(A), A) is an object of
R. Let us to consider the (iso) map A→ A/θA(~1,~1) = A(~1) = Γ(Z(A), A). We prove this
map is universal from A to Γ. To do so, let (C,X) be in R and g : A→ X(1) = Γ(C,X)
be an arbitrary morphism of V. From the center stability of V, for every ~e ∈ Z(A),
g(~e) ∈ Z(X(1)). Since (C,X) is in R, X is connected in Shv(C), so by Proposition 7.4,
there are bijections α1, αg(~e) making the diagram below

Z(X(1))
α1 //

kg(~e)
��

Z(C)

jg(~e)
��

Z(X(g(~e))) αg(~e)

// Z(↓ g(~e))

commutes, for every ~e ∈ Z(A) (with kg(~e)(~h) = ~h · g(~e) and jg(~e)(l) = l ∧ g(~e)). Let
us define f : Z(A) → C, as f(~e) = α~1(g(~e)). By Lemma 10.8, f is a lattice morphism,
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thus f∗(Y ) is in Shv(Z(A)). The commutativity of diagram above allows us to make the
following calculation

αf(~e)(g(~e) · f(~e)) = α~1(g(~e)) ∧ f(~e) = f(~e) = αf(~e)(~1 · f(~e))

Hence, g(~e) · f(~e) = ~1 ∈ f∗(Y )(~e). Thereby, from Lemma 11.3, there exists a unique
morphism of V-models φ : A → f∗(Y ) in Shv(Z(A)), such that φ~1 = g, so, by Lemma
11.4 there exist a unique (f, ϕ) : (Z(A), A)→ (E, Y ) in R, such that φ~1 = g.

12. Corollaries in terms of local homeos

It is a classical result that for any topological space X , the category LH/X of local
homeomorphisms over X is equivalent to the topos Shv(X) of sheaves over the same
space (see Section II.6 in [MacLaneMoerdijk2012]). The equivalence Shv(X) → LH/X
sends a sheaf P : O(X) → Set to the bundle of germs of P defined as follows. For each
x ∈ X , let Px = lim−→x∈UP (U) where the colimit is taken over the poset of open neigh-

borhoods of x (ordered by reverse inclusion). The family of Px’s determines a function
π :

∑
x∈X Px → X . Also, each s ∈ P (U) determines an obvious function ṡ : U →

∑
x∈X Px

such that πṡ : U → X is the inclusion U → X . The set
∑

x∈X Px is topologized by taking
as a base of opens all the images of the functions ṡ. This topology makes π into a local
homeo, the above mentioned bundle of germs.

Any basis B for the topology of X may be considered as a subposet B → O(X).
The usual Grothendieck topology on O(X) restricts along B → O(X) and the resulting
morphism of sites determines an equivalence Shv(B) → Shv(X); see Theorem II.1.3
in [MacLaneMoerdijk2012]. The composite equivalence Shv(B) → Shv(X) → LH/X
is very similar to the previous one because, by finality (in the sense of Section IX.3 of
[MacLane1971]), the colimit Px = lim−→x∈UP (U) may be calculated using only basic open
sets.

According to [Simmons1980], the spectrum of a distributive lattice D is the topological
space σD whose points are the lattice morphisms D → 2 and whose topology has, as a
basis, the subsets σ(a) ⊆ σD (with a ∈ D) defined by σ(a) = {p ∈ σD | p(a) = 1 ∈
2} ⊆ σD. In this way, we may identify D with the basis of its spectrum and obtain
an equivalence Shv(D) → LH/σD. It assigns to each sheaf P : Dop → Set the local
homeomorphism whose fiber Pp over the point p : D → 2 in σD is Pp = lim−→p∈σ(a)P (a).

Let V be a variety with RexDFC, A be an algebra of V and consider its center
Z(A). From the formulation of above, it can be proved that the points of σ(Z(A)) can be
identified with the ultrafilters of Z(A) and the basis {σ(~e) | ~e ∈ Z(A)} becomes a basis
of clopens, making the space σ(Z(A)) a Stone space ([Johnstone1982]).

This facts, together with the ones considered before, allows us to obtain an equivalence
Shv(Z(A))→ LH/σZ(A) that sends a sheaf P ∈ Shv(Z(A)) to a local homeomorphism
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over σZ(A), whose fiber PU over an ultrafilter U in σZ(A) may be described as

PU = lim−→~e∈UP (~e)

12.1. Lemma. Let V be a variety with RexDFC, A be an algebra of V. For every ul-
trafilter U of Z(A), there exists a unique isomorphism A/θ(U)→ lim−→~e∈UopA/θ(~1, ~e) such
that the following diagram

A //

��

A/θ(U)

��

A/θ(~1, ~e) // lim−→~e∈UopA/θ(~1, ~e)

commutes for every ~e ∈ Z(A).

Proof. Let ~e ∈ Z(A) and U be an ultrafilter of Z(A). If ~e ∈ U , then [~1, ~e] ∈ θ(U),
so θ(~1, ~e) ⊆ θ(F ). Thus, from Corollary 3.5, there exists a unique homomorphism ρ~e :
A/θ(~1, ~e)→ A/θ(U) such that the diagram

A
ν~e //

νF
##●

●●
●●

●●
●●

● A/θ(~1, ~e)

ρ~e

��
A/θ(U)

We prove that the sink H = {ρ~e | ~e ∈ U} is a colimit. Let ~e, ~f ∈ U , such that ~e ≤A
~f ,

then ~e ∧A ~f = ~e. From Lemma 2.7, [~e, ~f ] ∈ θ(~1, ~e), then, since [~1, ~e] ∈ θ(~1, ~e), we get

that [~1, ~f ] ∈ θ(~1, ~e) and consequently θ(~1, ~f) ⊆ θ(~1, ~e). This proves that H is natural.

In order to verfify that H is a cocone, let ν~e : A → A/θ(~1, ~e), ν~f : A → A/θ(~1, ~f) and
νU : A→ A/θ(U) be the canonical homomorphisms. From the diagram below

A ν~f

//

ν~e
##●

●●
●●

●●
●●

●

νU
++

A/θ(~1, ~f)

λ
��

ρ~e
// A/θ(U)

A/θ(~1, ~e)

ρ~e

99rrrrrrrrrr

we obtain that νF = ρ~fν~f = ρ~eν~e and λν~f = ν~e. Then, from the following calculations

ρ~fν~f = ρ~eν~e = ρ~eλν~f

and the fact of ν~f is epi, we conclude ρ~f = ρ~eλ. Finally, we check that H is universal. Let
us to consider the commutative diagram
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A/θ(~1, ~f)
α~f //

λ
��

B

A/θ(~1, ~e)

α~e

;;✇✇✇✇✇✇✇✇✇✇

From the commutativity of the left diagram below,

A

νU

))

ν~f

//

ν~e
##●

●●
●●

●●
●●

● A/θ(~1, ~f)
ρ~f //

λ
��

α~f

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

A/θ(U)

µ

��
A/θ(~1, ~e) α~e

// B

A
νU //

g
##●

●●
●●

●●
●●

● A/θ(U)

µ

��
B

we can deduce that the morphism g = α~eν~e identifies the elements of U , then, by
Lemma 3.4, there exists a unique morphism µ : A/θ(U) → B, such that the right upper
diagram cummutes. From Corollary 3.5, for every ~e ∈ Z(A) we can conclude that the
diagram

A/θ(~1, ~e)
ρ~e //

α~e
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
A/θ(U)

µ

��
B

The result follows from the universal property of colimits.

Thus, if V is a variety with RexDFC and A ∈ V, from Lemma 12.1 and the discussion
along this section, in the particular case of the representing sheaf A in Shv(Z(A)), the
fiber over an ultrafilter U of Z(A) is

AU = lim−→~e∈UA(~e) = lim−→~e∈UA/θ(~1, ~e) = A/θ(U)

That is, if we consider the representing sheaf A in Shv(Z(A)) as a local homemorphism
over σZ(A), then the fiber over a point U in σZ(A) is the quotient of A by the principal
congruence of A containing U .

Recall that a topos E with subobject classifier Ω is boolean, if the cospan ⊤,⊥: 1→ Ω
is a coproduct (or equivalently Ω ∼= 1 + 1). Thereby, if V is a variety with RexDFC, and
A ∈ V , from Lemma 7.3, it turns that Shv(Z(A)) is boolean a topos, and, in particular,
a boolean coherent category. From Lemma 5.5 and Definition 6.2, it follows that the
theory of internal connected V-models CV is a first order theory, so if we call C′

V to the
Morleyzation of CV, from D1.5.13 of [Johnstone2002], we obtain that CV(Shv(Z(A))) ≃
C′

V(Shv(Z(A))).
It is known that every point x : 1 → X of a topological space X determines a

geometric morphism Set → LH/X whose inverse image LH/X → Set sends a local
homeomorphism to the corresponding fiber over x. Since geometric morphisms preserve
the interpretation of coherent sequents, they preserve internal connected V-models. As
as a consequence of the latter discussion, we obtain the following result.
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12.2. Corollary. Let V be a variety with RexDFC and CSC. Then, every algebra of
V can be represented as the algebra of global sections of a local homeomorphism (over the
Stone space σZ(A)) whose fibers are V-connected algebras.

The Corollary 12.2 can be restricted even more, in order to obtain the last result of this
paper. The proof is essentially the same of Corollary 14.2 in [CastiglioniMenniZuluaga2016].

12.3. Corollary. Let V be a variety with RexDFC and CSC. Then, every algebra of
V is a subdirect product of V-connected algebras.
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about this manuscript.
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