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Cohomological invariants mod 2 of Weyl groups

Jean-Pierre Serre

Let G be the Weyl group of a root system, i.e., a crystallographic finite
Coxeter group, cf. [B], chap.VI, §4.1. Let k0 be a field of characteristic 6= 2, let
H•(k0) = ⊕n>0 Hn(k0,F2) and let IG = Invk0

(G) be the ring of cohomological
invariants mod 2 of G, as defined in [S], §4 ; it is a graded H•(k0)-algebra.
When G is of type A, it is isomorphic to a symmetric group Symn, and IG is
H•(k0)-free of rank 1+[n/2], with an explicit basis w0 = 1, w1, ..., w[n/2], cf. [S],
chap.VII.

In order to extend this description of IG to the general case, define SG to
be the set of elements g ∈ G with g2 = 1 ; an element of SG shall be called an
involution of G. Let ΣG be the set of conjugation classes of elements of SG.

Theorem A. There exists a natural injection e : ΣG → IG whose image is an

H•(k0)-basis of IG.
[Equivalently : the H•(k0)-module IG is canonically isomorphic to the set of

all maps ΣG → H•(k0).]

The map e is compatible with the grading of IG : if g ∈ SG, define the degree
of g to be be the multiplicity of −1 as an eigenvalue of g in the standard linear
representation of G as a Coxeter group ; let ΣG,n be the set of involution classes
of degree n. If σ ∈ ΣG,n, then e(σ) belongs to the n-th component InG of IG.

Examples. 1. When G = Symn, the elements of ΣG are the conjugation classes
of the products of i disjoint transpositions, with 2i 6 n, and we recover the fact
that H•(k0)-free of rank 1 + [n/2], with a basis made up of elements of degree

0, 1, ..., [n/2]. In that case the canonical basis is made up of the wgal
i , which are

closely related to the wi mentioned above, cf. [S], §25.
2. When G = Weyl(E8), we have |ΣG,n| = 1 for 0 6 n 6 8, with the only
exception of n = 4 where |ΣG,n| = 2 ; and, of course, ΣG,n = ∅ for n > 8.
Hence IG is a free H•(k0)-module of rank 10, with a basis made up of elements
of degree 0, 1, 2, 3, 4, 4, 5, 6, 7, 8.
3. For E7 and E6, the degrees are 0, 1, 2, 3, 3, 4, 4, 5, 6, 7 and 0, 1, 2, 3, 4.

Definition of the map e : ΣG → IG.

Let a be an element of IG and let g be an involution of G of degree n.
We first define a ≪ scalar product ≫ 〈a, g〉, which is an element of H•(k0). To
do so, choose a splitting g = s1 · · · sn, where the si are commuting reflections
(recall that a reflection is an involution of degree 1) ; such a splitting always
exists. Let C = 〈s1, ..., sn〉 be the group generated by the si, and let aC ∈ IC be
the image of a by the restriction map IG → IC . The algebra IC has a natural
basis (αI) indexed by the subsets I of [1, n], cf. [S], §16.4. Let λC ∈ H•(k0) be
the coefficient of α[1,n] in aC ( ≪ top coefficient ≫). One can show that λC is

independent of the chosen splitting of g, i.e., that it only depends on a and g.
We then define the scalar product 〈a, g〉 as λC ; we have 〈a, g〉 = 〈a, g′〉 if g and
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g′ are conjugate in G ; this allows us to define 〈a, σ〉 for every σ ∈ ΣG. For a
given σ, the map a 7→ 〈a, σ〉 is H•(k0)-linear ; if a has degree m, then 〈a, σ〉 has
degree m− n (one may view a 7→ 〈a, σ〉 as an n-th fold residue map).

Example. Choose for a a Stiefel-Whitney class wgal
i (Cox) of the Coxeter repre-

sentation of G. One has 〈a, σ〉 = 0 if i 6= deg(σ) and 〈a, g〉 = 1 if i = deg(σ).

Theorem B.

(i) If a ∈ IG is such that 〈a, σ〉 = 0 for every σ, then a = 0.
(ii) Let n be an integer. For every σ ∈ ΣG of degree n, there exists e(σ) ∈ InG

such that 〈e(σ), σ〉 = 1 and 〈e(σ), σ′〉 = 0 for every σ′ 6= σ.
[Note that, by (i), such an e(σ) is unique.]

It is clear that Theorem B implies Theorem A.

Indications on the proof of part (i)of Theorem B.

An induction argument shows that, if 〈a, σ〉 = 0 for every σ, then the restric-
tion of a to every ≪ cube ≫ (i.e., subgroup generated by commuting reflections)
is 0. In that case, if the characteristic of k0 is good for G, the arguments of [S],
§25, show that a = 0. This already covers the case where the irreducible com-
ponents of G are of classical type, since every characteristic 6= 2 is good. The
exceptional types can be reduced to the classical ones, thanks to the fact that, if
G is such a Weyl group, there exists a subgroupG′ of G, generated by a subset of
SG (hence also a Weyl group), which is of classical type, and has odd index in G :
for G of type E6,E7,E8,F4,G2, one takes G

′ of type D5,A1×D6,D8,B4,A1×A1,
respectively ; one has (G : G′) = 27, 63, 135, 3, 3. One then uses the fact that the
restriction map IG → IG′ is injective, cf. [S], prop.14.4, and that every cube of
G is conjugate to a cube of G′.

Indications on the proof of part (ii)of Theorem B.

We need to construct enough cohomological invariants. For mostWeyl groups,
this is done by using Stiefel-Whitney classes. For instance, for Weyl(E6), one

takes the wgal
i (Cox), i = 0, 1, 2, 3, 4. There are however three cases where we have

to do otherwise. For each one, there are two distinct classes of involutions σ, σ′ of
the same degree n for which it is hard to find a ∈ InG with 〈a, σ〉 = 0, 〈a, σ′〉 = 1.
These cases are : D2n , n > 3 ; E7, n = 3 and 4 ; E8, n = 4.

For those, we use the relation given by Milnor’s conjecture (now Voevodsky’s
theorem) between Witt invariants and cohomological invariants mod 2. The
method applies to every linear group G over k0. The ring Invk0

(G,W ) of Witt
invariants of G (as defined in [S], §27.3) has a natural filtration : an invariant
h has filtration > n if, for every extension k/k0 and every G-torsor t of G over
k, the element h(t) of the Witt ring W (k) belongs to the n-th power of the
canonical ideal of W (k) ; in that case, h defines (via the Milnor construction)
an element ah of Invnk0

(G,F2) which is 0 if and only if the filtration of h is > n.
We thus get an injective map grnInvk0

(G,W ) → Invnk0
(G,F2).

We apply this to G = G, where G is as in the three cases above. One can
find a linear orthogonal representation of G whose Brauer character χ is such
that χ(σ) − χ(σ′) = 2n. This gives a G-quadratic form, hence an element of
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Invk0
(G,W ) ; one modifies slightly that element to make it of filtration > n, so

that it gives a cohomological invariant a of G of degree n, and one checks that
〈a, σ〉 − 〈a, σ′〉 = 1 ; that information is enough to conclude the proof.

Dependence of Invk0
(G) on H•(k0) - Universal objects.

(i) Additive structure

For the additive structure, InvC(G) is a universal object, i.e., there is natural
isomorphism of F2-vector spaces : Invk0

(G) ≃ InvC(G) ⊗F2
H•(k0).

(ii) Ring structure

For the ring structure, it is InvR(G) which is a universal object : there is a
natural graded-F2-algebra isomorphism : Invk0

(G) ≃ InvR(G) ⊗H•(R) H
•(k0).

[In this formula, H•(k0) is viewed as an H•(R)-algebra via the unique homomorphism
H•(R)→ H•(k0) which maps the class of −1 in H1(R) ≃ R

×/(R×)2 onto the class
of −1 in H1(k0) ≃ k×

0
/(k×

0
)2.]
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Note. After my lecture, Stefan Gille has pointed out to me that, using a different
method (based on a theorem of Totaro, but not involving involutions), Chris-
tian Hirsch had already computed in 2009 the structure of the cohomological
invariants of all the finite Coxeter groups, under some mild hypotheses on the
ground field ; his method also applies to other types of invariants. Reference :

Christian Hirsch, Cohomological invariants of reflection groups, Diplomar-
beit (Betreuer : Prof. Dr. Fabien Morel), Univ. München, 2009 ; available on
arXiv :1805.04670[math.AG].
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