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Cohomological invariants mod 2 of Weyl groups

Jean-Pierre Serre

Let G be the Weyl group of a root system, i.e., a crystallographic finite
Coxeter group, cf. [B], chap.VI, §4.1. Let ko be a field of characteristic # 2, let
H* (ko) = ®n>0 H"(ko,F2) and let I = Invy, (G) be the ring of cohomological
invariants mod 2 of G, as defined in [S], §4; it is a graded H®(ko)-algebra.
When G is of type A, it is isomorphic to a symmetric group Sym,,, and Ig is
H*(ko)-free of rank 14-[n/2], with an explicit basis wg = 1, w1, ..., w9, cf. [S],
chap.VII.

In order to extend this description of I to the general case, define Sg to
be the set of elements g € G with g2 = 1; an element of Sg shall be called an
inwvolution of G. Let X be the set of conjugation classes of elements of Sg.

Theorem A. There exists a natural injection e : X.¢ — Ig whose image is an
H*(ko)-basis of I¢.

[Equivalently : the H®(ko)-module I¢ is canonically isomorphic to the set of
all maps Xg — H*(ko).]

The map e is compatible with the grading of I : if g € S, define the degree
of g to be be the multiplicity of —1 as an eigenvalue of g in the standard linear
representation of G' as a Coxeter group; let X ,, be the set of involution classes
of degree n. If 0 € X¢ y, then e(o) belongs to the n-th component I7: of Ig.

Ezxamples. 1. When G = Sym,,, the elements of ¥ are the conjugation classes
of the products of ¢ disjoint transpositions, with 2¢ < n, and we recover the fact
that H®(ko)-free of rank 1 + [n/2], with a basis made up of elements of degree
0,1,...,[n/2]. In that case the canonical basis is made up of the wfal, which are
closely related to the w; mentioned above, cf. [S], §25.

2. When G = Weyl(Eg), we have |Xgn| = 1 for 0 < n < 8, with the only
exception of n = 4 where |Xg | = 2; and, of course, X, = @ for n > 8.
Hence I is a free H®(kgp)-module of rank 10, with a basis made up of elements
of degree 0,1,2,3,4,4,5,6,7,8.

3. For E7 and Eg, the degrees are 0,1,2,3,3,4,4,5,6,7 and 0,1, 2, 3,4.

Definition of the map e¢: Y — Iq.

Let a be an element of Ig and let g be an involution of G of degree n.
We first define a < scalar product > (a,g), which is an element of H® (ko). To
do so, choose a splitting g = s1 - - - s, where the s; are commuting reflections
(recall that a reflection is an involution of degree 1); such a splitting always
exists. Let C' = (s1, ..., $p) be the group generated by the s;, and let ac € I be
the image of a by the restriction map I — Ic. The algebra Ic has a natural
basis («y) indexed by the subsets I of [1,n], cf. [S], §16.4. Let A\c € H*(ko) be
the coefficient of afy ,,) in ac ( < top coefficient ). One can show that A\c is
independent of the chosen splitting of g, i.e., that it only depends on a and g.
We then define the scalar product (a, g) as A¢ ; we have (a, g) = (a, ¢’) if g and
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g’ are conjugate in G ; this allows us to define (a, o) for every o € X¢. For a
given o, the map a — (a, o) is H*(ko)-linear; if a has degree m, then (a, o) has
degree m — n (one may view a — (a,0) as an n-th fold residue map).
Ezample. Choose for a a Stiefel-Whitney class w5 (Cox) of the Coxeter repre-
sentation of G. One has (a,0) = 0 if i # deg(o) and (a,g) = 1 if i = deg(o).

Theorem B.

(i) If a € I is such that {(a,0) =0 for every o, then a = 0.

(ii) Let n be an integer. For every o € Y. of degree n, there exists e(o) € I}
such that {e(o),0) = 1 and {(e(0),0’) =0 for every o’ # o.
[Note that, by (i), such an e(o) is unique.]

It is clear that Theorem B implies Theorem A.
Indications on the proof of part (i)of Theorem B.

An induction argument shows that, if (a, o) = 0 for every o, then the restric-
tion of a to every < cube > (i.e., subgroup generated by commuting reflections)
is 0. In that case, if the characteristic of ko is good for G, the arguments of [9],
§25, show that @ = 0. This already covers the case where the irreducible com-
ponents of G are of classical type, since every characteristic # 2 is good. The
exceptional types can be reduced to the classical ones, thanks to the fact that, if
G is such a Weyl group, there exists a subgroup G’ of G, generated by a subset of
S¢ (hence also a Weyl group), which is of classical type, and has odd index in G :
for G of type Eg, E7, Eg, F4, G, one takes G’ of type Ds, A1 X Dg, Dg, Bg, A1 X Ag,
respectively ; one has (G : G') = 27,63, 135, 3, 3. One then uses the fact that the
restriction map I — I is injective, cf. [S], prop.14.4, and that every cube of
G is conjugate to a cube of G'.

Indications on the proof of part (ii)of Theorem B.

We need to construct enough cohomological invariants. For most Weyl groups,
this is done by using Stiefel-Whitney classes. For instance, for Weyl(Eg), one
takes the wfal (Cox),i=0,1,2,3,4. There are however three cases where we have
to do otherwise. For each one, there are two distinct classes of involutions o, o’ of
the same degree n for which it is hard to find a € I% with (a,0) =0, (a,0’) = 1.
These cases are : Do, n > 3; E;, n =3 and 4; Eg, n = 4.

For those, we use the relation given by Milnor’s conjecture (now Voevodsky’s
theorem) between Witt invariants and cohomological invariants mod 2. The
method applies to every linear group G over kg. The ring Invy, (G, W) of Witt
invariants of G (as defined in [S], §27.3) has a natural filtration : an invariant
h has filtration > n if, for every extension k/ky and every G-torsor ¢ of G over
k, the element h(t) of the Witt ring W (k) belongs to the n-th power of the
canonical ideal of W (k); in that case, h defines (via the Milnor construction)
an element aj, of Invy (G, F2) which is 0 if and only if the filtration of A is > n.
We thus get an injective map gr"Invy,(G,W) — Invy (G, F2).

We apply this to G = G, where G is as in the three cases above. One can
find a linear orthogonal representation of G whose Brauer character y is such
that x(o) — x(¢’) = 2™. This gives a G-quadratic form, hence an element of



Invy, (G, W) ; one modifies slightly that element to make it of filtration > n, so
that it gives a cohomological invariant a of G of degree n, and one checks that
(a,0) — (a,0’) = 1; that information is enough to conclude the proof.

Dependence of Invy, (G) on H®(ko) - Universal objects.
(i) Additive structure

For the additive structure, Inve(G) is a universal object, i.e., there is natural
isomorphism of Fa-vector spaces : Invy, (G) ~ Inve(G) ®r, H® (ko).
(ii) Ring structure

For the ring structure, it is Invg (G) which is a universal object : there is a
natural graded-Fs-algebra isomorphism : Invy, (G) ~ Invr(G) ®@pew) H* (ko).
[In this formula, H*® (ko) is viewed as an H*®(R)-algebra via the unique homomorphism

H*(R)— H*(ko) which maps the class of —1 in H'(R) ~ R*/(R*)? onto the class
of =1 in H (ko) =~ k& /(kZ)?.]
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Note. After my lecture, Stefan Gille has pointed out to me that, using a different
method (based on a theorem of Totaro, but not involving involutions), Chris-
tian Hirsch had already computed in 2009 the structure of the cohomological
invariants of all the finite Coxeter groups, under some mild hypotheses on the
ground field ; his method also applies to other types of invariants. Reference :

Christian Hirsch, Cohomological invariants of reflection groups, Diplomar-
beit (Betreuer : Prof. Dr. Fabien Morel), Univ. Miinchen, 2009 ; available on
arXiv:1805.04670[math.AG].
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