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Abstract

We probe the two-scale factor universality hypothesis by evaluating, firstly explicitly and ana-

lytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(N) λφ4

scalar field theories with rotation symmetry-breaking in three distinct and independent methods

in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation

symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to

their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general,

depend on the method employed and on the rotation symmetry-breaking parameter. At the end,

we show that all these results can be generalized, through an inductive process based on a general

theorem emerging from the exact calculation, to any loop level and physically interpreted based

on symmetry ideas.
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I. INTRODUCTION

The identical critical behavior displayed by different physical systems, as a fluid and a

ferromagnet, near a continuous phase transition, had lead to the genesis of the universality

concept [1–6] related to the scaling hypothesis [7–10]. The critical behavior of such sys-

tems is characterized by an identical set of critical exponents. When the critical behavior

of two or more systems is described by equal critical exponents, we say that they belong

to the same universality class [11–13]. This occurs when they share the same dimension d,

N and symmetry of some N -component order parameter and if the interactions present are

of short- or long-range type. We will deal with the general O(N) universality class which

is a generalization of the specific models with short-range interactions: Ising (N = 1), XY

(N = 2), Heisenberg (N = 3), self-avoiding random walk (N = 0), spherical (N → ∞)

etc [14]. Furthermore, different systems can be represented by a single universal equation of

state, once one has fixed two independent thermodynamic scales, as the order parameter and

its conjugate field scales. Then, the equation of state and amplitude ratios for the thermo-

dynamic functions are universal and thus satisfy the thermodynamic universality hypothesis

[15, 16]. Stauffer, Ferer and Wortis [17] generalized the thermodynamic universality concept

to the two-scale-factor universality hypothesis for correlation functions, where before that

work, it was suggested that universality for correlation functions would be inferred after

the choice of three scales, with the additional scale to the thermodynamic ones being the

length scale. This hypothesis asserts that, near the critical point, the length scale is not

independent and it is related to the thermodynamic scales. Thus the universal correlation

function can be fully determined after the choice of just two independent scales. Unlike the

critical exponents themselves, the critical amplitudes of the thermodynamic and correlation

functions, near the critical point, are not universal quantities. The universal quantities in

this case are some amplitude ratios of them. The aim of this work is to evaluate these

amplitude ratios.

The purpose of this paper is to employ field-theoretic renormalization-group and ǫ-

expansion techniques for computing, firstly explicitly and analytically at the one-loop order,

the loop quantum corrections to the amplitude ratios for rotation symmetry-breaking O(N)

λφ4 scalar field theories. This task plays a similar role in the description of a given universal-

ity class, although the evaluation of amplitude ratios is, in general, harder than for critical
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exponents. There is another field-theoretic renormalization-group approach for evaluating

critical quantities. It is called the field-theoretic renormalization-group at fixed-dimension

approach [18, 19] and is based on the computation of critical quantities directly in three

dimensions. One important application of a rotation symmetry-breaking scalar field theory

on the research area of high energy physics is explaining the Higgs behavior through the

recently proposed rotation symmetry-breaking Higgs sector of the extended standard model

[20–22]. In a conventional rotation-invariant theory, the critical amplitudes are the ampli-

tudes of the scaling thermodynamic functions and correlation functions, defined above and

below the critical temperature. These functions, in turn, are a result of some derivative oper-

ations, some of them being derivatives of the magnetization M , of the reduced temperature,

i. e., a parameter that is proportional to the difference between some arbitrary temperature

and the critical one t ∝ T − Tc etc with respect to the free energy density or, in the present

language, the effective potential with spontaneous symmetry breaking. The effective po-

tential at the loop level considered explicitly and analytically here, the one-loop order, is

composed of two terms. The first term is responsible for the so called Landau approximation

values to the amplitude ratios, valid for d ≥ 4. In the Landau regime, the fluctuations of

the scalar field φ, whose mean value is identified to the magnetization of the system are

discarded. The second one, representing corrections to the Landau approximation, which

takes into account the fluctuations as loop quantum corrections, valid for 2 < d < 4, is the

infinite sum of all the one-loop 1PI vertex parts with amputated external legs. Initially, the

effective potential is written in its bare or nonrenormalized form, thus plagued by infrared

divergences, typical for massless theories, as the treated in this work. These divergences

must be removed of the theory and are contained in just a few 1PI vertex parts, the Γ
(2)
B ,

Γ
(4)
B and Γ

(2,1)
B functions commonly called primitively divergent 1PI vertex parts. All the

others divergent 1PI vertex parts, obtained through a skeleton expansion [23] of the former,

turn out to be automatically renormalized once one has renormalized the primitive divergent

ones. For attaining the renormalized theory, we will apply three independent renormaliza-

tion schemes: normalization conditions [24], the minimal subtraction scheme [26] and the

Bogoliubov-Parasyuk-Hepp-Zimmermann (BPHZ) methods [27–29]. Universality is satis-

fied if the final results for the amplitude ratios, in the three distinct methods, are identical,

although the amplitudes themselves, in general, depend on the renormalization scheme em-

ployed and on the rotation symmetry-breaking mechanism through the introduction of an
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appropriate rotation symmetry-breaking parameter to be defined below. As universality

means that the critical exponents do not depend on the system in a given universality class,

the corresponding critical exponents must be the same when obtained through any renor-

malization scheme. Universality then arises in any renormalization scheme through the flow

of the renormalized coupling constant to its fixed point value in which scale invariance is

manifest. The present calculation of amplitude ratios in just one renormalization scheme

would be enough for showing that they are independent of the symmetry breaking tensor

Kµν at one-loop order. But similar calculations in different renormalization schemes besides

providing a check of the final results that must be identical, give more robustness on the two-

scale-factor universality hypothesis validity. Furthermore, the minimal subtraction method

for obtaining the amplitude ratios presented here, as opposed to the normalization condi-

tions method, is not found in the literature. The probing of a possible effect of the rotation

symmetry-breaking mechanism on the universality properties of the systems studied here,

starts with the introduction into the rotation-invariant standard theory, the kinetic rotation

symmetry-breaking O(N) operator Kµν∂
µφ∂νφ, as introduced for the pioneer evaluation of

rotation symmetry-breaking critical exponents by one of the authors and co-workers [30–

32], although non-exactly in the rotation symmetry-breaking mechanism through tedious

calculations in powers of Kµν . The dimensionless, symmetric, constant rotation symmetry-

breaking coefficients Kµν = Kνµ are equal for all the N components of the field and leave

intact the O(N) symmetry of theN -component field. Physically, they act as a constant back-

ground field. If the rotation symmetry-breaking coefficients are kept at arbitrary values, the

rotation symmetry symmetry is violated if these coefficients do not transform as a second

order tensor under rotation transformations. As for the earlier works on the computation of

rotation symmetry-breaking critical exponents, the rotation symmetry-breaking theory can

be used for studying the symmetry aspects of the O(N) two-scale-factor universality class

in the rotation symmetry-breaking scenario, now treating the rotation symmetry-breaking

mechanism exactly.

II. AMPLITUDE RATIOS IN NORMALIZATION CONDITIONS SCHEME

The normalization conditions renormalization scheme is characterized by fixing the ex-

ternal momenta of the primitively divergent 1PI vertex parts at a nonzero value scaled by
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some arbitrary momentum scale κ, at the symmetry points SP and SP

Γ(2)(P 2 +KµνP
µP ν = 0, g) = 0, (1)

∂Γ(2)(P 2 +KµνP
µP ν , g)

∂(P 2 +KµνP µP ν)

∣∣∣∣∣
P 2+KµνPµP ν=κ2

= 1, (2)

Γ(4)(P 2 +KµνP
µP ν, g)|SP = g, (3)

Γ(2,1)(P1, P2, Q3, g)|SP = 1, (4)

where for SP: Pi ·Pj = (κ2/4)(4δij−1), implying that (Pi+Pj)
2 ≡ P 2 = κ2 for i 6= j and for

SP : P 2
i = 3κ2/4 and P1 ·P2 = −κ2/4, implying (P1+P2)

2 ≡ P 2 = κ2, of the multiplicatively

renormalized primitively 1PI vertex parts Γ(n,l)(Pi, Qj, g, κ) = Z
n/2
φ Z l

φ2Γ
(n,l)
B (Pi, Qj, λ0) (i =

1, · · · , n, j = 1, · · · , l, where for (n, l) 6= (0, 2), the function Γ
(0,2)
B is renormalized additively),

generated by the initially bare rotation symmetry-breaking Lagrangian density

LB =
1

2
∂µφB∂µφB +Kµν∂

µφB∂
νφB +

λB

4!
φ4
B +

1

2
tBφ

2
B, (5)

where the conditions (1)-(4) permit us to renormalize the bare field φB, coupling constant

λB and composite field coupling constant tB parameters. Thus after the renormalization

of these parameters, we can write down the renormalized rotation symmetry-breaking free

energy density at the fixed point with spontaneous symmetry breaking at one-loop level as

[24]

F(t,M, g∗) =
1

2
tM2 +

1

4!
g∗M4 +

1

4

[
Nt2 +

N + 2

3
tg∗M2 +

N + 8

36
(g∗M2)2

]

SP
+

1

2

∫
ddq

[
ln

(
1 +

t+ g∗M2/2

q2 +Kµνqµqν

)
+ (N − 1) ln

(
1 +

t + g∗M2/6

q2 +Kµνqµqν

)
− N + 2

6

tg∗M2

q2 +Kµνqµqν

]
,

(6)

where g, t and M are the renormalized coupling constant, composite field coupling constant

and magnetization (as being the renormalized nonzero field mean value M = 〈φ〉 in the

spontaneously broken direction), respectively. The coupling constant g∗ is the fixed point

of the theory, the value for which the renormalized coupling constant flows naturally when

the renormalized theory is attained and, in general, is obtained as the nontrivial root of

the β-function of the respective theory in the respective renormalization scheme. The “fish”
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diagram SP , whose internal line is given by the massless propagator −1 ≡ q2+Kµνq
µqν ,

is evaluated at the symmetry point SP after we set κ2 = 1, because we can redefine all

momenta of the diagrams in units of κ. Thus the redefined external momenta turn out to be

dimensionless and the symmetry point now is given by P 2 +KµνP
µP ν = κ2 → 1. Then we

absorb the dependence on κ of the diagrams into the coupling constant. The “fish” diagram

was evaluated in a expansion in the dimensional regularization parameter ǫ = 4 − d and

exactly in K [33], see Sect. V. In the analytical computation of the momentum integral,

we apply the known definition of ref. [26] in which the d-dimensional surface area factor is

absorbed into a redefinition of the coupling constant, since each loop momentum integration

is accompanied of this factor. Thus, we can write

SP
=

1

ǫ

(
1 +

1

2
ǫ

)
Π, (7)

where Π = 1/
√
det(I+K) is a rotation symmetry-breaking full factor emerging from the

exact calculation where we change the variables [33] through coordinates redefinition applied

in momentum space directly in Feynman diagrams q′ =
√
I+K q resulting in the fact that

each loop integration is accompanied by a rotation symmetry-breaking full Π factor and

according to [33],

g∗ =
6ǫ

(N + 8)Π

{
1 + ǫ

[
(9N + 42)

(N + 8)2
− 1

2

]}
. (8)

Now, we are in a position to evaluate the critical amplitudes of the thermodynamic and

correlation functions. The existence of two independent scales, leads naturally to the ex-

istence of ten relations among the twelve critical exponents α, α′, γ, γ′, ν, ν ′, β, δ, η, αc, γc, νc

as well as for the critical amplitudes, with ten universal relations among the twelve critical
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amplitudes

Critical isochore: T > Tc, H = 0

ξ = ξ+0 t
−ν , χ = C+t−γ , Cs =

A+

α+
t−α

Critical isochore: T < Tc, H = 0

ξ = ξ−0 t
−ν , χ = C−t−γ , Cs =

A−

α
−

t−α,M = B(−t)β

Critical isotherm: T = Tc, H 6= 0

ξ = ξc0|H|−νc, χ = Cc|H|−γc, Cs =
Ac

αc

|H|−αc, H = DM δ

Critical point: T = Tc, H = 0

χ(p) = D̂pη−2.

Fortunately, not all critical exponents must be evaluated, because not all of them are

independent. Some of them are related, as the ones defined above and below the critical

temperature and through some scaling relations among them, namely: α = α′, γ = γ′, ν =

ν ′, γ = β(δ − 1), α = 2 − 2β − γ, 2 − α = dν, γ = (2 − η)ν, αc = α/βδ, γc = 1 − 1/δ, νc =

ν/βδ, thus remaining two independent ones. Also, as H and χ are related on the critical

isotherm, the universal relation δCcD1/δ follows, and nine universal relations among the

critical amplitudes remains. More than nine universal relations can be derived, some of

them being dependent of a minimal set of nine ones. This shows that we can choice a given

minimal set. The minimal set chosen in this paper will be that whose the ǫ-expansion results

are displayed in ref. [34], originally evaluated in refs. therein.

Equation of state. Before computing the amplitude ratios themselves, it is important to

begin by computing the equation of state and its universal form. The equation of state is

obtained as a first derivative of the free energy with respect to the magnetization, namely

H = ∂F/∂M [24], whose diagrammatic expression is given by [35]

H/M = t +
1

6
g∗M2 +

1

2
g∗

{[

(1)
+ (t + g∗M2/2)

SP

]
+

N − 1

3

[

(N−1)
+ (t+ g∗M2/6)

SP

]}
. (9)

The indices (1) and (N−1) indicate that in the respective diagram, the internal propagators

are −1
(1) ≡ q2 +Kµνq

µqν + g∗M2/2 and −1
(N−1) ≡ q2 +Kµνq

µqν + g∗M2/6, respectively.
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The evaluation of the Feynman diagrams (1) and (N−1) in d = 4− ǫ result

(1)
= −t + g∗M2/2

ǫ

[
1− 1

2
ln

(
t +

g∗M2

2

)
ǫ

]
Π, (10)

and a similar expression for (N−1) with g∗M2/2 → g∗M2/6. The equation of state is

clearly a rotation symmetry-breaking one. But if H(x) is normalized at the values x = 0 and

x = −1 such that H = M δ and H = 0, respectively, where x = t(g∗M2)−1/2β , the rotation

symmetry-breaking Π and f (2) factors disappear and it assumes its known universal form

[25]. Now we proceed to evaluate the minimal set of amplitude ratios.

A+/A−. The critical amplitudes for the specific heat can be obtained as the second

derivative of the free energy F(t,M, g∗) with respect to t. For describing the regions above

and below the transition point, the values of the magnetization in the respective regions can

calculated by minimizing the effective potential (equivalently the roots of H), giving the

magnetization values of the O(N) symmetric phase and the spontaneously broken one. The

results for the referred amplitudes are

A+ =
N

4

[
1 +

(
4

4−N
+ AN

)
ǫ

]
Π, (11)

A− =

[
1 +

(
N

4−N
− 4−N

2(N + 8)
ln 2 + AN

)
ǫ

]
Π, (12)

where

AN =
1

2
− 9N + 42

(N + 8)2
− 4−N

(N + 8)
− (N + 2)(N2 + 30N + 56)

2(4−N)(N + 8)2
. (13)

C+/C−. We can obtain the amplitude ratio C+/C− by computing the susceptibility in

terms of the effective potential, or equivalently of the equation of state, through χ−1 =

∂2F/∂M2 = ∂H/∂M and evaluating the amplitudes above and below the transition. We

have to mention a peculiarity here: Below the critical temperature, the susceptibility is

defined only for Ising systems due to the presence of Goldstone modes. Thus we have

C+ = 1− N + 2

2(N + 8)
ǫ, (14)

C− =
1

2

[
1− 1

6
(4 + ln 2) ǫ

]
. (15)
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Q1. The amplitude ratio Q1 is related to the Rχ one through Q1 = R
−1/δ
χ , where Rχ is

defined as Rχ = C+DBδ−1. Thus the universality of Q1 is ensured if Rχ is universal. The

amplitude C+ is displayed in eq. (14). The amplitude D is obtained by normalizing H(x)

only at the value x = 0 such that H = M δ, where x = t(g∗M2)−1/2β , implying that

D =
1

6
g∗(δ−1)/2

[
1 +

1

2

(
1− ln 2− N − 1

N + 8
ln 3

)
ǫ

]
. (16)

The amplitude B can be calculated from the nonzero root of H , namely

B =

{
N + 8

ǫ

[
1− 3

N + 8
(1 + ln 2) ǫ−

(
9N + 42

(N + 8)2
− 1

2

)
ǫ

]
Π

}1/2

. (17)

Rc. The ratio Rc is defined as Rc = A+C+/B2. All the amplitudes necessary to the

computation of Rc were evaluated already in eqs. (11), (14) and (17)

ξ+0 /ξ
−
0 . For calculating the amplitude ratio between the correlation length above and

below the transition, we have to consider the momentum-dependent longitudinal correlation

function [24] with the diagrammatic expansion [35]

ΓL(P
2 +KµνP

µP ν , t,M) = P 2 +KµνP
µP ν + t+

1

2
g∗M2 +

1

2
g∗

{[

(1)
+ (t + g∗M2/2)

SP

]
+
N − 1

3

[

(N−1)
+ (t+ g∗M2/6)

SP

]
+

g∗M2

[(

SP
−

(1)

)
+
N − 1

9

(

SP
−

(N−1)

)]}
. (18)

After the ǫ-expansion of the (1) and (N−1) diagrams exactly in K, we have

(1)
=

1

ǫ

[
1− 1

2
ǫ− 1

2
L(P 2 +KµνP

µP ν)ǫ

]
Π, (19)

where

L(P 2 +KµνP
µP ν) =

∫ 1

0

dx ln

[
x(1 − x)(P 2 +KµνP

µP ν) + t+
g∗M2

2

]
(20)

with an analog expression for (N−1) with g∗M2/2 → g∗M2/6, now defining the correlation

length as the second moment of the spin-spin correlation function as ξ2 = (dΓL/d(P
2 +

KµνP
µP ν))|P 2+KµνPµP ν=0/Γ(P

2 +KµνP
µP ν = 0),

ξ+0 = 1− N + 2

4(N + 8)
ǫ, (21)
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ξ−0 = 2−1/2

[
1− 1

12

(
7

2
+ ln 2

)
ǫ

]
. (22)

As we can see in eq. (22), ξ−0 is not defined for all N 6= 1. The reason is the same as for the

critical amplitude C−: the existence of divergences generated by the presence of Goldstone

modes.

R+
ξ . The amplitudes needed for the evaluation of the ratio R+

ξ are displayed in eqs. (11)

and (21) through the definition R+
ξ = ξ+0 (A

+)1/d.

ξ+0 /ξ
T
0 . The momentum-dependent transverse correlation function [24] is given by its

diagrammatic expansion [35]

ΓT (P
2 +KµνP

µP ν , t,M) = P 2 +KµνP
µP ν + t+

1

6
g∗M2 +

1

6
g∗

{[

(1)
+ (t+ g∗M2/2)

SP

]
+(N + 1)

[

(N−1)
+ (t+ g∗M2/6)

SP

]
+

2

3
g∗M2

[(

SP
−

(1,(N−1))

)]}
, (23)

where the index (1, (N − 1)) in the referred diagram means that its internal propagators

are the −1
(1) and the −1

(N−1) ones, respectively. The ǫ-expansion of this diagram results

in similar expressions to the (19)-(20) ones with the substitution t + g∗M2/2 → x(t +

g∗M2/2)+ (1−x)(t+ g∗M2/6). Thus defining the transverse correlation length by ΓT (P
2+

KµνP
µP ν)|H=0 ∼

P→0
(P 2 +KµνP

µP ν)(ξT )
2−d/M2, we obtain

ξT0 =

{
ǫ

(N + 8)Π

[
1 +

3

N + 8

(
5

6
+ ln 2

)
ǫ+

(
9N + 42

(N + 8)2
− 1

2

)
ǫ

]}1/(d−2)

. (24)

Q2. For the evaluation of the ratio Q2 defined by Q2 = (C+/Cc)(ξc0/ξ
+
0 )

2−η (the critical

exponent η can be set to zero at the loop level here), we have computed the amplitudes

C+ and ξ+0 already in eqs. (14) and (21), respectively. Now, from the susceptibility and

correlation length at the critical point, we get

Cc =
2D1/δ

g∗1/2β

{
1− 9

2(N + 8)

[
(1− ln 2) +

N − 1

9
(1− ln 6) +

2(N + 8)

27

]
ǫ

}
,

(25)

ξc0 =
21/2D1/2δ

g∗1/4β

{
1− 9

4(N + 8)

[
(1− ln 2) +

N − 1

9
(1− ln 6) +

N + 14

27

]
ǫ

}1/2

. (26)
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Q3. In the definition of the Q3 ratio given by Q3 = D̂(ξ+0 )
2−η/C+, the amplitudes C+

and ξ+0 are shown in eqs. (14) and (21). The remaining D̂ amplitude is evaluated from the

momentum-dependent longitudinal correlation function at the critical point and arbitrary

momentum. Thus we get

D̂ = 1. (27)

As it can be seen, the rotation symmetry-breaking full Π factor disappear in the final expres-

sions to all the amplitude ratios above and we obtain their rotation-invariant counterparts

[34].

III. AMPLITUDE RATIOS IN MINIMAL SUBTRACTION SCHEME

In the minimal subtraction renormalization scheme, the external momenta of the 1PI

vertex parts to be renormalized, by minimally subtracting the dimensional poles, are held

at arbitrary values, showing that this method is more general and elegant than the earlier.

Thus, eqs. (1)-(4) must not hold necessarily. Then, minimally renormalizing the bare field

φB, coupling constant λB and composite field coupling constant tB, the renormalized effective

potential F(t,M, g∗) of eq. (6) assumes a similar form, but with the change SP −→ [ ]S,

where is, for example, the (1) diagram or, similarly, the (N−1) one with their

external momenta held at arbitrary values and [ ]S means that what is to be considered

inside the brackets are the singular terms of the diagram, not the regular ones, as opposed

to the normalization conditions renormalization method in which the regular terms are also

taken into account. The nontrivial fixed point, i. e., the nontrivial root of the β-function in

this scheme is given by [31]

g∗ =
6ǫ

(N + 8)Π

[
1 +

9N + 42

(N + 8)2
ǫ

]
. (28)

Thus, performing the same steps of the earlier section, the expressions for the amplitudes

are

A+ =
N

4

[
1 +

(
4

4−N
+ A′

N

)
ǫ

]
Π, (29)

A− =

[
1 +

(
N

4−N
− 4−N

2(N + 8)
ln 2 + A′

N

)
ǫ

]
Π, (30)
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where

A′
N = − 9N + 42

(N + 8)2
− 4−N

(N + 8)
− (N + 2)(N2 + 30N + 56)

2(4−N)(N + 8)2
, (31)

C+ = 1, (32)

C− =
1

2

[
1− 1

6
(3 + ln 2)ǫ

]
, (33)

D =
1

6
g∗(δ−1)/2

[
1− 1

2

(
ln 2 +

N − 1

N + 8
ln 3

)
ǫ

]
, (34)

B =

{
N + 8

ǫ

[
1− 3 ln 2

N + 8
ǫ− 9N + 42

(N + 8)2
ǫ

]
Π

}1/2

, (35)

ξ+0 = 1, (36)

ξ−0 = 2−1/2

[
1− 1

12

(
5

2
+ ln 2

)
ǫ

]
, (37)

ξT0 =

{
ǫ

(N + 8)Π

[
1 +

3

N + 8

(
− 1

6
+ ln 2

)
ǫ+

9N + 42

(N + 8)2
ǫ

]}1/(d−2)

, (38)

Cc =
2D1/δ

g∗1/2β

{
1− 9

2(N + 8)

[
− ln 2− N − 1

9
ln 6 +

2(N + 8)

27

]
ǫ

}
, (39)

ξc0 =
21/2D1/2δ

g∗1/4β

{
1− 9

4(N + 8)

[
− ln 2− N − 1

9
ln 6 +

N + 14

27

]
ǫ

}1/2

, (40)

D̂ = 1. (41)

The amplitude ratios obtained in eqs. (29)-(41) are the same as the respective rotation-

invariant ones [34], as well as the equation of state in its universal form [24]. One interesting

feature of this method is that the amplitudes themselves do not depend explicitly on the rota-

tion symmetry-breaking full Π factor. The absence of explicit dependence on non-universal

features is not an exception of rotation symmetry-breaking properties in this method. It is

also observed in treating critical properties of rotation-invariant finite size systems subject to

periodic and anti-periodic [36] as well as Dirichlet and Newmann [37] boundary conditions.
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IV. AMPLITUDE RATIOS IN THE BPHZ METHOD

In the BPHZ method, the most general and elegant one, the divergences of the bare

theory are eliminated by adding terms to the initially bare Lagrangian density. These terms

introduced are called counterterms. This process can be applied order by order in pertur-

bation theory. At the loop level considered in this work, we can once again renormalize the

field φB, coupling constant λB and composite field coupling constant tB by adding coun-

terterms to turn them finite [32]. The resulting renormalized effective potential F(t,M, g∗),

with g∗ being the same in eq. (28), will display once again the form in eq. (6), now with

SP −→ K( ). The symbol K( ) indicates that only the singular part of the diagram

is to be considered. Although this renormalization process be distinct of that of the earlier

section, at least at the loop level treated here the effective potential is the same as the one of

the earlier section, thus leading to the same amplitudes computed in that section. This leads

to identical amplitude ratios found in the last two sections. Now we proceed to compute the

amplitude ratios valid for all-loop order.

V. ALL-LOOP ORDER AMPLITUDE RATIOS

In this section, we show the universality of amplitude ratios for O(N) rotation symmetry-

breaking self-interacting scalar field theories valid for any loop level in the BPHZ method,

the most general and elegant one (without loss of generality, similar arguments can be used

in the other methods). We follow the same steps of ref. [35] used for rotation-invariant

amplitude ratios. A given general amplitude AG is of the form AG = XaY bF (g∗), where a

and b are integer numbers, critical exponents or a combination of them and F , a general

function of g∗ only. The X and Y factors are non-universal and are responsible for the

scale-dependence of the critical amplitudes. They are related, for example, to the order

parameter and conjugate field scales, which are the two fixed independent scales needed

for the establishment of the two-scale-factor universality hypothesis. The another source of

non-universality is contained in the general function F (g∗), through the fixed point, whose

value depends on the renormalization scheme employed. It was shown, in a general proof and

therefore valid for any loop level [35], that the amplitude ratios are independent of the fixed

independent scale factors. Thus, we have, additionally, to show that the amplitude ratios

13



are independent of the rotation symmetry-breaking parameters Kµν , thus being identical

to the corresponding rotation-invariant ones. This task will be achieved if we show that

the rotation symmetry-breaking general function F (g∗) is the same as its rotation-invariant

counterpart, i. e. that is does not depend on Kµν . We apply the general theorem [33]

Theorem. Consider a given Feynman diagram in momentum space of any loop order in

a theory represented by the Lagrangian density of Eq. (5). Its evaluated expression in

dimensional regularization in d = 4− ǫ can be written as a general functional ΠLG(g, P 2 +

KµνP
µP ν, ǫ, κ) if its rotation-invariant counterpart is given by G(g, P 2,

ǫ, κ), where L is the number of loops of the corresponding diagram.

Proof. A general Feynman diagram of loop level L is a multidimensional integral in L distinct

and independent momentum integration variables q1, q2,...,qL, each one with volume element

given by ddqi (i = 1, 2, ..., L). As showed in last Section, the substitution q′ =
√
I+K q

transforms each volume element as ddq′ =
√

det(I+K)ddq. Thus ddq = ddq′/
√

det(I+K) ≡
Πddq′, Π = 1/

√
det(I+K). Then, the integration in L variables results in a rotation

symmetry-breaking overall factor of ΠL. Now making q′ → P ′ in the substitution above,

where P ′ is the transformed external momentum, then P ′2 = P 2 + KµνP
µP ν . So a given

Feynman diagram, evaluated in dimensional regularization in d = 4− ǫ, assumes the expres-

sion ΠLG(g, P 2+KµνP
µP ν, ǫ, κ), where G is associated to the corresponding diagram if the

rotation-invariant Feynman diagram counterpart evaluation results in G(g, P 2, ǫ, κ).

Now we can write a general Feynman diagram in the form ΠLG(g, P 2+KµνP
µP ν , ǫ, κ) if

its rotation-invariant counterpart is given by G(g, P 2, ǫ, κ), where L is the number of loops

of referred diagram. Thus, as the general function depends only on g and at a given of

its terms each term of one order of g is also a term of one order of loop, it is given by

F (Πg∗). The all-loop rotation symmetry-breaking fixed point g∗, taking into account the

rotation symmetry-breaking breaking mechanism exactly, is related to its rotation-invariant

counterpart g∗(0) through g∗ = g∗(0)/Π [33]. Now, substituting g∗ = g∗(0)/Π, we have

that F (Πg∗) ≡ F (g∗(0)). Then, the rotation symmetry-breaking general function is the

same as the corresponding rotation-invariant one, leading to the rotation symmetry-breaking

amplitude ratios identical to their rotation-invariant counterparts. This completes our task.
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VI. CONCLUSIONS

In this paper, we have evaluated the all-loop quantum corrections to the amplitude ratios

for rotation symmetry-breaking O(N) λφ4 scalar field theories, taking exactly the rotation

symmetry-breaking mechanism into account, through coordinates redefinition applied in

momentum space directly in Feynman diagrams, and thus avoiding the tedious calculation

in powers of Kµν , by employing field-theoretic renormalization group, dimensional regular-

ization and ǫ-expansion techniques in three distinct methods. Firstly, we have explicitly

computed analytically the amplitude ratios at the one-loop level and finally, in a proof by

induction through a general theorem emerging from the exact calculation, computed the

quantum corrections for any loop level. We have showed that, although a same rotation

symmetry-breaking critical amplitude can be different in distinct methods and thus can

dependent on the renormalization method employed, the outcome for the amplitude ratios

are the same and, furthermore, equal to their rotation-invariant counterparts. This result

reveals that the amplitude ratios do not depend on the renormalization scheme employed

and on the exact rotation symmetry-breaking mechanism, thus being universal quantities

and ratifying the robustness of the O(N) two-scale-factor universality hypothesis. We can

interpret physically this result by realizing that the symmetry breaking mechanism does not

occur in the internal symmetry space of the field, but in the one in which the field is defined

[38]. Then, if the amplitude ratios are really to be universal quantities, the values of the am-

plitude ratios must be not affected by this symmetry breaking mechanism and they depend

just, as usual, on the d and N parameters and the symmetry of the N -component order

parameter. Furthermore, this work can shed light on the understanding of the exact rota-

tion symmetry-breaking properties of corrections to scaling and finite-size scaling of rotation

symmetry-breaking amplitude ratios as well as critical exponents in geometries subjected to

different boundary conditions for systems undergoing a continuous phase transition for the

systems studied here as well as for anisotropic ones [39–42].
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