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Abstract

A result of Rosenthal says that for every q > 1 and n ∈ N there
is N ∈ N such that every sequence of N distinct positive numbers
contains, after a suitable translation and possible multiplication by
−1, a subsequence a1, . . . , an that is either q-increasing (that is, ai+1 >
qai for all i) or 1/q-decreasing (ai+1 < ai/q for all i). One of our main
theorems extends this result to vector sequences. This theorem is then
used to prove the universality theorem for Tverberg partitions which
says that, for every d and r, every long enough sequence of points
in Rd in general position contains a subsequence of length n whose
Tverberg partitions are exactly the so called rainbow partitions.

1 Introduction and main results

This paper is about sequences of vectors in Rd and their universal properties.
A property P is called universal if for every n ∈ N there is N ∈ N such that
every vector sequence a1, . . . , aN (where the ais are in general position in Rd)
contains a subsequence of length n that has property P . For instance, when
d = 1 the property of being increasing or decreasing is universal according
to a theorem of Erdős and Szekeres [4] from 1935. Precisely, their result says
that any sequence of n2 + 1 distinct real numbers contains a subsequence
of length n that is either increasing or decreasing. Rosenthal’s lemma [10]
described in the abstract is another universality theorem which extends that
of Erdős and Szekeres. Another theorem of Erdős and Szekeres from the
same paper states that every sequence of 4n 2-dimensional vectors (in general
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position) contains a subsequence of length n that are in convex position, that
is, their convex hull has n vertices. This is the universality of the property
“being in convex position”. The main results in this paper establish further
universal properties of vector sequences. To state them some definitions are
needed.

We define a : [n] → R as a sequence of length n where [n] = {1, . . . , n}.
A d-dimensional sequence is a collection of d sequences, that is a : [n] → R

d.
The elements of this d-dimensional sequence are the column vectors ai =
(1ai, . . . , dai)

T . For each s ∈ [d], sa = sa1, sa2, . . . is its sth coordinate se-
quence. The d-dimensional sequence a is in general position if any d elements
are linearly independent.

Let a, a′ be two (d-dimensional) sequences of length n and n′ respectively.
We say that a′ is a subsequence of a if n′ ≤ n and there exists a subset
I = {i1, . . . , in′} of [n] such that i1 < · · · < in′ and a′j = aij .

Throughout the paper we (try to) use the variables consistently, namely
i, j, k, ℓ for the elements in [n] and [N ] and n,N for the length of the sequence,
and s, t, σ, τ ∈ [d] for the coordinates and d for dimension.

Let a be a d-dimensional sequence and T a d × d invertible matrix. We
say that the sequence Ta : Ta1, . . . , Tan is a linear transformation of the
sequence a. Of course, a coordinate sequence of Ta is a linear combination
of the coordinate sequences of a.

Definition 1.1. Let q > 1 be a real number. The sequence a is q-increasing
if it is positive and for every i ∈ [n− 1] we have ai+1

ai
> q.

Definition 1.2. Let d > 1 and let a be a d-dimensional sequence. We say
that a is q-pseudo-geometric if every coordinate sequence is positive and for
every s, t ∈ [d], s 6= t either of the two sequences ta

sa
or sa

ta
is q-increasing.

One of our main results says that being q-pseudo-geometric is a universal
property of vector sequences. Here comes the precise statement.

Theorem 1.3. Let q > 1 be a real number and let d > 1 be an integer. For
every integer n there exists N = N(d, n, q) with the following property. If a is
a d-dimensional sequence of length N in general position, then there exists a
d×d invertible matrix T such that Ta has a q-pseudo-geometric subsequence
of length n. Further more, we can assume that T is a lower triangular matrix.

The case d = 2 was proved by Rosenthal [10] in 1981 in slightly different
form, see also [2] for another proof and applications. We will come back to
Rosenthal’s lemma in Section 3.
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Our second main result is about Tverberg’s theorem [11] which says the
following.

Theorem 1.4. Assume d, r ∈ N, d ≥ 1, r ≥ 2. Given n = (r− 1)(d+1) + 1
points in Rd, there is a partition of them into r parts whose convex hulls have
a point in common.

The case r = 2 is Radon’s theorem [9] from 1920. Then n = d + 2 so
any d+ 2 points in Rd can be split into two parts so that their convex hulls
intersect. Next we give an example. Assume that the points come from
the moment curve γ(t) = (t, t2, . . . , td)T ∈ R

d (t > 0), so we have d + 2
points γ(t1), . . . , γ(td+2) with 0 < t1 < . . . < td+2. It is well-known (see
for instance Grünbaum’s book [5] or Matoušek’s [6]) that there is a unique
Radon partition in this case, namely, one set is P1 = {γ(ti) : i odd} and
the other one is P2 = {γ(ti) : i even}. That is, the Radon partition is
just two interlacing sets, meaning that on the moment curve between two
consecutive points of P1 (resp P2) there is a point of P2 (and P1). It is also
known that this is the universal Radon partition: for every d ∈ N there is
N ∈ N such that for any d-dimensional (general position) vector sequence
p1, . . . , pN contains a subsequence pi1 . . . , pid+2

with i1 < i2 < . . . < id+2 such
that their unique Radon partition is the interlacing sets P1 = {pij : j odd}
and P2 = {pij : j even}. The moment curve shows that this is the unique
universal Radon partition. Our second main result shows what the universal
Tverberg partitions are. Before stating it further definitions are needed.

Let n = T (r, d) = (r − 1)(d + 1) + 1 be the Tverberg number, and
assume that A1 ∪ · · · ∪ Ar is a proper partition of [n] which means that
1 ≤ |Am| ≤ d + 1 for all m ∈ [r]. The sets A1, . . . , Ar will be called color

classes or simply classes of the partition. We define blocks B1, . . . , Bd+1 by

Bs = {(s− 1)(r − 1) + 1, (s− 1)(r − 1) + 2, . . . , s(r − 1) + 1}.

So each block contains r consecutive numbers from [n], and they are almost
disjoint: only Bs and Bs+1 have a point in common, namely s(r− 1)+ 1, for
all s ∈ [d].

Let p1, . . . , pn ∈ Rd be points in strong general position (the definition is
given in Section 5. The partition A1, . . . , Ar of [n] induces a partition of the
sequence p1, . . . , pn into r sets Pm = {pi : i ∈ Am}.

Definition 1.5. The proper partition A1, . . . , Ar of [n] is called a rainbow
partition if |Am ∩Bs| = 1 for all m ∈ [r] and s ∈ [d+ 1]. The corresponding
partition P1, . . . , Pr of P is also a rainbow partition.
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Again we try to use the notation m,α, β ∈ [r] for the subscripts of the
color classes. We remark here that for r = 2 a rainbow partition A1, A2 is
two interlacing sets. It is known that for the points γ(t1), . . . , γ(tn) on the
moment curve the Tverberg partitions are exactly the rainbow partitions if
the points t1 < t2 < . . . < tn are chosen suitably, namely, heavily increasing.
This is an unpublished observation of Bárány and Pór, and also of Mabillard
and Wagner, see also [8]. Bukh, Loh and Nivasch [1] prove the analogous
statement for the points on the diagonal of the stretched grid, for the defini-
tion see their paper.

Here is the universality theorem for Tverberg partitions.

Theorem 1.6. Given d, r ∈ N with r ≥ 2, there is N = N(d, r) ∈ N such
that every sequence of length N of d-dimensional vectors in strong general
position contains a subsequence p1, . . . , pn with n = T (r, d) whose Tverberg
partitions are exactly the rainbow partitions.

This has been conjectured by Bukh, Loh and Nivasch [1] and proved there
for d = 2 and in some further special cases. The following question emerged
in connection with the results of [3]. Given a finite set P ⊂ R

d with |P |
sufficiently large, are there disjoint subsets X, Y ⊂ P with |X| = d + 2,
|Y | = d + 1 such that conv Y contains the Radon point of X . Theorem 1.6
answers this question affirmatively: choose r ≥ 3, suppose |P | = N where
n = T (r, d), write the points of P in a sequence, and let q1, q2, . . . , qn be
the subsequence guaranteed by the theorem. There is a rainbow partition
A1, . . . , Ar of [n] with |A1| = ⌈(d+2)/2⌉, |A2| = ⌊(d+2)/2⌋, and |Am| = d+1
for all m > 2. Then the sets in P corresponding to A1 ∪ A2 and A3 satisfy
the requirement.

The proof method of Theorem 1.6 yields the following apparently stronger
result.

Theorem 1.7. Given d,m, r ∈ N with r ≥ 2 and m ≥ n = T (r, d), there is
N = N(d,m, r) ∈ N such that every sequence of length N of d-dimensional
vectors in strong general position contains a subsequence p1, . . . , pm of length
m with the following property. For every subsequence pi1, . . . , pin its Tverberg
partitions are exactly the rainbow partitions.

The paper is organized as follows. The proof of Theorem 1.3 is proved
in Section 3, with some preparations in Section 2. Dominant q-increasing
sequences, an important tool in the universality of Tverberg partitions, are
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presented in Section 4. The linear equation related to Tverberg partitions
and the Gw matrices are introduced in Section 5. The linear equation formu-
lation implies that the sign patterns of certain determinants decide whether
a given partition is Tverberg or not. This leads to the question of finding
the dominant monomial in the expansion of these determinants in Sections 6
and 7. The proof of Theorem 1.6 is given in Sections 8 and 9.

2 Preparations for the proof of Theorem 1.3

We begin with a few simple observations. Assume a is a q-pseudo-geometric
sequence. Then the subsequence a′ of a where we take each kth element,
a′i = aik, is q

k-pseudo-geometric.
Again, assume a is q-pseudo-geometric and let s, t ∈ [d] be two different

coordinates. We say that the tth coordinate grows faster than the sth co-
ordinate if ta

sa
is q-increasing. This is a total order on [d]. Therefore there

exists a unique permutation matrix T such that in Ta the coordinates are
already ordered increasingly. That is for every 1 ≤ t < d the sequence t+1Ta

tTa

is q-increasing. We say that the sequence Ta is ordered and q-increasing, or
simply that it is ordered.

The following lemma is a key component in the proof of Theorem 1.3.

Lemma 2.1. Let d > 1 and let q > 3 be a real number. Let a be an
ordered d-dimensional q-pseudo-geometric sequence. Let b =

∑

αt · ta be
a linear combination of the d coordinate sequences such that b has (d − 1)
zero elements bj1 = · · · = bjd−1

= 0, where for each t = 1, . . . , d − 2 we
have jt + 2 < jt+1. Let j0 = −∞ and jd = ∞. Then the signs of αt are
alternating and for every integer D > 0 with jt−1 +D < i < jt −D we have
(1− 2q−D)|αt · tai| < |αt · tai| − (|αt−1 · t−1ai|+ |αt+1 · t+1ai|) < |bi| < |αt · tai|.
The sequence b only changes sign at the pre-described zeros.

Proof of Lemma 2.1. For every i ∈ [n] let β(i) ∈ [d] be the smallest t ∈ [d]
such that |αt| · tai is the largest element in the set {|α1| · 1ai, . . . , |αd| · dai}.
We claim that β(1) ≤ · · · ≤ β(n). Assume on the contrary that for some
i we have β(i) = t > s = β(i + 1). This implies |αt| · tai ≥ |αs| · sai and
|αt| · tai+1 ≤ |αs| · sai+1 so

tai

sai
≥

|αs|

|αt|
≥

tai+1

sai+1

5



which contradicts that the sequence ta

sa
is q-increasing.

If β(j) = s then for any k 6= s we have |αk| · kaj ≤ |αs| · saj. Therefore

q(s−k)(i−j)|αk| · kai ≤ |αs| · sai for k < s and i ≥ j (1)

q(k−s)(j−i)|αk| · kai ≤ |αs| · sai for k > s and i ≤ j (2)

Since q > 3 we get for i > j that

|α1 · 1ai + · · ·+ αs−1 · s−1ai| ≤ |α1| · 1ai + · · ·+ |αs−1| · s−1ai (3)

< (q(−s+1)(i−j) + · · ·+ q−(i−j))|αs| · sai

<
1

q(i−j) − 1
|αs| · saj <

1

2
|αs| · sai

and for i < j

|αs+1 · s+1ai + · · ·+ αd · dai| ≤ |αs+1| · s+1ai + · · ·+ |αd| · dai (4)

< (q−(j−i) + · · ·+ q(−d+s)(j−i))|αs| · sai

<
1

q(j−i) − 1
|αs| · sai <

1

2
|αs| · sai

Let t ∈ [d − 1]. We claim that β cannot take the same value on the
three consecutive elements around j = jt. Assume on the contrary that
β(j − 1) = β(j) = β(j + 1) = s. Apply inequality (3) with j = jt − 1 and
i = jt

|α1 · 1ajt + · · ·+ αs−1 · s−1ajt | <
1

2
|αs| · sajt

and apply inequality (4) with j = jt + 1 and i = jt

|αs+1 · s+1ajt + · · ·+ αd · dajt | <
1

2
|αs| · sajt

Therefore bjt cannot be 0 which is a contradiction.

So β has to increase by at least one from jt−1 to jt+1 for every t. That
is d− 1 increases which implies that each increase is exactly by one and that
β(jt − 1) = t and β(jt + 1) = t+ 1. Apply inequality (3) with j = jt − 1 and
i = jt

|α1 · 1ajt + · · ·+ αt−1 · t−1ajt | <
1

2
|αt| · tajt
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and apply inequality (4) with j = jt + 1 and i = jt

|αt+2 · t+2ajt + · · ·+ αd · dajt | <
1

2
|αt+1| · t+1ajt

So αt and αt+1 have different signs, otherwise bjt 6= 0.
Let D > 0 be an integer and let jt−1 +D < i < jt −D. The signs of the

terms in the sum
∑d

s=1 αs · sai are alternating, and the terms are increasing
in absolute values till tai and decreasing from there on. So

|αt| · tai − |αt−1| · t−1ai − |αt+1| · t+1ai < |
d

∑

s=1

αs · sai| < |αt| · tai

The statement of the Lemma follows from inequalities (1) and (2).

3 Proof of Theorem 1.3

In his thesis [10] Rosenthal proved the following result, in a slightly different
form.

Lemma 3.1. Let q > 1 be a real number. For every integer n there exists
N = N(n, q) such that if a is a 2-dimensional sequence in general position
of length N then there exists a linear combination of the two sequences 2b =
α1 · 1a + α2 · 2a such that the 2-dimensional sequence b = (1a, 2b) has a
q-pseudo-geometric subsequence of length n.

The next lemma generalizes Rosenthal’s and proves Theorem 1.3 by in-
duction.

Lemma 3.2. Let q > 3 be a real number and let d > 1 be an integer. For
every integer n there exists N = N(d, n, q) with the following property. Let
a be a d-dimensional sequence in general position of length N such that the
(d−1)-dimensional sequence (1a, . . . , d−1a) is q-pseudo-geometric. Then there
exists a linear combination of the d coordinate sequences db =

∑d

i=1 αi · ia
such that the d-dimensional sequence b = (1a, . . . , d−1a, db) has a q-pseudo-
geometric subsequence of length n.

Proof. Choose δ such that

(1 + δ)(δ + 2q−2)

1− 2q−2
< 1

7



for example δ = 1
3
. First we define a coloring φ on the set

(

[n]
d+1

)

as follows.
Let 1 ≤ i1 < i2 < · · · < id+1 ≤ n be d + 1 different numbers and let
I = {i1, . . . , id+1}. Let AI be the d × (d + 1) matrix AI = [taik ] 1 ≤ t ≤ d
and 1 ≤ k ≤ d + 1. Let wI = (w1, . . . , wd+1) be the d + 1-dimensional cross
product of the rows of AI . That is, (−1)kwk is the determinant of the d× d
matrix that we get by deleting the kth column of AI . The vector wI is also
the unique vector (up to a constant factor) which is orthogonal to every row
vector of AI (those are the coordinate sequences restricted to the set I).
Since our points are in general position none of the wk can be zero. Let
φ+(I) be color 1 if w1 > 0 and −1 if w1 < 0. For all 0 ≤ k ≤ d we look at
the ratio − wk

wk+1
and if it is smaller then (1 + δ)

k−1aik+1

k−1aik
we define φk(I) as 1

(only for k ≥ 2), otherwise if it is larger then (1 − δ)
kaik+1

kaik
we define φk(I)

as 2 (only for k ≤ d − 1), otherwise φk(I) = 0. Here φ1(I) cannot be 1 and
φd(I) cannot be 2.

Finally let φ(I) = (φ+, φ1(I), φ2(I), . . . , φd(I)). So we use 2 · 3d colors to
color all the (d+ 1)-tuples, and by Ramsey theory we find a subsequence of
size m which is monochromatic if N is large enough in terms of d,m and
q. Here m will be specified soon. Since φ+(I) is constant, therefore the
determinant of the d × d matrix of any d points has the same sign (after
removing the first point). This also means that for any I the coordinates
of wI are alternating. This implies that any linear combination

∑d

t=1 αt · ta
of the coordinate sequences which has d − 1 zeros has the following two
properties. All elements between two consecutive zeros have the same sign.
The two elements adjacent to a zero have different sign (alternating). That
is two elements have the same sign exactly if there are an even number of
zeros between them.

In fact, there is a unique k such that φ1(I) = · · · = φk(I) = 2, φk+1(I) = 0
and φk+2(I) = · · · = φd(I) = 1. But to finish the proof we only need that at
least one of the φk+1(I) is 0.

Let us define d sequences 0c, . . . , d−1c as linear combinations of the se-
quences ja. For 0 ≤ k < d pick the first k 3-apart elements and the last
(d− 1− k) 3-apart elements of kc to be zero. Then kc is well defined up to a
constant factor so we can prescribe one more element. We claim that one of
these sequences will do as db after deleting the zeros at the start and at the
end, then taking each Kth element where K = ⌈3 log1+δ q⌉. The interesting
part of the sequence kc is after the first k zeros and before the last d− 1− k
zeros (except for the first and last element) Let i1, . . . , ik be the position
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of the first k zeros and ik+3, . . . , id+1 be the position of the last d − k − 1
zeros. Let ik+1, ik+2 be such that ik + 3 ≤ ik+1 ≤ ik+2 − 3 ≤ ik+3 − 6. Let
I = {i1, . . . , id+1}. Let wI = (w1, . . . , wd+1} be the orthogonal vector to ev-
ery coordinate sequence as above. Then wI is orthogonal to kc which implies
kcik+2

kcik+1

= −wk+1

wk+2
.

If φk+1(I) = 0 then

(1 + δ)
kaik+2

kaik+1

<
kcik+2

kcik+1

< (1− δ)
k+1aik+2

k+1aik+1

and the above mentioned subsequence (taking every Kth element) will work
as db, if the length of the sequence db is at least n. This is guaranteed by
choosing m = 3d+Kn as one can see directly. We mention that in the last
formula we do not have the left hand side inequality if k = 1, and we do not
have the right hand side one if k = d− 1.

So we can assume that every φk(I) is either 1 or 2. But φ1(I) must be
2 and φd(I) must be 1, therefore there exists a k such that φk+1(I) = 2 and
φk+2(I) = 1. That is

(1− δ)
k+1aik+2

k+1aik+1

<
kcik+2

kcik+1

k+1cik+3

k+1cik+2

< (1 + δ)
k+1aik+3

k+1aik+2

.

We show that this leads to a contradiction. Assume that kcik+1
> 0 and let

−k+1c = kc+
∑d−1

t=1 αt ta be such that it is zero at i1, . . . , ik, ik+1, ik+4, . . . , id+1.

This is unique as
∑d−1

t=1 αt ·ta has (d−2) zeros at i1, . . . , ik, ik+4, . . . , id+1 and is
−kcik+1

at the ik+1th position. By Lemma 2.1 we know that (1−2q−2)|αk+1 ·

k+1aik+1
| < kcik+1

< |αk+1 · k+1aik+1
| and that (1 − 2q−2)|αk+1 · k+1aik+2

| <

|
∑d−1

t=1 αt · taik+2
| < |αk+1 · k+1aik+2

|.

The change from kc to −k+1c is
∑d−1

t=1 αt · ta. So that sum is neg-
ative in the ik+1th position, and since it has the same sign between ik
and ik+4th positions therefore k+1cik+3

is positive. Furthermore k+1cik+3
>

(1 − 2q−2)|αk+1 · k+1aik+3
|. We also have kci + (1 − 2q−2)(αk+1 · k+1ai) >

kci +
∑d−1

t=1 αt · tai = c′i > 0 and therefore kci > (1 − 2q−2)|αk+1 · k+1ai|. So

9



k+1ai+3

(1−2q−2)k+1ai
> kci+3

kci
= −

wk+1

wk+2
. So we have

kcik+1
= −

d−1
∑

t=1

αt · taik+1
> (1− 2q−2)|αk+1 · k+1aik+1

|

kcik+2
> (1− δ)

k+1aik+2

k+1aik+1

kcik+1
> (1− δ)(1− 2q−2)|αk+1 · k+1aik+2

|

|
d−1
∑

t=1

αt · taik+2
| < |αk+1 · k+1aik+2

|.

Consequently

k+1cik+2
= −kcik+2

−

d−1
∑

t=1

αt · taik+2
< (δ + 2q−2)|αk+1 · k+1aik+2

|

k+1cik+3
< (1 + δ)

k+1aik+3

k+1aik+2

k+1cik+2
< (1 + δ)(δ + 2q−2)|αk+1 · k+1aik+3

|

This contradicts k+1cik+3
> (1− 2q−2)|αk+1 · k+1aik+3

|.

We mention that N = N(d, n, q) is, as expected from Ramsey theory,
very large.

4 Dominant q-increasing sequence

Let a be a (d + 1)-dimensional ordered q-increasing sequence. For every
i, j ∈ [n] and t ∈ [d] define fa(t, i, j) as the increase of the fraction of the
(t+ 1)st and tth sequence from i to j, that is,

fa(t, i, j) =

t+1aj

taj

t+1ai

tai

=
t+1aj · tai

taj · t+1ai
.

We remark here that the sequence a is ordered and q-increasing if and only
if for every i, t we have fa(t, i, i + 1) > q. The following properties of the
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function f are easy to establish. For every i, j, k ∈ [n] and t ∈ [d] we have

fa(t, i, k) = fa(t, i, j) · fa(t, j, k) (5)

fa(t, i, j) = fa(t, i, i+ 1) · fa(t, i+ 1, j) > q · fa(t, i+ 1, j) > fa(t, i+ 1, j)
(6)

fa(t, i, j) = fa(t, i, j − 1) · fa(t, j − 1, j) > q · fa(t, i, j − 1) > fa(t, i, j − 1)
(7)

fa(t, i, j) ≤ fa(t, 1, n) (8)

We want to control the relation of the following two fractions with respect
to the interval [1

q
, q]. Since they are positive, they are either bigger then q,

smaller than 1
q
or between 1

q
and q. The two fractions are for every 1 ≤ i <

j < k ≤ n and for distinct s, t ∈ [d]

fa(t, i, j)

fa(s, j, k)
and

fa(t, j, k)

fa(s, i, j)
.

We say that a is left-dominant if for distinct s, t ∈ [d] the relation of the
first fraction to the interval [1

q
, q] is the same independently of the choice of

i, j, k. Observe that if n ≥ 5 then it can not be inside the interval since by
equation (6)

fa(t, 1, 4)

fa(s, 4, 5)
> q2 ·

fa(t, 3, 4)

fa(s, 4, 5)

Similarly, we say that a is right-dominant if for distinct s,t ∈ [d] the relation
of the second fraction to the interval [1

q
, q] is the same independently of the

choice of i, j, k. Observe again that if n ≥ 5 then it can not be inside the
interval since

fa(t, 2, 5)

fa(s, 1, 2)
> q2 ·

fa(t, 2, 3)

fa(s, 1, 2)

We say that a is dominant if a is both left-dominant and right-dominant.

Lemma 4.1. Let N > 22
cn

where c = 32d(d−1). Let a be a (d+1)-dimensional
ordered q-increasing sequence of length N . Then a has a subsequence of length
at least n which is dominant.

Proof. For each 1 ≤ i < j < k ≤ N we color the triple (i, j, k) with two color-
vectors of length d(d − 1), that is the number of ordered pairs of s, t ∈ [d]

11



(s 6= t). The coordinates of the first color vector are 0, 1 or 2 with respect to
the fraction

fa(t, i, j)

fa(s, j, k)

being smaller than 1
q
, between 1

q
and q or larger than q. Similarly the coor-

dinates of the second color vector are 0, 1 or 2 with respect to the fraction

fa(t, j, k)

fa(s, i, j)

being smaller than 1
q
, between 1

q
and q or larger than q. By Ramsey theory we

get a monochromatic subsequence of length n. As observed before if n ≥ 5
we cannot have the color 1 appear which corresponds to the fraction being
inside the interval [1

q
, q].

From now on we refer to a sequence a as dominant if it is ordered q-
increasing and dominant. Let a be a (d+1)-dimensional dominant sequence
of length n. For distinct s, t ∈ [d] either fa(t, i, j) or fa(s, j, k) is larger by a
factor of q than the other independently of the choice of i < j < k. Similarly
either fa(t, j, k) or fa(s, i, j) is larger by a factor of q than the other. There
are four possibilities: The larger value in both cases is the one with t, or the
one with s, or the one with i, j or the one with j, k.

We define four relations ≺,∼r,∼l and ∼ on the set [d] as follows.
For distinct s, t ∈ [d] let

• Let t ≺ s if for every i < j < k

fa(t, j, k) · q < fa(s, i, j) and fa(t, i, j) · q < fa(s, j, k)

• Let t ∼l s and s ∼l t if for every i < j < k

fa(t, i, j) > q · fa(s, j, k) and fa(s, i, j) > q · fa(t, j, k)

• Let t ∼r s and s ∼r t if for every i < j < k

fa(t, j, k) > q · fa(s, i, j) and fa(s, j, k) > q · fa(s, i, j)

Furthermore let t ∼ s if t ∼l s or t ∼r s and define t ∼ t for every t. Observe
that if t 6= s and t ∼ s than either t ∼r s or t ∼l s.
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Lemma 4.2. If n > 3 the relation ∼ is an equivalence relation. In each
equivalence class either all elements are right-similar (∼r) or all elements
are left-similar (∼l) with each other. The relation ≺ is a total order on the
equivalence classes.

Proof. During the proof i < j < k will be three of the four numbers 1, 2, 3, 4.
First we show that ∼ is an equivalence relation. It is obviously reflexive and
symmetric, so we need to show that it is transitive. Let t ∼ s ∼ v and
assume that t ∼r s is right similar, which means that for every i < j < k

qfa(t, i, j) < fa(s, j, k) and qfa(s, i, j) < fa(t, j, k).

We claim that s ∼r v. Assume on the contrary that s ∼l v. Then, using (5)
and (6),

qfa(s, 1, 2) < fa(t, 2, 3) < qfa(t, 2, 3) < fa(s, 3, 4) < qfa(s, 3, 4) < fa(v, 2, 3)

which is a contradiction. The relation t ∼r v follows from

q · fa(t, 1, 2) < fa(s, 2, 3) < q · fa(s, 2, 3) < fa(v, 3, 4) < fa(v, 2, 4)

and

q · fa(v, 1, 2) < fa(s, 2, 3) < q · fa(s, 2, 3) < fa(t, 3, 4) < fa(t, 2, 4)

again by using (5) and (6). So ∼ is transitive, moreover if two elements are
right-similar in an equivalence class then all pairs are right-similar in that
equivalence class.

Now we show that ≺ is transitive. If t ≺ s ≺ v then

q · fa(t, 3, 4) < fa(t, 2, 4) < q2 · fa(t, 2, 4) < qfa(s, 1, 2) < fa(v, 2, 3)

and

q · fa(t, 1, 2) < fa(t, 1, 3) < q2 · fa(t, 1, 3) < qfa(s, 3, 4) < fa(v, 2, 3)

which shows that ≺ is transitive.
Finally we show that ≺ is well-defined on the equivalence classes. Let

t ≺ s ∼ v. Since t ∼ v implies t ∼ s therefore t and v cannot be similar.
v ≺ t would imply v ≺ s therefore the relation of t and v must be t ≺ v.
Similarly t ∼ s ≺ v implies t ≺ v.
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Let t, s ∈ [d] be different. Let t ⊢ s if t ≺ s or t ∼r s and t < s or t ∼l s
and t > s. The relation ⊢ extends ≺ to a total order on [d] such that the
left similar equivalence classes are ordered decreasingly and the right similar
equivalent classes are ordered increasingly.

The following lemma is crucial for the proof of Theorem 1.6

Lemma 4.3. Let a be a dominant (ordered and q-increasing) (d+1)-dimensional
sequence of length n. Assume that S is a non-empty subset of [d], τ ∈ S is
the ⊢-maximal element in S and for every s ∈ S integers is, js ∈ [n] are given
that satisfy the conditions

• |iτ − jτ | ≥ |S|,

• is ≤ it and js ≤ jt if s < t and s, t ∈ S,

Then
∏

s∈S

fa(s, is, js) > q if iτ < jτ and <
1

q
if iτ > jτ .

Proof. Observe first that we can assume that iτ < jτ , since switching each
pair is, js changes the product into its reciprocal. Further observe that we
can assume is > js for every s 6= τ since those are the terms in the product,
that are smaller than 1.

We claim that if s 6= τ then for any iτ ≤ i < jτ

1 < qfa(s, js, is) < fa(τ, i, i+ 1)

Case 1 when s < τ . Then js < is ≤ iτ ≤ i. Since s ⊢ τ therefore s ∼l τ is
not possible. Therefore s ≺ τ or s ∼r τ and

qfa(s, js, is) ≤ qfa(s, js, i) < fa(τ, i, i+ 1) .

Case 2 when s > τ . Then i+ 1 ≤ jτ ≤ js < is. Since s ⊢ τ therefore s ∼r τ
is not possible. Therefore s ≺ τ or s ∼l τ and

qfa(s, js, is) ≤ qfa(s, i+ 1, is) < fa(τ, i, i+ 1) .

Multiplying |S| − 1 of these inequalities together we get

q
∏

τ 6=s∈S

fa(s, js, is) <

jτ−1
∏

i=iτ

fa(τ, i, i+ 1) = fa(τ, iτ , jτ )
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A sequence a = (a1, . . . , an) will be called super-dominant if there is a
dominant (and then ordered and q-increasing) sequence b1, b2, . . . , b(d+1)n of
(d+ 1)-dimensional vectors so that ai = bi(d+1) for every i ∈ [n]. We will use
the following corollary to Lemma 4.3 in the proof of Theorem 1.6.

Corollary 4.4. Let a be a super-dominant (d + 1)-dimensional sequence of
length n and let s, t ∈ [d] satisfy s < t. Let is ≤ is+1 ≤ . . . ≤ it and
js ≤ js+1 ≤ . . . ≤ jt be integers in [n]. Let τ be the ⊢-maximal element in
{s, s+ 1, . . . , t}. Then

t
∏

u=s

fa(u, iu, ju) > q if iτ < jτ and <
1

q
if iτ > jτ .

Proof. The three conditions in Lemma 4.3 are satisfied because a is super-
dominant.

5 Tverberg partitions and the Gw matrices

The next definition is from [7] and establishes a stronger property than gen-
eral position. The d-dimensional sequence p1, . . . , pn is in strong general
position if for any collection of r pairwise disjoint subsets A1, . . . , Ar ⊂ [n]
the affine hulls Hm = aff{pi |i ∈ Am} intersect in such a way that their
co-dimensions add up, that is

d− dim(

r
⋂

m=1

Hm) = min(d+ 1,

r
∑

m=1

(d− dim(Hm))).

It follows, in particular, that for a non-proper partition A1, . . . , Ar of [n]
where n = (d+ 1)(r − 1) + 1, and with Pm = {pi : i ∈ Am}, the intersection
of the affine hulls of P1, . . . , Pm is empty. On the other hand, strong general
position implies that for n = (d + 1)(r − 1) + 1 and for a proper partition
A1, . . . , Ar of [n],

⋂r

1 aff Pm is a single point, let z = (1z, . . . , dz)
T be this

point. Thus for all i ∈ [n] let αi be the unique coefficient such that for all
m ∈ [r]

∑

i∈Am

αipi = z,
∑

i∈Am

αi = 1

. In this linear system we have r(d + 1) equations and the same number
of variables α1, . . . , αn, 1z, . . . , dz. The partition A1, . . . , Ar is a Tverberg
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1 1 . . . 1

A1 -I

1 1 . . . 1

A2 -I

. . .

1 1 . . . 1

Ar -I

Table 1: The matrix M , the empty regions indicate zeros

partition if all the αi are positive. An equivalent formulation is the following.
The partition A1, . . . , Ar is a Tverberg partition if for every m ∈ [r] all the
αi have the same sign for all i ∈ Am.

We write this system of equations in matrix form Mα = b and use
Cramer’s rule to find the sign of the coefficients. The variables are α =
(α1, . . . , αn, 1z, . . . , dz)

T . Here M is the following square matrix of size r(d+
1), see Table 1. The rows of M come in consecutive (d + 1)-tuples, each
associated with a color class, Am, say. We will call this set of d+ 1 rows the
rows of color m. Each column of M is a concatenation of r (d + 1)-vectors,
one for each color class. Let i ∈ [n] and let i ∈ Am. Then column i of M is
the vector where each such (d + 1)-vector is the zero vector except the one
of color class m, which is the vector (1, pi)

T = (1, 1pi, 2pi, . . . , dpi, )
T ∈ Rd+1.

The last d columns of M are related to z, that is, if i = (r−1)(d+1)+1+ j,
then the ith column of M is the concatenation of r copies of the (d + 1)-
vector (0, . . . , 0,−1, 0, . . . , 0)T where the only non-zero coordinate −1 is in
the (1 + j)th position. Similarly, the right hand side b is the concatenation
of r copies of the (d+ 1)-vector (1, 0, . . . , 0)T . For simpler writing we define
(for every i) 0pi as the 0th coordinate of the point pi to be 1. Let Mℓ be the
matrix where we replace column ℓ of M by b.

Figure Table 1 shows the essence of the matrix M where the columns are
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rearranged so that columns from the same color class come consecutively.
Because of Cramer’s rule, the signs of the determinants of the matrices

Mℓ, ℓ ∈ [n] decide if the given partition is Tverberg: if all the signs are the
same, then it is a Tverberg partition, otherwise it is not. The determinant
of Mℓ is a polynomial with the coordinates of the points as variables. As
det(Mℓ) is a sum of monomials we want to understand how each of these
monomials look like. Each monomial is a product of entries in a transversal
of the matrix Mℓ, which is a set of entries exactly one from each row and
each column. Since we take one from each column, every point contributes
a coordinate, the tth (maybe the 0th coordinate which is 1) to the product.
Every column related to z contributes a −1 or 0 to the product in one of the
rows of some color m ∈ [r].

Some of these monomials are identically zero. From now on we are only
interested in non-zero monomials. For each non-zero monomial w we define
an auxiliary matrix Gw of size (d+1)×r where column m corresponds to the
color class Am of the partition and row t corresponds to the tth coordinate.
We denote by Gw(t,m) the entry sitting in row t and column m of Gw. Note
that Gw has a 0th row. We fill out the entries of the matrix with the numbers
i ∈ [n] \ {ℓ} and 0z, 1z, . . . , dz the following way. If i ∈ [n] \ ℓ and i ∈ Am

and the point pi appears with its tth coordinate in w, then Gw(t,m) = i.
If the 1 from column ℓ that appears in w comes from the rows of m, then
Gw(0, m) = 0z. If the −1 from the column corresponding to tz that appears
in w is from the rows of color m, then Gw(t,m) = tz.

It is obvious that such a Gw matrix has one z entry in every row. Also,
column m contains exactly d + 1 − |Am| z entries except when ℓ ∈ Am, in
which case column m contains d + 1 − (|Am| − 1) z entries. It is easy to
recover the monomial w from such a Gw matrix: ℓ ∈ [n] not appearing in the
matrix is the subscript of the column where the right hand side vector b sits,
the column of entry 0z in row 0 shows where the +1 factor from column ℓ of
Mℓ comes from. Similarly the column of entry tz in row t shows where the
−1 factor in column of tz in Mℓ comes from. Finally, if i ∈ [n] \ {ℓ} appears
as entry (t,m) in Gw, then tpi appears in w.

We say that a partial filling of the matrix G of size (d + 1) × r with
the numbers i ∈ [n] \ {ℓ} is valid if each entry is in the correct column
with respect to the partition, and there is exactly one unfilled entry in each
row. We claim that each valid filling of G corresponds to a unique non-zero
monomial w (and so a unique transversal) that appears in the expansion
of det(Mℓ). All we need to do is put tz in row t in the empty slot. Thus

17



non-zero monomials appearing in det(Mℓ) are in one-to-one correspondence
with valid partial fillings of G.

We mention that each non-zero monomial appears in det(Mℓ) with a ±1
coefficient, depending on the determinant of the underlying transversal.

6 Dominant fillings

Let p be a d dimensional sequence of length n = (r − 1)(d + 1) + 1. Let
M and Mℓ be defined as in Section 5. Assume that Ta = (1, p) for some
permutation matrix T and a is a super-dominant (and then ordered and
q-increasing) sequence of length n and A1, . . . , Ar is a proper partition of [n].

Let w and w′ be two monomials from the expansion of Mℓ. We say that
w dominates w′ if q · |w′| < |w|. If w dominates all other monomials in the
expansion, then we call it dominant.

Theorem 6.1. Every monomial in the expansion of det(Mℓ), except for the
largest one, is dominated by some other monomial. Thus there is always a
dominant monomial. The sign of the dominant monomial is the same as that
of det(Mℓ) provided q > (r(d+ 1))!.

We state and prove two lemmas that are needed for this theorem. We
begin by describing how one can find the dominant filling of G. This is based
on the relations ≺,∼l,∼r.

We can assume that (1, p) is ordered apart from the 1-sequence, which
might be some other coordinate different from the first one.

The matrix Gw is filled with elements, that is integers from [n]\{ℓ} and
with z-entries, that is with sz, s = 0, 1, . . . , d. So G is filled with n − 1 =
(r − 1)(d+ 1) elements of [n] and d+ 1 z entries.

First we show that if the elements in a column of Gw are not ordered
increasingly, then w is dominated. Let w be a monomial in det(Mℓ) Let i, j
be elements of [n] in the same column of Gw in the wrong order. That is i is
in row s and j be in row t and s < t but i > j.

Swapping i, and j and keeping all other entries of Gw the same we get
Gw′, another valid filling. Then

w′

w
=

t−1
∏

u=s

fa(u, j, i) > q
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which shows that w is dominated by w′. This means that the elements of [n]
have to be ordered increasingly in each column otherwise w is dominated. We
will call this the increasing order in columns rule. From now on we assume
this property about every w we work with. This also means that every w
is described by the positions of the z entries in Gw. Recall that every row
contains exactly one z entry, and that the number of z entries in column m
is (d+ 1)− |Am| except when ℓ ∈ Am, and then there are d+ 1− (|Am| − 1)
z entries in column m.

To show that there is a dominant monomial we state and prove a lemma.
Assume that s, t ∈ [d] and s < t and that Gw(s, α) = sz (sz is in row s, of
course) and Gw(t, β) = tz. Let the z entries in Gw′′ be filled the same way as
Gw except that sz is in column β tz is in column α. We say that switching
these two z entries in w gives w′′, or that w′′ is the z switch of w.

Because of the increasing order in columns rule, the elements in column α
between rows s and t have to move up, and the elements in column β between
rows s and t have to move down. More precisely, for u ∈ {s, s+1, . . . , t− 1}
let iu be the smallest element in column α below row u in Gw, and let ju be
the largest element in column β above row u+1 in Gw. Note that it−1, resp.
js are welldefined as Gw(t, α) and Gw(s, β) are elements in [n] \ {ℓ}. This
means that the numbers iu, ju are all welldefined.

Lemma 6.2. Under these conditions let τ be the ⊢-maximal element in
{s, s + 1, . . . , t − 1}. Then w′′ dominates w if iτ < jτ and w dominates
w′′ if iτ > jτ .

Proof. It is clear from their definition that is ≤ is+1 ≤ . . . ≤ it−1 and js ≤
js+1 ≤ . . . ≤ jt−1. A direct computation shows that

w′′

w
=

s+1piss+2pis+1
. . . tpit−1spjs . . . t−1pit−1

spiss+1pis+1
. . . t−1pit−1s+1pjss+1p...tpjt−1

=

t−1
∏

u=s

fa(u, iu, ju),

where only the different variables are shown (ignoring the ±1s in w and w′′).
Further, iu 6= ju since iu ∈ Aα and ju ∈ Aβ. Then Corollary 4.4 applies

and finishes the proof.

Another way if stating this result is the following. Assume s, t ∈ [r], s < t,
τ is the ⊢-maximal element in {s, s + 1, . . . , t}, Gw satisfies the increasing
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order rule, and sz = Gw(s, α) and tz = Gw(t, β) with α 6= β. Let i be the
smallest element in column α below row τ and let j be the largest element
in or above row τ in column β.

If under these conditions i < j, then w is dominated by w′′. (*)

A certain converse to this statement also holds. Namely, let τ be the ⊢-
maximal element in [d] and s ≤ τ < t, and otherwise the previous conditions
hold. If for every such s, t, α, β, i, j,

i > j, then no z switch including row τ gives a w′′ dominating w. (**)

Assume now that w,w′ are two different monomials, meaning that the
positions of the z entries are different and both obey the increasing order in
columns rule.

Lemma 6.3. Under these conditions either in w or in w′ one can switch two
z entries to get w′′ which dominates that monomial.

Proof. Let L(w,m, t) be the number of z entries in Gw in the first t rows in
column m. If for every t ∈ [d] and m ∈ [r] we have L(w,m, t) = L(w′, m, t)
then w = w′. Let τ be maximal with respect to ⊢ such that there ex-
ists m ∈ [r] such that L(w,m, τ) 6= L(w′, m, τ). Then there exists α, β ∈
[r] such that L(w, α, τ) < L(w′, α, τ) and L(w, β, τ) > L(w′, β, τ), since
∑r

m=1 L(w,m, τ) =
∑r

m=1 L(w
′, m, τ) = τ .

Let i, j, i∗, j∗ be elements in [n] such that i is the largest in Gw in column
α in the first τ rows, j is the smallest in Gw in column β below row τ , i∗ is
the largest in Gw′ in column β in the first τ rows, j∗ is the smallest in Gw′ in
column α below row τ , see Table 2 where sz and tz denote some s-coordinates
with s < t but unspecified otherwise.

Equivalently one could say that i is the τ − L(w, α, τ)-th element of Aα,
j∗ is the τ + 1 − L(w′, α, τ)-th element of Aα, i

∗ is the τ − L(w′, β, τ)-th
element of Aβ and j is the τ + 1− L(w, β, τ)-th element of Aβ .

Since L(w, β, τ) > L(w′, β, τ) we have j < i∗ and since L(w, α, τ) <
L(w′, α, τ) we have j∗ < i. Therefore the minimal element among i, i∗, j, j∗

is either j or j∗. Assume it is j, then j < i. There is a last z element sz in
column β in the first τ rows in Gw and a first tz in column α below row t.
Switching sz and tz in Gw gives Gw′′ such that w′′ dominates w, according
to (*). The case when j∗ is the smallest leads to an analogous Gw′′ with w′′

dominating w′.
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α β

sz
i

j

tz

α β
i∗

sz

tz

tz
j∗

Table 2: sketch of columns α, β in the matrices Gw (left) and Gw′ (right)

Proof of Theorem 6.1. Applying the last lemma when w is the largest and
w′ is the second largest monomial (in absolute value) shows w dominates
w′. Consequently w dominates every other monomial w′′ and so it is the
dominant monomial. Further, if q > ((d + 1)r)!, the number of monomials
in the expansion of det(Mℓ), then the sign of det(Mℓ) coincides with that of
w.

Our the next target is to find the dominant monomial.

7 How to find the dominant filling of G

Given a proper partition with color classes A1, . . . , Ar of [n] where n = (r −
1)(d+1)+1 and ℓ ∈ [n], and a super-dominant q-increasing sequence (1, p) of
length n, we want to find the dominant monomial of det(Mℓ). We only need
to find the positions of the z-coordinates. We will find them by recursion on
d.

As usual, let τ be maximal in [d] with respect to ⊢. Splitting the set
[n] \ {ℓ} into sets X and Y defines a splitting of each color class Am into
two pieces: AX

m = Am ∩ X and AY
m = Am ∩ Y for every m ∈ [r]. We

define the excess of X in Am as e(X,m) = ||AX
m| − τ |+ and the excess of Y

in Am as e(Y,m) = ||AY
m| − (d + 1 − τ)|+, and the excess of X and Y as

e(X) =
∑r

1 e(X,m) and e(Y ) =
∑r

1 e(Y,m). We want to find a splitting
with the following properties.

(a) Every element of AX
m is smaller than any element of AY

m (for every m).

(b) e(X,m) = e(Y,m) = 0 (for every m).
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(c) For every distinct α, β ∈ [r] such that |AX
α | < τ and |AY

β | < d + 1 − τ
every element of AX

β is smaller then any element in AY
α .

(d) |X| = τ(r − 1) (and therefore |Y | = (d+ 1− τ)(r − 1)).

Lemma 7.1. There is always a splitting X, Y such that the above conditions
are satisfied, and it can be found in a process of three steps. In fact that
splitting is unique and corresponds to the dominant w of det(Mℓ) such that
X is the set of all elements in the first τ rows of Gw.

Proof. During the process condition (a) will always be fulfilled. We begin
with the splitting X, Y of the given sizes, Condition (d), such that every
element in X is smaller than any element of Y . So X consists of the smallest
τ(r− 1) elements of [n] \ {ℓ} and Y of the rest. If they satisfy condition (b)
then we are done: condition (c) is fulfilled as every element of AX

α is smaller
then every element of AY

β independent of the choice of α, β.
So assume condition (b) fails, some AX

m has size larger than τ or some
AY

m has size larger than d+1− τ . The second step fixes this and generates a
splitting where condition (b) holds: keep the smallest τ elements in AX

m and
put the rest in AY

m and similarly when |AY
m| > d+1− τ . After this exchange

we get a new splitting X ′, Y ′ of [n] \ ℓ and |X ′| = |X| − e(X) + e(Y ) and
|Y ′| = |Y | − e(Y ) + e(X). It is easy to check that condition (c) still holds:
if |AX′

α | < τ , then we possibly pushed some elements from AY
α up to AX

α so
every i ∈ AY ′

α is in Y . And similarly, if |AY ′

β | < d+1− τ , then every j ∈ AX′

β

is in X and thus every element of AX′

β is smaller than any element of AY ′

α .
Thus if |X ′| = τ(r−1) and |Y ′| = (d+1− τ)(r−1) then condition (d) holds
as well and we are done again.

Finally if |X ′| 6= |X|, then |X ′| − |X| = |Y | − |Y ′| > 0, say, then we
have to “push” some (|X ′| − |X|) elements of X ′ down to Y ′. An element
in column m from X ′ can be pushed down to Y ′ if there is room there,
that is |AY ′

m | < d+ 1− τ . One by one we push down the largest “pushable”
element formX ′ as long as the number of elements that remains inX ′ reaches
τ(r−1). We check the largest pushable element before each push, since some
pushable elements might become non-pushable as the new set Y ′ already
contains (d + 1 − τ) elements of Am. Once this is achieved, we have a new
splitting X ′′, Y ′′ that satisfies conditions (a),(b) and (d). Condition (c) is
also satisfied. Assume α, be are as in condition (d) after all the pushes. That
implies that all the elements of AX′′

β were pushable during the process, and

therefore are elements of X ′. Let i be the smallest element of AY ′′

α . If i is
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an element of AY ′

α then α, be were as in condition (c) before the pushes, so it
holds. If i is not an element of AY ′

α then we had to push it down during the
process, and therefore is larger then any element in AX′′

β .
The case when |X ′| − |X| < 0 is completely analogous, replacing pushing

down, by pushing up.

We explain now how this lemma helps to find the dominant filling. The
partition A1, . . . , Ar determines how many z coordinates are in column m,
namely d+1−|Am| if ℓ /∈ Am and d+1− (|Am|−1) if ℓ ∈ Am. The splitting
X, Y in Lemma 7.1 determines how many z-coordinates are in the first τ
and in the last d + 1 − τ rows if column m (for every m). So recursion on
d ends with a special partition for every row: r − 1 single elements and the
empty set. The column where the empty set is contains the z entry for this
row. The resulting w is the dominating monomial since, if it were not, then
a suitable z-switch would give a w′ dominating it. But in view of condition
(c) of Lemma 7.1 and (**) from Section 6 no such z-switch exists.

8 Proof of Theorem 1.6, first part

Assume q is large enough (namely larger than (d(r − 1))!) and let p be a d-
dimensional sequence of length N in strong general position Let (1, p) be the
(d+ 1) dimensional sequence that we get by adding one more sequence, the
constant 1 sequence, as the first coordinate. Using the results in Section 4
(and choosing N suitably large) we find a super-dominant (and then ordered
and q-increasing) subsequence (1, p′i1), (1, p

′
i2
), . . . , (1, p′in) of length n = (r −

1)(d + 1) + 1 of (1, p). The all 1 sequence may not be the first coordinate
anymore but it is still the all 1 sequence. We need a simple fact.

Claim 8.1. Assume A = {A1, . . . , Ar} is a proper partition of [n]. Then the
partition induced by A on the set {pi1, . . . , pin} is a Tverberg partition if and
only if the one induced on {p′i1 , . . . , p

′
in
} is a Tverberg partition.

Proof. Assume z is the Tverberg point of the partition induced by A on the
pi1 , . . . , pin . So with suitable coefficients αj ≥ 0

(1, z)T =
∑

j∈Am

αj(1, pij)
T for every m ∈ [r].
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Let T be the linear transformation carrying the sequence (1, pij ) to the super-
dominant sequence (1, p′ij). Set (1, z′)T = T−1(1, z)T . Applying T−1 to the
above equation we get

(1, z′)T =
∑

j∈Am

αj(1, p
′
ij
)T for every m ∈ [r]

showing that the induced partition on {p′i1 , . . . , p
′
in
} is also a Tverberg par-

tition. The proof in the opposite direction is analogous.

This means that for the proof of Theorem 1.6 it suffices to work with the
super-dominant sequence (1, p′). For simpler notation we denote (1, p′) by
(1, p) from now on. Recall that the all 1 row may not be the first row.

In this section we prove half of Theorem 1.6, namely the following result.

Theorem 8.2. Let q > (d(r−1))!. If (1, p) is a super-dominant q-increasing
sequence on n = (r− 1)(d+ 1) + 1 elements, then every rainbow partition of
the set {p1, . . . , pn} is a Tverberg partitions.

Proof. Let A1, . . . , Ar be a rainbow partition. Recall that a rainbow partition
satisfies |Am ∩ Bs| = 1 for every m ∈ [r] and s ∈ [d + 1], where block Bs is
just the set {(s− 1)(r − 1) + 1, . . . , s(r − 1) + 1}.

Because the partition is rainbow, it is easy to find the dominating mono-
mial of det(Mℓ) for any fixed ℓ ∈ [n]. This is what is explained next. We
define R1, . . . , Rd+1 to be the partition of [n] − {ℓ} into d + 1 parts each of
size r − 1 such that R1 is the first r − 1 elements, R2 is the second r − 1
elements and so on till Rd+1 are the largest r − 1 elements. Each Rs is a
subset of the block Bs, moreover they are either the leftmost r − 1 elements
or the rightmost r − 1 elements of Bs except when ℓ ∈ Bs in which case
Rs = Bs \ {ℓ}. As |Rs| = r − 1 and |A| = r each Rs contains exactly one
element from every Am except one, namely from the unique color class miss-
ing from Rs. To define Gwℓ

we let the elements in row s be exactly Rs with
each i ∈ Rs in the column of its color class. Let m be the missing color class,
that is, the color class of the single element in Bs \Rs. Then Gw(s,m) = sz.
This defines the monomial wℓ. If row s is not the all 1 row, then the factor
−1 in wℓ is the entry of Mℓ sitting in the column sz in the group of rows of
color m. If row s is the all 1 row, then the factor 1 in wℓ is the unique 1 in
column ℓ of Mℓ in the group of rows of m.

Claim 8.3. In det(Mℓ) the dominant monomial is wℓ.
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ℓ1 x ℓ2 s+1z
s 1,2

s+1 1 2
s 1 2

s+1 2 1

ℓ1 x ℓ2 sz
s 2 1

s+1 1,2
s 1 2

s+1 1 2

ℓ1 x ℓ2 sz s+1z
s 2 1

s+1 1 2
s 1 2

s+1 2 1
t 1 2

Table 3: the position of the elements of the dominant monomial in Mℓ1 and
Mℓ2 (right)

Proof. Indeed, for any fixed t ∈ [d] every element i in row t or above in Gwℓ

is smaller than any element j below row t. Thus no z-switch can create a
larger w′. Then by Lemma 6.2 wℓ is the dominant monomial.

Let 1 ≤ ℓ1 < ℓ2 ≤ n be two consecutive elements of the same color class,
A1, say. Let x be the unique element that is the intersection of blocks Bs and
Bs+1, where s ∈ [d] is given by ℓ1 ∈ Bs and ℓ2 ∈ Bs+1 with ℓ1 < x < ℓ2. For
simpler writing set wi = wℓi and Gi = Gwi

and Mi = Mwi
for i = 1, 2. Gi

represents a transversal Mi, that is, one (non-zero) entry from every row and
every column of Mi. The elements of these two transversals are the same for
M1 and M2 everywhere with the possible exceptions in columns ℓ1, x, ℓ2, sz,
and s+1z. We distinguish three cases depending on which row is the all 1
sequence. It could be s, s+ 1 or some other row.

Case (i) when row s is the all 1 sequence. In this case there is no
column corresponding to sz. Thus the two transversals only differ in columns
ℓ1, x, ℓ2, s+1z. The first matrix in Table 3 depicts the positions of the four
columns and rows of Mi where changes occur. The first two rows are rows
s, s+1 in the group of (d+1) rows of color 1, the color class of ℓ1 and ℓ2. The
next two rows are again rows s, s+1 in the group rows of color m where m is
the color class of x. Direct checking shows that the 1s resp. 2s in the matrix
give the positions of the transversals corresponding to w1 and w2. One can
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read from the two 4×4 matrices that their determinants have the same sign.
As an example we explain how to check entry 1 in row 1 and column 1 of

the first matrix in Table 3. As row s is the all 1 row and color 1 (the color of
ℓ1) is the missing color class from Rs, G1(s, 1) = ℓ1. The corresponding entry
in M1 sits in column ℓ1 and in row s which is the sth row in the group of rows
of color 1. Another example is entry 2 in the fourth row and second column.
Let m be the color class of x. As G2(s+ 1, m) = x, the corresponding entry
in M2 lies in row s+ 1 of the group of rows of color m and in column x.

Case (ii) when row (s + 1) is the all 1 sequence. There is no column
corresponding to s+1z. The second matrix in Table 3 shows the positions of
the four columns and rows where there are changes. One can read from the
two matrices that their determinants have the same sign.

Case (iii) when row t is the all 1 row and t /∈ {s, s+1}. Also the missing
color in Rt could be 1 or the color of x or any other color. The row related
to that color and coordinate is the same though for both ℓ1 and ℓ2. The last
matrix in Table 3 depicts the positions of the five rows and columns where
changes occur. As in Case (i) and (ii) the first two rows are rows s, s+ 1 in
the group of rows of color 1 and the next two rows are again rows s, s + 1
among the rows the color class of x. The fifth row corresponds to the all 1
row among the rows of the appropriate color class. Observe that the position
of the fifth row here could be either the first row, the third row or the fifth
row. But either way that does not change the sign of the determinant. Again
we can see that the determinants of the two matrices have the same sign.

9 Proof of Theorem 1.6, last part

Finally we prove the second half of Theorem 1.6. We need a simple lemma.

Lemma 9.1. Assume that there are consecutive elements ℓ1 and ℓ2 of a color
class such that Gw1

and Gw2
have their z entries in the exact same position.

Then the corresponding transversals in M1 and M2 have different signs.

Proof. Assume both ℓ1, ℓ2 ∈ A1 and row s is the all 1 row in (1, p). Then
G1(s, 1) = sz and G1(m, 1) = ℓ2 for some m. As the z coordinates are
at the same positions G2(s, 1) = sz. The increasing order in columns rule
implies that G2(m, 1) = ℓ1. So the only difference between the correspond-
ing transversals occurs in the 2 × 2 submatrix in columns ℓ1 and ℓ2 and in
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row s and the one corresponding to m. A simple checking shows that the
corresponding transversals have different signs.

Theorem 9.2. Let A1, . . . , Ar be a partition that is not rainbow. Then there
are consecutive elements ℓ1 and ℓ2 of a color class such that G1 and G2 have
their z entries in the exact same position.

Proof. We use recursion on d as in Section 7 and rely on the algorithm of
Lemma 7.1.

Let τ ∈ [d] be maximal with respect to ⊢. Let U be the first τ(r− 1) + 1
elements of [n] and let V be the last (d + 1 − τ)(r − 1) + 1 elements of
[n]. Observe that U and V have exactly one element in common, namely
x = τ(r − 1) + 1. Recall the notation AZ

m = Am ∩ Z where Z ⊂ [n].
We begin with the case d = 1. Then all color classes have 2 elements

except one, the first color class say, that has exactly one element. If A1 = {x},
then there must be a class Am = {ℓ1, ℓ2} with ℓ1, ℓ2 < x because the partition
is not rainbow. One can check easily that the z entries are at the same
position in G1 and G2. If A1 = {y} and y > x (say), then there is a class
Am = {ℓ1, ℓ2} with ℓ1, ℓ2 < y. The same checking shows that the z entries
are at the same positions in both cases.

We suppose now that d > 1 and that the statement holds in all dimensions
less than d. We distinguish several cases.

Case (i) when |AU
m| ≤ τ and |AV

m| ≤ d+1−τ for every m ∈ [r]. Then one
of the two partitions induced on U and V must be not rainbow as otherwise
the original partition is rainbow. Assume the partition induced by U is not
rainbow. Set Y = V \ {x} and find the dominant filling of the matrix GY

consisting of the last d+ 1− τ rows of G for the partition AY
m, m ∈ [r]. The

recursive algorithm of Lemma 7.1 gives the position of the z-coordinates in
GY independently of U . Then recurse on U , that is, on the partition AU

m,
m ∈ [r] which is in dimension τ now. We find the two elements ℓ1, ℓ2 in U
with desired property.

Assume now that we are not in Case (i). Define the excess of U resp. V
in Am as e(U,m) = ||Am∩U |− τ |+ and e(V,m) = ||Am∩V |− (d+1)− τ)|+.
Set e(U) =

∑r

1 e(U,m) and e(V ) =
∑r

1 e(V,m).
Case (ii) when e(U) 6= e(V ). Assume without loss of generality that

e(U) > e(V ) ≥ 0. Then e(U,m) > 0 for some m ∈ [r]. We claim that the
first two elements ℓ1 and ℓ2 of Am have the required property. We prove this
using the algorithm in the proof of Lemma 7.1 on the sets [n] \ ℓi with τ as
the ⊢-maximal element of [d]. We define X = Xi = U \ {ℓi} for i = 1, 2
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and Y = V \ {x}. (We will just use X for X1 and X2 with no confusion
emerging.). They have the right sizes for the algorithm, and e(X) = e(U)−1
because ℓi ∈ X and e(Y ) ≤ e(V ). Thus e(X) ≥ e(Y ). Since e(U,m) > τ ,
|AX

m| ≥ τ with either ℓ1 or ℓ2 missing. After the exchange we get X ′, Y ′ with
|X ′| = |X| − e(X) + e(Y ) and |Y ′| = |Y | − e(Y ) + e(X), so |X ′| ≤ |Y ′|. If
they are equal, then the algorithm is over and AX

m = AX′

m . Thus |AX′

m | = τ
meaning that no z entry will appear in the first τ rows of column m. During
the recursion, the algorithm does not see the difference between whether ℓ1
or ℓ2 is in the first position of column m. So the z entries go to the same
position in both cases.

The case |X ′| < |Y ′| is similar. Then we have to push up some pushable
elements from Y ′ to X ′ but AX′

m will not change as there is no room to push
anybody there. Thus AX

m = AX′′

m and the previous argument works. So all
the z entries have to be in the same positions in G1 and G2.

Case (iii) when e(U) = e(V ) > 0. We can assume without loss of
generality that x = τ(r−1)+1 is in the first color class of, that is, x ∈ A1. We
say that x is in excess if either |(U\{x})∩A1| ≥ τ or |(V \{x})∩A1| ≥ d+1−τ .
We distinguish two sub-cases depending on whether x is in excess or not.

Case (iii-a) when x is in excess, |(V \ {x})∩A1| ≥ d+1− τ , say. Then
one can’t have |(U \{x})∩A1| ≥ τ as well since that would imply |A1| > d+1.
Thus there is a columnm 6= 1 such that e(U,m) > 0. We claim again that the
two smallest elements, ℓ1 and ℓ2, of Am have the required property. The proof
is almost identical to that of Case (ii). Define X = U \{ℓi} and Y = V \{x}.
Here e(X) = e(U) − 1 and e(Y ) = e(V ) − 1 so e(X) = e(Y ) ≥ 0. If
e(X) = e(Y ) = 0 then the algorithm of Lemma 7.1 stops with the pair X, Y ,
and |AX

m| = τ . The argument used in Case (ii) works. If e(X) = e(Y ) > 0,
then after the exchange the algorithm stops with the pair X ′, Y ′. Again
AX

m = AX′

m and we are finished the same way as in Case (ii).
Case (iii-b) when x is not in excess. This implies that e(U, 1) = e(V, 1) =

0 and so |A1| ≤ d. As e(U) > 0 there is some m 6= 1 with e(U,m) > 0. Let ℓ1
and ℓ2 be the two smallest elements of Am. It follows that both ℓi ∈ U . We
claim again that ℓ1 and ℓ2 have the required property. Set again X = U \{ℓi}
and Y = V \{x}. Then e(X) = e(U)−1 and e(Y ) = e(V ) so e(Y )−e(X) = 1.
Since x is pushable and the smallest element of Y , therefore it is the only
element that is pushed. The argument is finished the same way as in Case
(iii-a).

We remark finally that the proof of Theorem 1.7 follows from that of
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Theorem 1.6. Just the super-dominant q-increasing subsequence of a : [N ] →
R

d, whose existence is guaranteed by the results in Section 4, has to be of
size m instead of n. That can be achieved using Ramsey theory again with
a suitably larger N .
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Department of Mathematics
Western Kentucky University
1906 College Heights Blvd. #11078
Bowling Green, KY 42101, USA
e-mail: attila.por@wku.edu

30


	1 Introduction and main results
	2 Preparations for the proof of Theorem ??
	3 Proof of Theorem ??
	4 Dominant q-increasing sequence
	5 Tverberg partitions and the Gw matrices
	6 Dominant fillings
	7 How to find the dominant filling of G
	8 Proof of Theorem ??, first part
	9 Proof of Theorem ??, last part
	10 Acknowledgment

