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Abstract

We consider 5d Yang-Mills theory with a compact ADE-type gauge group G on R3! x T,
where 7 is an interval. The maximally supersymmetric extension of this model appears after
compactification on S* of 6d N'=(2,0) superconformal field theory on R*! x S3, where 93 =
T x S is a two-sphere with two punctures. In the low-energy limit, when the length of Z becomes
small, the 5d Yang-Mills theory reduces to a nonlinear sigma model on R?! with the Lie group
G as its target space. It contains an infinite tower of interacting fields whose leading term in
the infrared is the four-derivative Skyrme term. A maximally supersymmetric generalization
leading to a hyper-Kéahler sigma-model target space is briefly discussed.
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1 Introduction and summary

It is generally believed that the Skyrme model [1] describes low-energy QCD by interpreting baryons
as solitons of a chiral model (see e.g. [2] for a review and references). The standard Skyrme model
describes pion degrees of freedom, and it is not easy to include other mesons into the model. A
possible resolution of this difficulty was proposed by Sakai and Sugimoto [3, 4] who analyzed non-
supersymmetric D4-D8-D8 brane configurations in string theory and the holographic dual of this
system. Starting from the DBI action they arrived at gauge theory on five-dimensional AdS-type
manifold M° with Minkowski space R*! as a conformal boundary and fifth spatial coordinate
z € R in the additional holographic direction. Their further analysis of holographic QCD leads to
an effective Skyrme model on R3!.

The group-valued Skyrme field (parametrizing the pion) in the Sakai-Sugimoto model corre-
sponds to the holonomy of a gauge connection,

g(x) =Pexp </ .Az(x,z)dz> for x€R>!, (1.1)

where the component A, of a gauge potential along the holographic direction in M? corresponds
to the quark condensate of QCD, and the holonomy (1.1) describes the space-time dependent
fluctuations around the manifold of vacua governed by the Skyrme model [5]. Static skyrmion
fields in this model correspond to Yang-Mills instantons on a Euclidean slice of M?.

The Sakai-Sugimoto model [3, 4] is currently the best known holographic model of hadron
physics.! The Skyrme Lagrangian as seen by holography is modified — an infinite number of
terms coupling the pion field to a tower of vector mesons naturally appears in the Lagrangian.
Remarkably, the holographic description of static baryons as instantons via holonomies of type
(1.1) was anticipated by Atiyah and Manton [7]. Sutcliffe introduced a simplified version [8, 9] of
the Sakai-Sugimoto model in which Yang-Mills theory is defined on flat M® = R*»! x R but the
holonomy (1.1) is again defined along z € R. Truncating this model one also gets the standard
Skyrme model on R,

Here, we show that the Skyrme model (and its extension by the tower of vector mesons) appears
also from 6d N'=(2,0) superconformal field theory with an ADE-type gauge group G and defined
on R3! x §2 where S is a two-sphere with two punctures. This theory, which describes multiple
Mb5-branes, is first compactified on a circle S — S3 = S x T, where T is a closed interval, to
the five-dimensional maximally supersymmetric Yang—Mills theory. When Z shrinks, it leads to a
supersymmetric sigma model on R%! [10,11]. The target space of this sigma model is the moduli
space M%K of Nahm’s equations for adjoint scalar fields ¢4, A = 1,2,3, defined on the interval
Z = [—m,x]. This M%K is also the moduli space of vacua of the 5d SYM theory, with flat connection
and other scalar fields vanishing. In the case of Dirichlet boundary conditions this moduli space
M%K coincides with the cotangent bundle T*G¢ carrying a hyper-Kéhler metric [12, 13, 10]. Here,
Gc is a complexification of the gauge group G. Topologically T*Ge = G X g X g X g, where
G describes the moduli space M7z of the gauge potential Az along the interval Z, and the triple
product of g = Lie G describes the moduli space of the three adjoint scalar fields ¢4 of 5d SYM
theory [10, 11].

!See e.g. [5, 6] for reviews and references.



Since the action of the 6d superconformal field theory is not available, we begin with pure Yang—
Mills in five dimensions and show how the Skyrme model appears in a low-energy limit under rather
natural assumptions. In fact, the Skyrme term is the leading piece in a systematic expansion of
the vector meson tower contributions. Our derivation is based on the adiabatic approach [14]-[20],
which provides the expansion parameter and differs from the holographic approach used in [3, 4,
8, 9]. Finally we briefly discuss a generalization of our results to the supersymmetric case with
¢4 # 0. There are many difficulties on the way to a supersymmetrization of the Skyrme model
(see e.g. [21] and references therein). Our approach can give a clue to the construction of an N'=2
supersymmetric Skyrme model in four dimensions, which seems yet unknown. To summarize, we
demonstrate that the extended Skyrme model (describing the pion plus the tower of vector mesons)
emerges not only from a D-brane system of string theory but also from an M5-brane system of M-
theory.

2 Action functional in five dimensions

Moduli space. Let M? be an oriented smooth manifold of dimension d, G a compact ADE-type
Lie group with g as its Lie algebra, P a principal G-bundle over M¢, A a connection one-form on
P and F = dA+ A A A its curvature. We denote by A the space of irreducible connections on
P, by G the infinite-dimensional group of gauge transformations acting on A with the infinitesimal
action of G defined by its Lie algebra Lie G,

Gof: A= Al =f1Af+f'df and LieG3e: 6.A=Dye, (2.1)

where D ge := de + [A,€]. The moduli space of connections on P is defined as the quotient A/G,
i.e. as the space of orbits of G in A.

Space R*! x Z. Now we consider d=5 and Yang Mills theory on the direct product manifold
M? =R3! x T for T = [—n, 7], with coordinates (z*) = (2%, x%), where 2¢ € R*! and z* € Z. We
introduce a family of flat metrics,

ds%, = gﬁ, datda” = ngdaz®da’ + R%*(dz?)? | (2.2)

where (n,) = diag(—1,1,1,1) with a,b = 0,1,2,3, and the dimensionful coordinate #* = Rax*
parametrizes the scaled interval Zr = [-7 R, 7 R] of length 27 R.

Gauge fields. Let us look at the principal G-bundle P over R3! x T with a gauge potential
(connection) A and the gauge field (curvature) F both valued in the Lie algebra g of the group G.
On R3*! x 7 we have the obvious splitting

A = A dz® + Ay dazt and F = %]:ab dz® A da® + Fpyda® Adat . (2.3)
For the generators I; in the adjoint representation of G we will use the standard normalization
tr(I,-Ij) = —2(52']' with Z,j = 1, e ,dlmG

For the metric tensor (2.2) we have (gk’) = (%%, R~2) and det(gﬁ,,) = —R?. We denote by 75"
the contravariant components raised from F,,, by the tensor g‘é” and by F* those obtained by
g = gy’ . We have F = F% and F! = R—2F.



Action. The standard Yang—Mills action functional takes the form

1 1
S = —— | dx/ldetglh|uFuFy = ——% | &z tr(R FpF +2FuF™), (24
8e? R3’1><Zx | det g7 tr 7 Tg 8¢2R Rs,lxlx r( ’ * * ) (24)

where e is the gauge coupling constant. A supersymmetric extension of (2.4) can be found e.g. in
[11]. We want to discuss the infrared region of the pure Yang-Mills model (2.4), because QCD is
not a supersymmetric theory and we are after the Skyrme model as a description of hadrons. The
infrared is reached by tuning down the parameter R, so the interval Zr becomes very short.

3 Moduli space of vacuua

Gauge group. Consider the group G = C®°(R*! x Z,@G) and its restriction Gz to T by fixing
z® € R®! to an arbitrary value. The boundary of our manifold M? = R*! x 7 consists of two
Minkowski spaces at * = +x. On manifolds M? with nonempty boundary dM¢?, the group of
gauge transformations is naturally restricted to the identity when x® reaches M (see e.g. [22] and
[10]-[13]) for our case). For our M?, this means allowing only gauge-group elements f € G obeying
f(OM?P) =1d on OM> = Ril}z +,- We denote this group by G° and its restriction to Z by GY.
Vacua. Vacua of Yang-Mills theory (2.4) on M° = R%! x T are defined by the vanishing of the
gauge fields, F = 0. The components F,, = 0 can be solved by putting A, = 0, and from F,4 =0
one obtains

A, = A.(2) = h10.h, with z=2* and A, = A4 (3.1)

for notational convenience. Here h(z) € G7 is not an element of the gauge group G%. Therefore, A,
in (3.1) cannot be transformed to zero by an admissible gauge transformation. In fact,

h(—ﬂ') =: hp, EGL:gz‘ =ye and h(ﬂ') =: hReGR:QﬂZ:ﬂ%G . (32)

Z=—Tr

Holonomy. For the interval Z = [—m, 7] with coordinate z we denote by Az = A.dz a connection
one-form on the bundle Pr = 7 x G — Z over Z, which is a restriction of the bundle P =
R3! x T x G — R3! x T to T by fixing an arbitrary point ¢ € R%!. Then, given any connection
Az on Pz we have the differential equation (3.1) for h. The group of gauge transformations G¥ acts
on Az and h by

GV f: Ay — AL =fAf+ fef  and b o= = fUmR)f(2) = ki, (3.3)

with d7 = dz0, and f(m) = 1d for f € GY.

To solve (3.1) with Dirichlet boundary conditions [10, 11] one has to choose an initial value for
the G-valued function h on Z. From (3.1) it follows that h and hzlh define the same connection
A.dz, since hy, does not depend on z € Z. Hence, the space of all flat connections A; on P
(equivalently, the space of all solutions h to (3.1) with fixed initial condition) is the coset space
N7 = G7/Gr. The unique solution to the differential equation (3.1) can be written as

h(z) = Pexp(/z Ay dy) , (3.4)

—Tr



where P denotes path ordering. Notice that for (3.4) we have h(z=—7) = 1d, i.e. h € Nz. The
group element g=h(z=7) € G = G is the holonomy of Az, which is not transformed under the
group GY of gauge transformations, as follows from (3.3) and f(r) = 1Id for f € G2.

Gauge-equivalent vacua. We note that Gz = G x (G, x Gg), and the solution space of (3.1) is
N7 = Q% X G from G = Ggr. Thus the gauge group Q% can be defined as the kernel of the projection
(evaluation map)

0 Ne B G with h(2) e h(r) . (3.5)

The action (3.3) of g% on N7 is free, and the projection ¢ is injective. Hence, (3.5) is the principal
G2-bundle over G. The base G of this bundle is the moduli space Mz of vacua of Yang-Mills theory
on R x Z.

4 Changes of A7 under shifts on M7

Connections on G. Introducing local coordinates X = {X“} on G, the differential of the holon-
omy element g = h(m) € G can be expressed as dg = (9,9)dX®. Then, the canonical flat connection
on the tangent bundle T'G reads

I' = ¢g'dg = (¢7'0a9)dX* = € ;dAX* = €' (4.1)
where ¢ are left-invariant one-forms on G. They satisfy the Maurer-Cartan equations
de’ +1 f;kej ANek =0, (4.2)

where f]’:k are the structure constants of the group G. The collection {e'} forms an orthonormal
basis on the cotangent bundle T*G, and for a metric on G we have

dsg; = die'e! = Gjjelel dX*dXP = g,pdXdX” . (4.3)

Variation of Az. Our fields g, h and Az are parametrized by the coordinates X¢ of G. In general,
Az belongs to the space N7 described in Section 3 and fibred over G. We introduce the tangent
bundle T N7 of N7 as the fibration

g«: TNz — TG (4.4)

with fibres T AIQ% = Lie g% at any point Az € G. Also, we have T 1, G = g and therefore
Ty Ni = ¢TGBTy, G2 = gdLicGy . (4.5)

Note that even if Az belongs to the base G of the fibration (3.5) (after fixing a gauge), its derivative
0o Az with respect to X belongs to the tangent space T AINI and not necessarily to the tangent
space T)y_G. However, 0o Az can always be decomposed as

OaA: = S0 A+, A = &+ Dieq  with & €T, G and D.eq € T4, G7,  (4.6)

where Ty_G = g and TAIQ% >~ LieGY. The g-valued gauge parameters e, generate infinitesimal
gauge transformations which, after the d,-shift, bring Az back to G.



Orthogonality of §, = oA, and D.e, = 6, A is achieved by imposing the condition
Dy =0 <& D%, =D.0,A. . (4.7)
From (3.1) and (4.7) one obtains
b = W' Lh = W (g7 0ag)h (4.8)

which shows that the z-dependence of £, is located in h(z) alone.

5 Skyrme model in the infrared limit of 5d Yang—Mills

Moduli-space approximation. After having described the moduli space Mz of Yang—Mills
theory on R*! x 7, we return to non-vacuum gauge fields. In the moduli-space approximation it is
postulated that the collective coordinates X* depend on 2% € R%! so that X® = X%(2%) may be
considered as dynamical fields, and that this captures the z* dependence of “slow” full solutions.
The low-energy effective action for X is derived by expanding

A, = A (X, 2 + ..., (5.1)

where the first term depends on z% € R%! only via the coordinates X* € Mz [14, 15, 17, 20].
Then for distances in R*! which are large in comparison with the length 27 R of the interval Zr
(or, in other words, for small values of R) all terms in (5.1) beyond the first one are discarded.
By substituting the leading term of (5.1) into the initial action (2.4), one obtains an effective field
theory describing small fluctuations around the vacuum manifold.

Kinetic part of effective action. The gauge potential decomposes as
A= Apsy + Az with  Ags: = A,dz® and Az = A.dz . (5.2)

For any fixed 2% € R%!, the part Az(X%(z%),z*) belongs to the space N7 described in Sections
3 and 4. We now use the formulee from these sections and include the dependence on z®. In
particular, multiplying (4.6) by 9d,X¢, we obtain

0 A, = (8aXa)£a + D¢, (5'3)

where €, = (05X )¢, is the pull-back of e, to R31.

We have provided the details of the Az part of the connection A. On the other hand, the
components A, of the Ap;, part are not yet fixed. To this end, we note that

Fot = 0uA, — Doy = (3aX)ea + Dslca—Aa) - (5.4)

In the moduli-space approximation, F,4 has to be tangent to Mz (see e.g. [14, 15]). Hence, the
second term in (5.4) should vanish, i.e. ¢,—.A4; must lie in kernel of D,, which according to (4.7) is
proportional to &,. Thus, we have

As = e+ A%, = e+ A(X)h LR, (5.5)



where A! are arbitrary functions of the group coordinates X = X(x%). For simplicity we pick a
gauge where A, = 0, so that

A, = € with boundary conditions ¢€,(z=—m) =0 = ¢,(2=m) . (5.6)
Substituting

Far = (0aX")a = (0aX")egh™ Iih = h™} (g7 0ag)h (5.7)

into the action (2.4), the second term becomes

1 m
Skin = — Pz ™ trFouF :——/ d*z n®tr(L,L 5.8
k 8€2R R31xT xm T 4J7b4 4€2R R3L xm I'( b) ) ( )
where we used (5.7) and the definition

Ly := g 1049 . (5.9)

Thus, this part of the action reduces to a sigma model on R*! with Mz = G as target space.

Skyrme term. For calculating the first term in the action (2.4) it is convenient to rewrite (5.6) as
Ay = €a = h(h eqh+h 0,0 b~  + hoh™ = h AL~ +hdh !, (5.10)

where A, depends on z. The boundary conditions (5.6) for ¢, translate to
Ay(z=—m) =0 and  A,(z=n) = L, (5.11)

since h(z=—7) = Id and h(z=7) = g. Therefore, we can expand A, (z) on T as?

Aa(z) = 5 Z Lo+ Z BM™sinnz , (5.12)

n=1

)

where L, represents the pion degree of freedom and the B[(ln describe the tower of mesons.

The curvature of A then computes to

W' Fah = Fap = 0uly — Ophy + [Ag, &) = 228 (Lo, L) + Bap (5.13)

where the term By, contains the meson contributions. Substituting this into the action (2.4) and
truncating to the pion, i.e. discarding all B, terms, we obtain

R TR
s |, ;15;5 uFaFt = /R da gy (L, L)L, La)) - (5.14)
X s

SSkyrme =

Thus, in the infrared limit the Yang-Mills action on R*! x 7 is reduced to the effective action
of the Skyrme model,
fz

1
Se I d4 Jm ab t LaL ac, bd t La L Lc I 515
ft /ngl :E{ 1 r(LaLp) + 32 r([La, Ly)[Le, La)) ¢ (5.15)

2The coefficient linear in z is just a convenient choice of a function interpolating between 0 and 1 on Z. It yields
a family of metric-compatible linear connections which are non-flat inside Z, with torsion T}, = Z fJ, and curvature

S

Rijr = % Omr fij fr1 (see e.g. [23] for a discussion). At z=0 one finds the Levi-Civita connection.



where ¢ is the dimensionless Skyrme parameter and f, may be interpreted as the pion decay
constant. Their relation to the gauge coupling and the infrared scale R is

12 T 1 TR

i d - = 5.16

4" 22R MY 3232 T 1202 (5.16)
We see that the ratio of these parameters depends on the length of the interval Zp = [-7R, 7R}

characterizing the approach to the infrared.

Towards to supersymmetric model. What will change if we consider the infrared limit of
maximally supersymmetric Yang-Mills theory (SYM)? 5d SYM contains five adjoint scalars, namely
&4, ¢, ¢°, and the moduli space M%K of this theory is defined as the moduli space of flat
connections F,,,, = 0, which we considered, extended by the moduli space of solutions to the Nahm
equations

8,01 +[A,, ¢ = LefcloP,6°]  and  ¢t=¢=0, (5.17)

on the scalar fields depending on z € Z = [—m, 7| with all fermions vanishing [10, 11]. This
moduli space M%K depends essentially on the boundary conditions imposed on Az and ¢# and
was discussed e.g. in [12, 13] (see also references therein). For the simplest Dirichlet boundary
conditions [10, 12, 13] and assuming regularity at z = £, the moduli space M%K is the cotangent
bundle T*G¢ = G x gc = G x g X g x g with a hyper-Kéhler metric. The explicit form of the N'=2
supersymmetric sigma-model action for the hyper-Kéahler vacuum moduli space M%K e.g. in [11].
Its derivation from 5d SYM in the infrared limit is similar to the one for the bosonic case.

Finally, the Skyrme term should get supersymmetrized. We had X* € Mz = G. In terms of
X and one-forms e = ¢,dX® on G the standard Skyrme term in the Lagrangian of (5.14) can be
written as

10" 0, X0, X 0. X710, X° el eliel el Rijy = 0.X0, X% 9*°X 0" X° Ropys (5.18)

where 0% = 7%“0. and R;jj; is the curvature of the connection on Mz = G. We expect that for
the supersymmetric case (5.18) will have the same form but with (X, e, R;;x;) being defined on
the hyper-Kahler moduli space M%K . Additional fermionic and possibly auxiliary terms may also
need to be deduced. However, this is beyond the scope of our paper.
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