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Abstract

We consider 5d Yang–Mills theory with a compact ADE-type gauge group G on R3,1 × I,
where I is an interval. The maximally supersymmetric extension of this model appears after
compactification on S1 of 6d N=(2, 0) superconformal field theory on R3,1 × S2

2
, where S2

2
∼=

I×S1 is a two-sphere with two punctures. In the low-energy limit, when the length of I becomes
small, the 5d Yang–Mills theory reduces to a nonlinear sigma model on R3,1 with the Lie group
G as its target space. It contains an infinite tower of interacting fields whose leading term in
the infrared is the four-derivative Skyrme term. A maximally supersymmetric generalization
leading to a hyper-Kähler sigma-model target space is briefly discussed.

http://arxiv.org/abs/1805.07241v2


1 Introduction and summary

It is generally believed that the Skyrme model [1] describes low-energy QCD by interpreting baryons
as solitons of a chiral model (see e.g. [2] for a review and references). The standard Skyrme model
describes pion degrees of freedom, and it is not easy to include other mesons into the model. A
possible resolution of this difficulty was proposed by Sakai and Sugimoto [3, 4] who analyzed non-
supersymmetric D4-D8-D8 brane configurations in string theory and the holographic dual of this
system. Starting from the DBI action they arrived at gauge theory on five-dimensional AdS-type
manifold M5 with Minkowski space R

3,1 as a conformal boundary and fifth spatial coordinate
z ∈ R in the additional holographic direction. Their further analysis of holographic QCD leads to
an effective Skyrme model on R

3,1.

The group-valued Skyrme field (parametrizing the pion) in the Sakai–Sugimoto model corre-
sponds to the holonomy of a gauge connection,

g(x) = P exp

(∫ ∞

−∞

Az(x, z)dz

)
for x ∈ R

3,1, (1.1)

where the component Az of a gauge potential along the holographic direction in M5 corresponds
to the quark condensate of QCD, and the holonomy (1.1) describes the space-time dependent
fluctuations around the manifold of vacua governed by the Skyrme model [5]. Static skyrmion
fields in this model correspond to Yang–Mills instantons on a Euclidean slice of M5.

The Sakai–Sugimoto model [3, 4] is currently the best known holographic model of hadron
physics.1 The Skyrme Lagrangian as seen by holography is modified – an infinite number of
terms coupling the pion field to a tower of vector mesons naturally appears in the Lagrangian.
Remarkably, the holographic description of static baryons as instantons via holonomies of type
(1.1) was anticipated by Atiyah and Manton [7]. Sutcliffe introduced a simplified version [8, 9] of
the Sakai–Sugimoto model in which Yang–Mills theory is defined on flat M5 = R

3,1 × R but the
holonomy (1.1) is again defined along z ∈ R. Truncating this model one also gets the standard
Skyrme model on R

3,1.

Here, we show that the Skyrme model (and its extension by the tower of vector mesons) appears
also from 6d N=(2, 0) superconformal field theory with an ADE-type gauge group G and defined
on R

3,1 × S2
2 , where S2

2 is a two-sphere with two punctures. This theory, which describes multiple
M5-branes, is first compactified on a circle S1 →֒ S2

2
∼= S1 × I, where I is a closed interval, to

the five-dimensional maximally supersymmetric Yang–Mills theory. When I shrinks, it leads to a
supersymmetric sigma model on R

3,1 [10,11]. The target space of this sigma model is the moduli
space MhK

I of Nahm’s equations for adjoint scalar fields φA, A = 1, 2, 3, defined on the interval
I = [−π, π]. ThisMhK

I is also the moduli space of vacua of the 5d SYM theory, with flat connection
and other scalar fields vanishing. In the case of Dirichlet boundary conditions this moduli space
MhK

I coincides with the cotangent bundle T ∗GC carrying a hyper-Kähler metric [12, 13, 10]. Here,
GC is a complexification of the gauge group G. Topologically T ∗GC

∼= G × g × g × g, where
G describes the moduli space MI of the gauge potential AI along the interval I, and the triple
product of g = LieG describes the moduli space of the three adjoint scalar fields φA of 5d SYM
theory [10, 11].

1See e.g. [5, 6] for reviews and references.
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Since the action of the 6d superconformal field theory is not available, we begin with pure Yang–
Mills in five dimensions and show how the Skyrme model appears in a low-energy limit under rather
natural assumptions. In fact, the Skyrme term is the leading piece in a systematic expansion of
the vector meson tower contributions. Our derivation is based on the adiabatic approach [14]–[20],
which provides the expansion parameter and differs from the holographic approach used in [3, 4,
8, 9]. Finally we briefly discuss a generalization of our results to the supersymmetric case with
φA 6= 0. There are many difficulties on the way to a supersymmetrization of the Skyrme model
(see e.g. [21] and references therein). Our approach can give a clue to the construction of an N=2
supersymmetric Skyrme model in four dimensions, which seems yet unknown. To summarize, we
demonstrate that the extended Skyrme model (describing the pion plus the tower of vector mesons)
emerges not only from a D-brane system of string theory but also from an M5-brane system of M-
theory.

2 Action functional in five dimensions

Moduli space. Let Md be an oriented smooth manifold of dimension d, G a compact ADE-type
Lie group with g as its Lie algebra, P a principal G-bundle over Md, A a connection one-form on
P and F = dA + A ∧ A its curvature. We denote by A the space of irreducible connections on
P , by G the infinite-dimensional group of gauge transformations acting on A with the infinitesimal
action of G defined by its Lie algebra LieG,

G ∋ f : A 7→ Af = f−1Af + f−1df and LieG ∋ ǫ : δǫA = DAǫ , (2.1)

where DAǫ := dǫ + [A, ǫ]. The moduli space of connections on P is defined as the quotient A/G,
i.e. as the space of orbits of G in A.

Space R
3,1 × I. Now we consider d=5 and Yang–Mills theory on the direct product manifold

M5 = R
3,1 × I for I = [−π, π], with coordinates (xµ) = (xa, x4), where xa ∈ R

3,1 and x4 ∈ I. We
introduce a family of flat metrics,

ds2R = gRµν dx
µdxν = ηab dx

adxb +R2(dx4)2 , (2.2)

where (ηab) = diag(−1, 1, 1, 1) with a, b = 0, 1, 2, 3, and the dimensionful coordinate x̃4 = Rx4

parametrizes the scaled interval IR = [−πR, πR] of length 2πR.

Gauge fields. Let us look at the principal G-bundle P over R
3,1 × I with a gauge potential

(connection) A and the gauge field (curvature) F both valued in the Lie algebra g of the group G.
On R

3,1 × I we have the obvious splitting

A = Aa dx
a +A4 dx

4 and F = 1
2Fab dx

a ∧ dxb + Fa4 dx
a ∧ dx4 . (2.3)

For the generators Ii in the adjoint representation of G we will use the standard normalization
tr(IiIj) = −2δij with i, j = 1, . . . ,dimG.

For the metric tensor (2.2) we have (gµνR ) = (ηab, R−2) and det(gRµν) = −R2. We denote by Fµν
R

the contravariant components raised from Fµν by the tensor gµνR and by Fµν those obtained by
gµν ≡ gµνR=1. We have Fab

R = Fab and Fa4
R = R−2Fa4.
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Action. The standard Yang–Mills action functional takes the form

S = −
1

8e2

∫

R3,1×I

d5x
√

|det gR| trFµνF
µν
R = −

1

8e2R

∫

R3,1×I

d5x tr
(
R2FabF

ab + 2Fa4F
a4
)
, (2.4)

where e is the gauge coupling constant. A supersymmetric extension of (2.4) can be found e.g. in
[11]. We want to discuss the infrared region of the pure Yang–Mills model (2.4), because QCD is
not a supersymmetric theory and we are after the Skyrme model as a description of hadrons. The
infrared is reached by tuning down the parameter R, so the interval IR becomes very short.

3 Moduli space of vacuua

Gauge group. Consider the group G = C∞(R3,1× I, G) and its restriction GI to I by fixing
xa ∈ R

3,1 to an arbitrary value. The boundary of our manifold M5 = R
3,1 × I consists of two

Minkowski spaces at x4 = ±π. On manifolds Md with nonempty boundary ∂Md, the group of
gauge transformations is naturally restricted to the identity when xa reaches ∂Md (see e.g. [22] and
[10]-[13]) for our case). For our M5, this means allowing only gauge-group elements f ∈ G obeying
f(∂M5) = Id on ∂M5 = R

3,1
x4=±π

. We denote this group by G0 and its restriction to I by G0
I .

Vacua. Vacua of Yang–Mills theory (2.4) on M5 = R
3,1 × I are defined by the vanishing of the

gauge fields, F = 0. The components Fab = 0 can be solved by putting Aa = 0, and from Fa4 = 0
one obtains

Az = Az(z) = h−1∂zh , with z = x4 and Az = A4 (3.1)

for notational convenience. Here h(z) ∈ GI is not an element of the gauge group G0
I . Therefore, Az

in (3.1) cannot be transformed to zero by an admissible gauge transformation. In fact,

h(−π) =: hL ∈ GL = GI

∣∣
z=−π

∼= G and h(π) =: hR ∈ GR = GI

∣∣
z=π

∼= G . (3.2)

Holonomy. For the interval I = [−π, π] with coordinate z we denote by AI = Azdz a connection
one-form on the bundle PI = I × G → I over I, which is a restriction of the bundle P =
R
3,1 × I ×G → R

3,1 × I to I by fixing an arbitrary point xa ∈ R
3,1. Then, given any connection

AI on PI we have the differential equation (3.1) for h. The group of gauge transformations G0
I acts

on AI and h by

G0
I ∋ f : AI 7→ Af

I = f−1AIf + f−1dIf and h 7→ hf = f−1(π)h(z)f(z) = hf , (3.3)

with dI = dz∂z and f(π) = Id for f ∈ G0
I .

To solve (3.1) with Dirichlet boundary conditions [10, 11] one has to choose an initial value for
the G-valued function h on I. From (3.1) it follows that h and h−1

L h define the same connection
Azdz, since hL does not depend on z ∈ I. Hence, the space of all flat connections AI on PI

(equivalently, the space of all solutions h to (3.1) with fixed initial condition) is the coset space
NI = GI/GL. The unique solution to the differential equation (3.1) can be written as

h(z) = P exp
(∫ z

−π

Ay dy
)
, (3.4)
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where P denotes path ordering. Notice that for (3.4) we have h(z=−π) = Id, i.e. h ∈ NI . The
group element g=h(z=π) ∈ GR

∼= G is the holonomy of AI , which is not transformed under the
group G0

I of gauge transformations, as follows from (3.3) and f(π) = Id for f ∈ G0
I .

Gauge-equivalent vacua. We note that GI = G0
I ⋊ (GL ×GR), and the solution space of (3.1) is

NI = G0
I⋊G from G ∼= GR. Thus the gauge group G0

I can be defined as the kernel of the projection
(evaluation map)

q : NI

G0

I→ G with h(z) 7→ h(π) . (3.5)

The action (3.3) of G0
I on NI is free, and the projection q is injective. Hence, (3.5) is the principal

G0
I -bundle over G. The base G of this bundle is the moduli space MI of vacua of Yang–Mills theory

on R
3,1 × I.

4 Changes of AI under shifts on MI

Connections on G. Introducing local coordinates X = {Xα} on G, the differential of the holon-
omy element g = h(π) ∈ G can be expressed as dg = (∂αg)dX

α. Then, the canonical flat connection
on the tangent bundle TG reads

Γ = g−1dg = (g−1∂αg) dX
α = eiαIi dX

α = eiIi , (4.1)

where ei are left-invariant one-forms on G. They satisfy the Maurer–Cartan equations

dei + 1
2 f

i
jke

j ∧ ek = 0 , (4.2)

where f i
jk are the structure constants of the group G. The collection {ei} forms an orthonormal

basis on the cotangent bundle T ∗G, and for a metric on G we have

ds2G = δije
iej = δije

i
αe

j
β dX

αdXβ =: gαβ dX
αdXβ . (4.3)

Variation of AI . Our fields g, h and AI are parametrized by the coordinates Xα of G. In general,
AI belongs to the space NI described in Section 3 and fibred over G. We introduce the tangent
bundle TNI of NI as the fibration

q∗ : TNI → TG (4.4)

with fibres TAI
G0
I
∼=LieG0

I at any point AI ∈ G. Also, we have TAI
G ∼= g and therefore

TA
I

NI = q∗TAI
G⊕ TAI

G0
I

∼= g⊕ LieG0
I . (4.5)

Note that even if AI belongs to the base G of the fibration (3.5) (after fixing a gauge), its derivative
∂αAI with respect to Xα belongs to the tangent space TAI

NI and not necessarily to the tangent
space TAI

G. However, ∂αAI can always be decomposed as

∂αAz = δαAz + δǫαAz =: ξα +Dzǫα with ξα ∈ TAI
G and Dzǫα ∈ TAI

G0
I , (4.6)

where TAI
G ∼= g and TAI

G0
I
∼= LieG0

I . The g-valued gauge parameters ǫα generate infinitesimal
gauge transformations which, after the ∂α-shift, bring AI back to G.
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Orthogonality of ξα = δαAz and Dzǫα = δǫαAz is achieved by imposing the condition

Dzξα = 0 ⇔ D2
zǫα = Dz∂αAz . (4.7)

From (3.1) and (4.7) one obtains

ξα = eiαh
−1Ii h = h−1(g−1∂αg)h , (4.8)

which shows that the z-dependence of ξα is located in h(z) alone.

5 Skyrme model in the infrared limit of 5d Yang–Mills

Moduli-space approximation. After having described the moduli space MI of Yang–Mills
theory on R

3,1 ×I, we return to non-vacuum gauge fields. In the moduli-space approximation it is
postulated that the collective coordinates Xα depend on xa ∈ R

3,1, so that Xα = Xα(xa) may be
considered as dynamical fields, and that this captures the xa dependence of “slow” full solutions.
The low-energy effective action for Xα is derived by expanding

Aµ = Aµ(X
α(xa), x4) + . . . , (5.1)

where the first term depends on xa ∈ R
3,1 only via the coordinates Xα ∈ MI [14, 15, 17, 20].

Then for distances in R
3,1 which are large in comparison with the length 2πR of the interval IR

(or, in other words, for small values of R) all terms in (5.1) beyond the first one are discarded.
By substituting the leading term of (5.1) into the initial action (2.4), one obtains an effective field
theory describing small fluctuations around the vacuum manifold.

Kinetic part of effective action. The gauge potential decomposes as

A = A
R3,1 +AI with A

R3,1 = Aadx
a and AI = Azdz . (5.2)

For any fixed xa ∈ R
3,1, the part AI(X

α(xa), x4) belongs to the space NI described in Sections
3 and 4. We now use the formulæ from these sections and include the dependence on xa. In
particular, multiplying (4.6) by ∂aX

α, we obtain

∂aAz = (∂aX
α)ξα +Dzǫa , (5.3)

where ǫa = (∂aX
α)ǫα is the pull-back of ǫα to R

3,1.

We have provided the details of the AI part of the connection A. On the other hand, the
components Aa of the A

R3,1 part are not yet fixed. To this end, we note that

Fa4 = ∂aAz −DzAa = (∂aX
α)ξα +Dz(ǫa−Aa) . (5.4)

In the moduli-space approximation, Fa4 has to be tangent to MI (see e.g. [14, 15]). Hence, the
second term in (5.4) should vanish, i.e. ǫa−Ab must lie in kernel of Dz, which according to (4.7) is
proportional to ξα. Thus, we have

Aa = ǫa +Aα
a ξα = ǫa +Ai

a(X)h−1Ii h , (5.5)
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where Ai
a are arbitrary functions of the group coordinates Xα = Xα(xa). For simplicity we pick a

gauge where Ai
a = 0, so that

Aa = ǫa with boundary conditions ǫa(z=−π) = 0 = ǫa(z=π) . (5.6)

Substituting

Fa4 = (∂aX
α)ξα = (∂aX

α) eiαh
−1Ii h = h−1(g−1∂ag)h (5.7)

into the action (2.4), the second term becomes

Skin = −
1

8e2R

∫

R3,1×I

d5x ηab trFa4Fb4 = −
π

4e2R

∫

R3,1

d4x ηab tr(LaLb) , (5.8)

where we used (5.7) and the definition

La := g−1∂ag . (5.9)

Thus, this part of the action reduces to a sigma model on R
3,1 with MI

∼= G as target space.

Skyrme term. For calculating the first term in the action (2.4) it is convenient to rewrite (5.6) as

Aa = ǫa = h (h−1ǫah+ h−1∂ah)h
−1 + h∂ah

−1 =: h Âah
−1 + h∂ah

−1 , (5.10)

where Âa depends on z. The boundary conditions (5.6) for ǫa translate to

Âa(z=−π) = 0 and Âa(z=π) = La (5.11)

since h(z=−π) = Id and h(z=π) = g. Therefore, we can expand Âa(z) on I as2

Âa(z) = z+π
2π La +

∞∑

n=1

B(n)
a sinnz , (5.12)

where La represents the pion degree of freedom and the B
(n)
a describe the tower of mesons.

The curvature of Â then computes to

h−1Fab h = F̂ab = ∂aÂb − ∂bÂa + [Âa, Âb] = z2−π2

4π2 [La, Lb] +Bab , (5.13)

where the term Bab contains the meson contributions. Substituting this into the action (2.4) and
truncating to the pion, i.e. discarding all Bab terms, we obtain

SSkyrme = −
R

8e2

∫

R3,1×I

d5x trFabF
ab = −

π R

120e2

∫

R3,1

d4x ηacηbd tr
(
[La, Lb][Lc, Ld]

)
. (5.14)

Thus, in the infrared limit the Yang–Mills action on R
3,1 × I is reduced to the effective action

of the Skyrme model,

Seff = −

∫

R3,1

d4x

{
f2
π

4
ηab tr(LaLb) +

1

32ς2
ηacηbd tr

(
[La, Lb][Lc, Ld]

)}
, (5.15)

2The coefficient linear in z is just a convenient choice of a function interpolating between 0 and 1 on I. It yields
a family of metric-compatible linear connections which are non-flat inside I, with torsion T i

jk = z

π
f i
jk and curvature

Rijkl =
z2−π2

2π2 δmr f
m
ij fr

kl (see e.g. [23] for a discussion). At z=0 one finds the Levi-Civita connection.
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where ς is the dimensionless Skyrme parameter and fπ may be interpreted as the pion decay
constant. Their relation to the gauge coupling and the infrared scale R is

f2
π

4
=

π

4e2R
and

1

32ς2
=

πR

120e2
. (5.16)

We see that the ratio of these parameters depends on the length of the interval IR = [−πR, πR]
characterizing the approach to the infrared.

Towards to supersymmetric model. What will change if we consider the infrared limit of
maximally supersymmetric Yang–Mills theory (SYM)? 5d SYM contains five adjoint scalars, namely
φA, φ4, φ5, and the moduli space MhK

I of this theory is defined as the moduli space of flat
connections Fµν = 0, which we considered, extended by the moduli space of solutions to the Nahm
equations

∂zφ
A + [Az, φ

A] = 1
2ε

A
BC [φ

B , φC ] and φ4 = φ5 = 0 , (5.17)

on the scalar fields depending on z ∈ I = [−π, π] with all fermions vanishing [10, 11]. This
moduli space MhK

I depends essentially on the boundary conditions imposed on AI and φA and
was discussed e.g. in [12, 13] (see also references therein). For the simplest Dirichlet boundary
conditions [10, 12, 13] and assuming regularity at z = ±π, the moduli space MhK

I is the cotangent
bundle T ∗GC

∼= GC×gC
∼= G×g×g×g with a hyper-Kähler metric. The explicit form of the N=2

supersymmetric sigma-model action for the hyper-Kähler vacuum moduli space MhK
I e.g. in [11].

Its derivation from 5d SYM in the infrared limit is similar to the one for the bosonic case.

Finally, the Skyrme term should get supersymmetrized. We had Xα ∈ MI
∼= G. In terms of

Xα and one-forms ei = eiαdX
α on G the standard Skyrme term in the Lagrangian of (5.14) can be

written as

ηacηbd ∂aX
α∂bX

β∂cX
γ∂dX

δ eiαe
j
βe

k
γe

l
δ Rijkl = ∂aX

α∂bX
β ∂aXγ∂bXδ Rαβγδ , (5.18)

where ∂a = ηac∂c and Rijkl is the curvature of the connection on MI
∼= G. We expect that for

the supersymmetric case (5.18) will have the same form but with (Xα, ei, Rijkl) being defined on
the hyper-Kähler moduli space MhK

I . Additional fermionic and possibly auxiliary terms may also
need to be deduced. However, this is beyond the scope of our paper.
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Groups, Universitätsverlag Göttingen, Göttingen, 2007 [math/0509515].

[13] D. Gaiotto and E. Witten, “Supersymmetric boundary conditions in N=4 super Yang–Mills
theory,” J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902 [hep-th]].

[14] N.S. Manton, “A remark on the scattering of BPS monopoles,” Phys. Lett. B 110 (1982) 54.

[15] J.A. Harvey and A. Strominger, “String theory and the Donaldson polynomial,”
Commun. Math. Phys. 151 (1993) 221 [hep-th/9108020].

[16] S.K. Donaldson and R.P. Thomas, “Gauge theory in higher dimensions,”
in: The Geometric Universe, Oxford University Press, Oxford, 1998.

[17] N.S. Manton and P. Sutcliffe, Topological solitons,
Cambridge University Press, Cambridge, 2004.

[18] O. Lechtenfeld and A.D. Popov, “Yang–Mills moduli space in the adiabatic limit,”
J. Phys. A 48 (2015) 425401 [arXiv:1505.05448 [hep-th]].

[19] T.A. Ivanova, “Scattering of instantons, monopoles and vortices in higher dimensions,”
Int. J. Geom. Meth. Mod. Phys. 13 (2016) 1650032 [arXiv:1510.07826 [hep-th]].

[20] T.A. Ivanova, O. Lechtenfeld and A.D. Popov, “Non-Abelian sigma models from Yang–Mills
theory compactified on a circle,” Phys. Lett. B 781 (2018) 322 [arXiv:1803.07322 [hep-th]].

[21] S.B. Gudnason, M. Nitta and S. Sasaki, “A supersymmetric Skyrme model,”
JHEP 02 (2016) 074 [arXiv:1512.07557 [hep-th]].

[22] S.K. Donaldson, “Boundary value problems for Yang–Mills fields,”
J. Geom. Phys. 8 (1992) 89.

[23] Yu.A. Kubyshin, V.O. Malyshenko and D. Marin Ricoy, “Invariant connections with torsion
on group manifolds and their application in Kaluza-Klein theories,”
J. Math. Phys. 35 (1994) 310 [gr-qc/9304047].

8


