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A~ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST
KIND

TAEKYUN KIM AND DAE SAN KIM

ABSTRACT. In this paper, we study A-analogues of the r-Stirling numbers
of the first kind which have close connections with the r-Stirling numbers
of the first kind and A-Stirling numbers of the first kind. Specifically, we
give the recurrence relations for these numbers and show their connections
with the A-Stirling numbers of the first kind and higher-order Daehee poly-
nomials.

1. Introduction

It is known that the Stirling numbers of the first kind are defined as
(ZZ?)" = Zsl(nvl)xla (See [17256_97 14])7 (11)
1=0

where (z)o =1, (@) =z(xz —1)---(z —n+1), (n>1).
For A € R, the A-analogue of falling factorial sequence is defined by
(@)oo =1, (@)nx =2(z = A)(x = 2X) -+ (= (n—1)A), (n = 1), (1.2)
(see [2,10,14,15,17]). '

In view of (LI, we define A-analogues of the Stirling numbers of the first
kind as

(@)na =Y _ S1a(n, k)2, (see [2,11 —13,16,17)). (1.3)
k=0
It is not difficult to show that
s e [ — ()i
1+ M\)% = th = 2 4,7—17 .
(14 Xt)~ ;(l))\ ; 7 , (see [4, D, (1.4)

where (), are the A-analogues of binomial coefficients (") given by (), oe
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The r-Stirling numbers of the first kind are defined by the generating function

k'(log(1+t (1+1)" ZS” (n, k: (see [3,20 — 23]). (1.5)

where k € NU {0} and r € R.
The unsigned r-Stirling numbers of the first kind are defined as
(x+r)(z+r+1)--(x+r+n—-1)= Zi: . (see [1,17,22]). (1.6)
k=0
Thus, by ([L3]), we get

n

@+ =(+r)@+r—1)(@+r-—n+1)=> 8" nk)a* (see[1]).

k=0
(1.7)
From (L3 and (L), we note that
ST (k) = ()" (1)
The higher-order Daehee polynomials are defined by
log(1+t
<%+)) (1+1t) Z D —, (see [5, 18,19, 24]). (1.9)

When z = 0, D,(Ik) = D,(Ik) (0) are called the higher-order Daehee numbers. In
particular, for k =1, D,(z) = D,(zl)(:v), (n > 0), are called the ordinary Daehee
polynomials.

In this paper, we consider A-analogues of r-Stirling numbers of the first kind
which are derived from the A-analogues of the falling factorial sequence and
investigate some properties for these numbers. Specifically, we give some iden-
tities and recurrence relations for the A-analogues of r-Stirling numbers of the
first kind and show their connections with the A-Stirling numbers of the first
kind and higher-order Daehee polynomials.

2. M-analogues of r-Stirling numbers of the first kind

From (L3) and (L4), we have
CEBVE o _Z<ZSUkn );:'

h=0 (2.1)

n

t T
= 7;3 (n!gSLA(kz,n)H> T
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On the other hand, we also have

N . = (log(1+ M)\ " 2™
(1+ A% = eFlosr0 — 37 (L( ; )) % (2.2)
n=0 :

Therefore, by ([21) and (2.2]), we get the generating function for Sy x(n, k),
(n,k > 0), which is given by

1 [log(1l+ Xt)
2 (E0) S o
Now, we define A-analogues of r-Stirling numbers of the first kind as
1 [(log(l+ At) r
7 (f) (14 Xt)> Z S’ (2.4)

where k € NU {0}, and r € R.

From (Z3) and (Z4), we note that S\ (n, k) = S1x(n,k), (n >k > 0). Also,
it is easy to show that

oo

z T t"

(14 X)X (14 )% =;($+T)n7)\a. (2.5)
By [.5), we get
= o — [T+ _ Zzlog(1+At)
Z(JH—T%,AE—Z( n >/\ = (L4 At)xex ®
n=0 n=0

= .1 [log(1+ Xt i -

k=0

o0 o0 , tn [o ] n , t

=> > sk = (Z S ,k)ﬂ) .
k=0 n=~k n=0 \k=0

Therefore, by comparing the coefficients on both sides of (2.6, we obtain the
following theorem.

Theorem 2.1. Forn >0, we have

n

(47 = Z S’Y))\(n, k).
k=0
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Now, we observe that

el (10g(1)\+ At)) L+ 20

o0

Thus, by (Z6]) and (1), we g
Z S, k)t =3 <Z (:1) Sia(m, k)(r)nm7A> o (28)
k=0

k=0 \m=k
Therefore, by comparing the coefficients on both sides of ([Z.8]), we obtain the
following theorem.

Theorem 2.2. Forn >0, we have
T - n
SHOUEDY () S1atrm b))
Now, we define A-analogues of the unsigned r-Stirling numbers of the first
kind as follows:

(@+7)(@+r+N)(@+7+20) 4+ (@ 47+ (n— DA [, 7" (29)

k=0
Note that limy_1 [Zi:]r N [ZI:L, (n>k>0).
By Theorem 2.1 and (Z9), we get

(x=7)px = Z Si_}r)(n, k)a*, (2.10)
k=0
and
(x—71)p Z Z]:: xk. (2.11)

k=0
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From (ZI0) and (ZII]), we can easily derive the following equation (Z12).

ST (n, k) = (—1) K [r] oy =k =0). (2.12)
For n > 1, by Theorem 2.1, we get
n+1 n+1
@+ Pnpra = DS (n+1,k)2" =37 8 (n+1,k)2* + (1)nraa. (2.13)
k=0 k=1

On the other hand, by (L2)), we get
@4+ 7)nt1r =@+ 1r)pr(z+r—nA)

n

==z Z S’Y))\(n, k)zk — (nX =) Z SY;(n, k)azk

k=0

S

-~

(nA — ’I”)SY))\(TL, k)z* + (r = nA)(r)pa 4+ 2"t

NIE

Tz\(n, k— l)xk —

)

k

1

bl
= 10 -
Il
o

{Sig)\(n, kE—1)— (nA— T)Sg))\(n, k)} 2 4 (Fpir + 2"

>
Il

' (2.14)

Therefore, by Theorem 2.1 and (ZI4]), we obtain the following theorem.
Theorem 2.3. For 1 < k <n, we have
SN+ 1,k) = S (n,k —1) — (nA —1)S) (n, k).
From (Z4]), we note that

%<log(1)\+ /\t)>k(1+/\t); kl(log(l)\—l— )\t)> ; ”l <10g(1}\—|— )\t))z
:i_": <k+l> l IHl—l)! (log(l/\—i- At))’“”
_ ; <k+l>

Z Sia(n,k+1) —|
> k+1 gtk
_Z ( )ZSl,\n+kk+l)(n+k)!

n=k+I
n=l

*Z ( n+k 'Zrl<k+l>31,>\(n+k,k+l)> g

n=0 =0
(2.15)
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On the other hand, we have

% <1og(1}\—|— /\t)) (14 At)5

>3

=5 <71°g(1/\: At)) (14 At)%

x 14l x m k
_ (k))\t t t
= <;Dl T) <Z(T)m,>\ﬁ> 7

m=0

x© n n n k
= <ZZ <l>Dl(k)/\l(T)nl,>\%> t_

k!
n=01=0

Thus, by 2.I5) and (2.I6), we get
n k41 n
> ((nik)) Sialnt+kk+1) =3 @ DN ()t
=0

=0 n

Therefore, by (2.17), we obtain the following theorem.
Theorem 2.4. Forn > 0, we have

n

> <1)D(k)A B _lz":

=0

rSlA n+kk+1).

n

Now, we observe that

1 /log(1+X)\"* . > 2\ 1 [log(l+ Mt
o (%) (1+ )5 = (;m“z ) - (&)

A

(2.16)

(2.17)

SR

m=k
(2.18)
Therefore, by (24]) and (ZI8]), we obtain the following theorem.
Theorem 2.5. Forn,k >0, with n > k, we have
T - n
S (n,k) = Zk <m) (M)n—m St (0, k).
From (24]), we note that
1 log(1+At)\™ 1 logl—l—)\t 1+/\t z
m! A k!
(m+k)! 1 log(1 + /\t) mE -
14+ At
mlkl (m + k)| ) s (2.19)

_(m—i—k) Z S)T nm—l—k)

TL
n=m-+k
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On the other hand,

L<log(1+/\t)>mi (log(1+)\t)>k(1+)\t>§

m! A k! A
) tl [eS) oo +
= (Z Sl,AUﬂ”)ﬁ) ng,i(ﬂak)ﬁ (2.20)
l=m j=k
0o n—m n . s
=y <Z (l)sgg(l,k)su(n—l,m)) e
n=m-+k 1=k

Therefore, by (Z19) and (Z20]), we obtain the following theorem.

Theorem 2.6. For m,n,k > 0 with n > m + k, we have

n—m

)sﬁ}(n,m k=Y (7) Sa(l, k)Sa(n —1,m).

(m +k
=k

m

By 23], we get

> 1 [log(1+ M)\" \ .
> Sialnk) = o (%) (14 XM)5(1+ M)~ %

: (5 ()

m=

(i (1) + (m - 1>A>m,x’%>

DR D"+ (=1 - 1))\)n—l,x> :L—n,
(2.21)

Comparing the coefficients on both sides of (2.2I), we have the following
theorem.

Theorem 2.7. Forn,k >0, with n > k, we have

n

Suam k) = Y- () SRR+ A =1 = D)

=k
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From ([L3)), we have

0} b T k 0} T

w2 PN ) g

=0

(N D) ym t

On the other hand, by 24, we get

1 (log(l + At)

o ) ) (14 M)% = ZS

nlk! "
k|ZS n+k, k) =

(n—l—k)!n!'

(2.22)

(2.23)

Thus, by comparing the coefficients on both sides of [2:22)) and ([Z:23]), we get

n

Z(TL)DWW(’%WA— LS+ ).
m

m=0 (”;’;k)

Therefore, by ([Z24]), we obtain the following theorem.

Theorem 2.8. Forn,k > 0, we have

(r) (AR = (7 k) ym
Sl,A(n+kvk)_( n )Z (m>Dm A (T)n—m)\-

m=0

From (9], we note that

1 (log(l + At)

k t
o : ) 1+ M)% =

k (log(1+ At)
k!

k

" ) (14 A)*
_ t* = )\nD(k) T "
_H; n (X)ﬁ

By [223) and ([227]), we get

T n n+k! s n n+k T
530+ k8 =3 L pO ) (") D), (02 0

In particular, for r = 0, from (Z21]) and (228) we have

(2.24)

(2.25)

(2.26)



A-ANALOGUES OF r-STIRLING NUMBERS OF THE FIRST KIND 9

:
N (": )D,(f) = S1A(n+k k)
n+k

_ Z (n + k) SY,\(Z B (=)™ (n+ k=1 = DA)nsr_in,

where n, k > 0.
Therefore, by (Z27)), we obtain the following theorem.

(2.27)

Theorem 2.9. For n,k > 0, we have

n(m+EY Sk otk (r) n+k—1
A LD = Z l Si3(1 k) (-1) (r+m+k—1—1Nnir i
1=k

|tk ntk\ /1 1\ "
(k) — il
ot = 2 (1) () (3)

X (r 4 (n+k—1—1)Nngpr1(~1)"*IDE, (£).

In addition,

Now, we observe that

k
t" 1 (log(l+ At . .
E Sia(n, k = (%) (1+ At)Fe X loa(1+20)

) m=0
o0 l o0
= (Z S, k)%) (Z (1 S 140G m
=k ’ m=0 j=m

(2.28)

Therefore, by comparing the coefficients on both sides of (228), we obtain
the following theorem

Theorem 2.10. For n,k >0, with n > k, we have

Sia(n, k) :"z_: z]: ( ) "SI, m)Sia(n — j, k).
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For m,n > 0, we define A-analogues of the Whitney’s type r-Stirling numbers
of the first kind as

(mz+71)px=(mz+r)ime+r—N(mz+r—2\) - (mx+r—(n—1)A)

iTT (n, k|lm)z®.
k=0

(2.29)
By (ZZ3), we get
o m o n ") . m
Z(mx_FT)"*AE = Z ZTl)k(n,Mm)x -
n=0 n;O kO:oO (230)
r i
-3 (St ) o
k=0 \n=k ’
On the other hand, by binomial expansion, we get
= " = (mx+r\ .,
>+ 7)oy = z( n ) ‘
n=0 ’ n=0 A
= (14 M) "5 = (14 Ap) 5 eme (57 (2.31)

<k
:Zm_' (10g(1+)\t)) (14 M)t
2 )

Comparing the coefficients on both sides of (230) and (231l), the generating
function for Tl(&) (n,klm), (n,k > 0), is given by

mF (log(1 + )\t) )5 () tn
From (Z4) and (232), we note that
T 1 T
S (n, k) = WTfyg(n,mm), (n>k>0). (2.33)

It is known that the r-Whitney numbers are defined as

(max +7)" Zm Wonr(n, k) (), (see [3]). (2.34)
k=0

By (L3), we get
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(mz +7)n ) = S1,A(n,l)(m:1:—|—r)l

NE

Il
=)

l
Sia(n, )Y mI W (1, §)(2);

=0

[
NIE

Il
=)

[
NE

<
Il
o
~
I

Sl))\(n,l)ijm,.T(lvj)(I)j (235)
J
‘ J
SL)\(TL, l)mJWm,r(lu ]) Z S (jv k)xk
S k=0

I
NE

<
Il
<
~
I

n

S Sua )81, KymI Wi (1.4) | 2.

0 \j=k I=j

Therefore, by ([2.29) and ([235]), we obtain the following theorem.

[
NIE

el
Il

Theorem 2.11. For n,k > 0, with n > k, we have

8.

9.

T, klm) = 3N 810, DS (G, k)md Wan 1 (1 ).
=k 1=y
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