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1 Introduction

String theory is considered by many as a consistent explanation of gravity in quantum level. That
is why, the discussions of some low energy limits of string theory which contain gravity are still
among the main present interests in gravitational physics studies. In the heterotic string theory, the
low energy limit has graviton, Abelian gauge field, dilaton, and second rank antisymmetric tensor
fields, and the corresponding rotating and charged black hole solution was given by Sen [1], namely
Kerr-Sen black hole. This Kerr-Sen black hole has mass, rotation, and electric charge, which make it
is analogous to the well-known Kerr-Newman black hole in Einstein-Maxwell theory. Despite their
similarities, Kerr-Sen and Kerr-Newman black holes can be distinguished in some particular ways,
for example the strong light deflection limit in Kerr-Sen background [2] and the hidden conformal
symmetry [3]. These distinctions between Kerr-Sen and Kerr-Newman black holes, in addition
to the expectation that string theory is the ultimate explanation of all fundamental processes,
motivate researches to explore more on the properties of Kerr-Sen black holes [4, 5, 6, 7, 8, 9, 10].

In obtaining Kerr-Sen solution, Sen employed the Hassan-Sen transformation [11] which based
on the symmetry in the low energy limit of heterotic string theory action. This Hassan-Sen trans-
formation maps a known solution in the theory, namely the seed solution, to another one which
belongs to the same theory. Nevertheless, normally one would consider a quite simple seed solution,
since the mapping can lead to a complicated expression for all incorporated fields. In Kerr-Sen case
[1], Sen employed the Kerr metric as the seed solution to obtain a set of non-trivial solutions for
all fields in the theory. Shortly after, the solution generating method was used in [12] where the
authors considered the non-rotating Taub-NUT spacetime as the seed solution.

In the beginning of black hole studies, these objects were considered merely as mathematical
entity rather than real existing part of the universe. Nowadays, especially after the successful
detection of gravitational waves from black holes collisions [13] and the possibility of looking at an
astrophysical black holes [14], black holes have become a central in the current physics research.
As a theoretical object, black hole is used an arena to reconcile gravity and quantum mechanics.
Therefore, understanding a black hole solution is important, from which the behavior of the black
hole can be figured out. Nevertheless, not all exact black holes solutions are fully understood,
even in the vacuum Einstein theory. For example the C-metric, which is interpreted as spacetime
solution describing two masses causally separated and constantly accelerating away each other. The
mass and thermodynamics in this spacetime are still under investigations [15, 16].

The rotating C-metric, or sometime referred as the accelerating Kerr spacetime, also solves the
vacuum Einstein equations, even when the spacetime equipped with the NUT charge. Thence, one
might wonder what happens if the Hassan-Sen transformation is applied to this accelerating Kerr
solution. One could expect to get a set of fields solutions describing the accelerating version of
Kerr-Sen black hole, analogous to the accelerating Kerr-Newman in the Einstein-Maxwell theory
[17]. This is exactly what we will perform in this paper, applying the Hassan-Sen transformation
to the accelerating Kerr(-NUT) spacetime to get the solutions to fields that obey the equations of
motion in the low energy limit of heterotic string theory.

The organization of this paper is as follows. In the next section, we provide a review on the
Hassan-Sen transformation with explicit results to a stationary and axially symmetric seed solution
of the vacuum Einstein equations. In this section we also survey briefly the accelerating black holes
in the vacuum Einstein system. In section 3, we present the accelerating black hole solutions in het-
erotic string theory, presented in both Boyer-Lindquist-like and Plebanski-Demianski coordinates.
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In the next section, some physical properties of the obtained black hole solutions are discussed.
Finally, discussions and conclusions are given in the next section. We also provide appendices
discussing the Hassan-Sen transformation which include the NUT charge, and the charges formulas
in the low energy heterotic string theory.

2 Preliminaries on Hassan-Sen transformation and accelerating

black holes

2.1 Hassan-Sen transformation in the low energy limit of heterotic string field

theory

In [1], Sen transformed the Kerr solution to get a charged and rotating black hole spacetime in
the low energy limit of heterotic string theory. The transformation employed is the one intro-

duced by Hassan and Sen2 [11] that transforms a set of solution
{

g̃µν , Ãµ, Φ̃, B̃µν

}

to another one

{gµν , Aµ,Φ, Bµν} which solve the equations of motion from the action

S =

∫

d4x
√−ge−Φ

(

R+ (∇Φ)2 − 1

8
FµνF

µν − 1

12
HαβγH

αβγ

)

. (2.1)

In the equation above, Hαβγ = ∂αBβγ + ∂γBαβ + ∂βBγα− 1
4 (AαFβγ +AγFαβ +AβFγα) and Fµν =

∂µAν − ∂νAµ. When all non-gravitational fields {Aµ,Φ, Bµν} vanish, then the system described by
action (2.1) is just the vacuum Einstein. Thats why, the Kerr spacetime which solves the vacuum
Einstein equations can be transformed using Hassan-Sen transformation to get a new set of fields
that belongs to the action (2.1), where some components of the non-gravitational fields are non-zero.

Here let us review the Hassan-Sen transformation applied explicitly to a stationary and axial
symmetric solution to the vacuum Einstein equations, specifically in the metric tensor expression

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 + grrdr
2 + gxxdx

2 . (2.2)

Here we are using the coordinate (t, r, x, φ), where the stationary and axial symmetry require
gµν = gµν (r, x). In this review, we aim to map {g̃µν} with the action

S =

∫

d4x
√

−g̃R̃ (2.3)

to the solutions {gµν , Aµ,Φ, Bµν} of the action

S =

∫

d4x
√−ge−Φ

(

R+ gµν∂µΦ∂νΦ− 1

8
gµαgνβFµνFαβ −

1

12
gµαgνβgγλHµνγHαβλ

)

. (2.4)

From now on, we denote the fields with “tilde” as the seed solutions, and the ones with no “tilde”
as the Hassan-Sen transformed result. Equations of motion derived from the action (2.4) are

Eµν +∇µ∇νΦ+
1

2
gµν

(

(∇Φ)2 − 2∇2Φ
)

=
1

4

[

FµαF
α
ν +HµαβH

αβ
ν − 1

2
gµν

(

F 2

2
+

H2

3

)]

, (2.5)

2In this paper would be referred as the Hassan-Sen transformation.
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(∇Φ)2 − 2∇2Φ = R− F 2

8
− H2

12
, (2.6)

∇µF
µν = Fµν∂µΦ+

1

2
FαβH

ναβ , (2.7)

and
∇αH

αµν = Hαµν∂αΦ . (2.8)

In the equations above, Eµν is the Einstein tensor with spacetime metric gµν . Interestingly, the
solutions to these equations of motion can describe black holes, such as Kerr-Sen [1] and Gibbons-
Maeda-Garfinkle-Horowitz-Strominger [18, 19] black holes.

To proceed the Hassan-Sen transformation, we first introduce a second rank tensor Kµν defined
by

Kµν = −gµν −
1

4
AµAν −Bµν (2.9)

whose matrix expression is K. Then let us denote the flat spacetime metric

hµν = diag (1, 1, 1,−1) (2.10)

which is h in the matrix form. Now we can construct a 9× 9 matrix

M =





(

KT − h
)

g−1 (K− h)
(

KT − h
)

g−1 (K+ h) −
(

KT − h
)

g−1A
(

KT + h
)

g−1 (K− h)
(

KT + h
)

g−1 (K+ h) −
(

KT + h
)

g−1A

−ATg−1 (K− h) −ATg−1 (K+ h) ATg−1A





which contains all the fields in the theory except the dilaton Φ. Intuitively, the matrix A above
is the column vector expression of Aµ. It is found that the action (2.1) is invariant under the
transformation [11]

M̃ → M = ΘM̃Θ
T
, (2.11)

together with the change of dilaton field

Φ̃ → Φ = Φ+
1

2
ln

det g

det g̃
, (2.12)

where

Θ =





I7×7 ... ...

...
√
1 + s2 s

... s
√
1 + s2



 . (2.13)

Above, it is intuitive that all matrices with “tilde” contains the seed fields solutions, and the
matrices are represented by the boldface letters. The dots in Θ stand for zero component in the
matrix, and I7×7 stands for the seven dimensional identity matrix, and s is some arbitrary real
parameter.

Since we start with all non-gravitational fields vanish, then the Hassan-Sen transformed field
solutions would depend on the metric tensor g̃µν only. The results are can be found as follows. The
metric components gµν expressed in tetrads are given by

e(0)µ dxµ =

√−g̃tt
Λ

(

dt+
g̃tφ
g̃tt

(

1 + s2
)

dφ

)

,
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e(1)µ dxµ =
√

g̃rrdr , e(2)µ dxµ =
√

g̃xxdx , e(3)µ dxµ =

√

g̃φφ −
g̃2tφ
g̃tt

dφ , (2.14)

where gµν = η(a)(b)e
(a)
µ e

(b)
ν and Λ = 1 + s2 (1 + g̃tt). Here we use the flat metric

η(a)(b) =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (2.15)

The gauge field and dilaton fields are given by

Aµdx
µ =

2s
√
1 + s2

Λ
((1 + g̃tt) dt+ g̃tφdφ) , (2.16)

Φ = − ln Λ , (2.17)

respectively. Finally, the only non-vanishing second rank tensor field’s component is found to be

Btφ = −Bφt =
s2g̃tφ
Λ

. (2.18)

So now we have a general formulas of all fields {gµν , Aµ,Φ, Bµν} in the action (2.4) as some functions
of a vacuum Einstein solution (2.2). When the parameter s vanishes, all the non-gravitational fields
(2.16) - (2.18) are zero, since the transformation matrix Θ would be just an identity.

2.2 Accelerating Kerr black holes

In a vacuum Einstein system, there exist spacetime solution which is interpreted to contain a pair of
black holes accelerating away each other at a constant rate. This solution is known as the C-metric
[20, 21], which can be considered as a special case of a more general solution in Einstein-Maxwell
theory known by Plebanski-Demianski (PD) solution [22]. Restricted in the vacuum case, the most
general expression for accelerating spacetime is given in [23], where they perform rescaling to the
original PD metric and introduce two additional real parameters, α and ω. The line element is

ds2 =
1

(1 + αpr)2

[

−Q

̺2
(

dτ − ωp2dϕ
)2

+ ̺2
(

dr2

Q
+

dp2

K

)

+
K

̺2
(

ωdτ + r2dϕ
)2
]

(2.19)

where
K = k + 2npω−1 − εp2 − 2αmp3 − α2ω2kp4 , (2.20)

Q = ω2k − 2mr + εr2 + 2αnr3ω−1 − α2kr4 , (2.21)

and ̺2 = r2 + ω2p2. In the expressions above, m, n, ǫ, k, α, and ω are some real parameters. This
metric solves the vacuum Einstein equation, and in some literature it is argued that n is related the
NUT parameter [24]. However, Griffiths and Podolsky showed that to get the spacetime equipped
with a NUT parameter, a further set of coordinates transformation applied to (2.19) is needed. In
this coordinate transformation, a new parameter l is introduced, and the transformation between
{τ, r, p, ϕ} and {t, r, x, φ} reads

p → (l + ax)

ω
, τ → t− (l + a)2

a
φ , ϕ → −ω

a
φ . (2.22)
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Applying (2.22) to the metric (2.19) yields

ds2 =
1

Ω2

[

−Q

̺2
(

dt−
(

a
(

1− x2
)

+ 2l (1− x)
)

dφ
)2

+ ̺2
(

dr2

Q
+

a2dx2

ω2P

)

+
P

̺2



ωdt−
ω
(

r2 + (l + a)2
)

a
dφ





2





(2.23)

where
Ω = 1 + α (l + ax) rω−1 , (2.24)

̺2 = r2 + (l + ax)2 , (2.25)

and
P = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 , (2.26)

where the coefficients ci can be written as

c0 = k − lω−2
(

α2kl3 + εl − 2n
)

− 2αml3ω−3 ,

c1 = 2aω−2
(

n− εl − 2α2kl3
)

− 6αml2aω−3 ,

c2 = −a2ω−2
(

ε+ 6α2kl2
)

− 6αmla2ω−3 ,

c3 = −2αa3ω−3 (m+ 2αklω) ,

c4 = −α2ka4ω−2 .

The Kerr-NUT spacetime can be extracted fromt (2.23) by setting α = 0, k =
(

a2 − l2
)

ω−2, ǫ = 1,
n = l, and ω = a,

ds2 = −
(

r2 − 2mr + a2 − l2
)

r2 + (l + ax)2
{

dt−
[

a
(

1− x2
)

+ 2l (1− x)
]

dφ
}2

+

(

r2 + (l + ax)2
)

dx2

1− x2

+

(

r2 + (l + ax)2
)

dr2

(r2 − 2mr + a2 − l2)
+

(

1− x2
)

r2 + (l + ax)2

{

adt−
[

r2 + (a+ l)2
]

dφ
}2

. (2.27)

At this point we can see how the new parameter n is related to the NUT charge l in the Kerr-NUT
metric (2.27), from which we can learn that n is not simply the NUT charge, but related to it3

[25]. Note that all the metrics (2.19), (2.23), and (2.27) fall into the category of spacetime (2.2),
and also solve the vacuum Einstein equations. Therefore, the Hassan-Sen transformation discussed
previously apply to all of these metrics, and the resulting set of solutions would be a new fields
in the low energy limit of heterotic string theory. Nevertheless, the case that we have particular
interest and becomes the main discussion in this paper is the special limit of (2.23) describing
accelerating Kerr black holes without NUT charge, i.e. l = 0. This is what we will elaborate in the
next section.

3In the other words, one can say that setting the acceleration parameter α to be zero in (2.19) does not lead to
the proper Kerr-NUT line element (2.27) directly.
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3 Hassan-Sen transformation to accelerating black holes

3.1 Spherical-type coordinate

The rotating and accelerating black hole solution in vacuum Einstein theory can be obtained from
the general line element (2.23) by setting

l = 0 , k = 1 , ω = a , n = mαa , ǫ = −α2a2 , (3.1)

followed by the “shifts”
P → P = P − x2 , Q → Q = Q+ r2 . (3.2)

After performing this transformation, we have

ds2 = Ω−2

[

−Q
ρ2
(

dt− a
(

1− x2
)

dφ
)2

+
ρ2dr2

Q +
ρ2dx2

P +
P
ρ2
(

adt−
(

r2 + a2
)

dφ
)2
]

(3.3)

where Ω = 1 + αrx, ρ2 = r2 + a2x2,

P =
(

1 + 2αmx+ α2a2x2
) (

1− x2
)

, (3.4)

and
Q = (r − r+) (r − r−)

(

1− α2r2
)

. (3.5)

In the equation above, r± is the roots of r2 − 2mr + a2 = 0, i.e. the outer and inner horizons of
Kerr black hole, and we consider m > a. This spacetime solution is interpreted to describe a pair
of rotating neutral black holes which are constantly accelerating each other with the acceleration
magnitude aµa

µ = −α2 [17]. Setting α = 0 in (3.3) yields the Kerr solution, and the case of a = 0
in this line element is the C-metric.

Since the metric (3.3) has the form of (2.2), then one can directly show the corresponding line
element solution (2.14) as a result of Hassan-Sen transformation to be

ds2string = gµνdx
µdxν = −Q− Pa2

Ω2ρ2Λ2

(

dt− a
(

1 + s2
) (

Q
(

1− x2
)

−
(

r2 + a2
)

P
)

Q− Pa2
dφ

)2

+
ρ2

Ω2

(

dr2

Q +
dx2

P +
QP

Q− Pa2
dφ2

)

. (3.6)

Accordingly, the vector (2.16), dilaton (2.17), and second rank tensor fields (2.18) read

Aµdx
µ =

2s
√
1 + s2

Ω2ρ2Λ

((

Ω2ρ2 −Q+ Pa2
)

dt+ a
(

Q
(

1− x2
)

−
(

r2 + a2
)

P
)

dφ
)

, (3.7)

Φ = − ln Λ , (3.8)

and

Btφ = −Bφt =
s2a

(

Q
(

1− x2
)

−
(

r2 + a2
)

P
)

ΛΩ2ρ2
, (3.9)

respectively. In the expressions above we have used

Λ = 1 + s2
(

1− Q− Pa2

Ω2ρ2

)

. (3.10)
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Alternatively, the set of solutions (3.6)-(3.9) can also be obtained by performing the Hassan-Sen
transformation to the metric (2.23), and employ the conditions (3.1) and (3.2) to the obtained set
of solutions. The set of solutions (3.12) - (3.9) reduce to that of Kerr-Sen system [1] for α = 0, and
setting s = 0 to (3.12) - (3.9) yields the vanishing of all non-gravitational fields representing the
generic accelerating Kerr spacetime in vacuum Einstein. Furthermore, for the discussions on some
physical aspects of the black hole, let us express the metric (3.12) in the Einstein frame given by

ds2E = exp (−Φ) ds2string , (3.11)

which reads

ds2E = −Q− Pa2

Ω2ρ2Λ

(

dt− a
(

1 + s2
) (

Q
(

1− x2
)

−
(

r2 + a2
)

P
)

Q− Pa2
dφ

)2

+
ρ2Λ

Ω2

(

dr2

Q +
dx2

P +
QP

Q− Pa2
dφ2

)

. (3.12)

In the next section we will present the result of Hassan-Sen transformation to the accelerating
Kerr solution expressed in the Plebanski-Demianski form. In the present form (3.12), an advantage
is the Boyer-Lindquist-like expression which normally preferred when one discusses some practical
aspects of the black hole, such as the kinematics of a test particle [4] and light deflection [2].
However, some properties of the solutions such as the regularity and spacetime signature will
become more handy if the line element is expressed in the Plebanski-Demianski form. This is what
we will do next.

3.2 Plebanski-Demianski-type coordinate

Another popular expression for accelerating black hole spacetime is in the form of Plebanski and
Demianski [22], or the one similar to that4, which can be obtained from (3.3) by performing the
transformations r → −α−1y−1 and t → α−1t. The result reads

ds2 =
1

Ξ2

[

G(y)

F
(

dt− aα
(

1− x2
)

dφ
)2

+
G(x)

F
((

1 + a2α2y2
)

dφ− aαy2dt
)2
+F

(

dx2

G(x)
− dy2

G(y)

)]

(3.13)
where

Ξ = α (x− y) , F = 1 + (aαxy)2 , (3.14)

and the structure function [26, 24]

G(ξ) =
(

1− ξ2
)

(1 + ξαr−) (1 + ξαr+) . (3.15)

Here, r± are the same to those in (3.3). However, the non-accelerating version of (3.13) cannot be
simply obtained by taking α → 0, unlike in the case (3.3).

Spacetime expressed in the form of (3.13) is claimed to be free of no closed timelike curve
(CTC) and torsion singularity [24, 27]. The factorizable of structure functions (3.15) is due to the
re-expression by Hong and Teo [26, 24]. In the form of (3.15), it is easier to analyze the spacetime

4Related to the original Plebanski and Demianski form after some scalings.
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properties, for example the condition to maintain the correct spacetime signature [17]. This section
is devoted to present the solutions (2.14) - (2.18) in terms of seed metric (3.13). The set of solutions
{gµν ,Φ, Aµ, Bµν} can be written as the followings.

ds2string =
FΞ2Υ

FΞ2 (1 + s2) + s2Υ

(

dt+
aα
(

1 + s2
) (

Υ+G(x)y
2 −G(y)x

2
)

dφ

Υ

)2

+
F
Ξ2

(

dx2

G(x)
− dy2

G(y)
+

G(x)G(y)dφ
2

Υ

)

, (3.16)

Φ = − ln

(

FΞ2 + s2
(

FΞ2 +Υ
)

FΞ2

)

, (3.17)

Aµdx
µ =

2s
√
1 + s2

((

FΞ2 +Υ
)

dt− aα
(

Υ+G(x)y
2 −G(y)x

2
)

dφ
)

FΞ2 + s2 (FΞ2 +Υ)
, (3.18)

and

Btφ = −Bφt = −
s2aα

(

Υ+G(x)y
2 −G(y)x

2
)

FΞ2 + s2 (FΞ2 +Υ)
. (3.19)

In the equations above, Υ = G(y) + G(x)a
2α2y4. Again, to obtain the Einstein frame version of

(3.16), one can simply use the relation (3.11).
Now let us discuss some conditions to guarantee the regularity and correct spacetime signature

in the new solutions. However, without performing a delicate analysis on the quite involved metric
(3.16), the Lorentzian nature of seed metrics (3.3) and (3.13) [24, 23, 25, 17] guarantees the correct
spacetime signature of the solutions (3.6) and (3.16) respectively. This can be understood from the

general form of tetrad component in the transformed solution e
(a)
µ , which yields gtt = g̃ttΛ

−2 in the
string frame5. Furthermore, to have a real and regular dilaton field Φ, we must have Λ > 0, which
consequently yields

0 > Υ > −Ξ2F
s2

(

1 + s2
)

. (3.20)

4 Some aspects of the solution

4.1 Conical singularities

The seed solution (3.3) contains conical singularities on the two axis

lim
x→±1

2π

1− x2

√

g̃φφ
g̃xx

= 1± 2αm+ α2a2 . (4.1)

Without introducing any external fields, these singularities cannot be removed at once [16]. To
remove one of the nodal singularities, one can perform a scaling to the coordinate6 φ, which then

5Or gtt = g̃ttΛ
−1 in Einstein frame.

6A coordinate scaling to remove the conical singularity is also performed in the case of magnetized spacetime
[28, 29], where the conical problem comes from the external magnetic field.
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allows

lim
x→1

2π

1− x2

√

g̃φφ
g̃xx

= 1 , or lim
x→−1

2π

1− x2

√

g̃φφ
g̃xx

= 1 , (4.2)

but not altogether simultaneously. The scaling itself incorporate the constants

C± = 1± 2αm+ α2a2 , (4.3)

where transforming φ → φ/C− fixes the nodal deficit on x = −1, and φ → φ/C+ cures the nodal
excess on x = +1. The nodal deficit on x = −1 is interpreted as a cosmic strut pushing the pair
of black holes away each other, while the nodal excess on x = 1 represents a semi-infinite cosmic
string pulling the black hole to infinity.

Since the seed solution (3.3) or (3.13) have not been fixed in order to get rid one of the nodal
singularities, one can expect that the metric solution resulting from the Hassan-Sen transformation
to these seed metrics would suffer the same conical problem. A straightforward check to the solution
(3.12)

lim
x→±1

2π

1− x2

√

gφφ
gxx

= 1± 2αm+ α2a2 . (4.4)

The result (4.4) is independent of the frame being used, i.e. either string frame or Einstein one.
Moreover, the outcome (4.4) is exactly equal to that of accelerating Kerr (4.2), which can be
understood from a further little check where

lim
x→±1

gφφ
g̃φφ

= 1 . (4.5)

Therefore, to get rid of the deficit angle in (3.12), we can employ the same trick as that in accel-
erating Kerr, i.e. rescaling the φ coordinate. We prefer to perform φ → φ/C−, hence the metric
(3.12) becomes

ds2E = −Q− Pa2

Ω2ρ2Λ

(

dt− a
(

1 + s2
) (

Q
(

1− x2
)

−
(

r2 + a2
)

P
)

C− (Q− Pa2)
dφ

)2

+
ρ2Λ

Ω2

(

dr2

Q +
dx2

P +
QP

C2
−
(Q− Pa2)

dφ2

)

. (4.6)

Alternatively, we can employ the Hassan-Sen transformation to the accelerating Kerr black hole
metric with no conical deficit, and we will arrive at the same result in (4.6). Surely, this scaling to
cure one of the conical singularity affects the vector Aµ and tensor field Bµν in the solution, either
by the change of g̃tφ and g̃φφ in the seed solution, or due to the coordinate transformation affecting
the component of tensor fields.

4.2 Area and temperature

Now let us study some of black hole’s properties based on solutions presented in section 3. Using
the Einstein-frame line element (4.6), the area of black hole can be found as

ABH =

2π
∫

0

dφ

1
∫

−1

dx
√
gxxgφφ

∣

∣

r=r+
= 2π

(

1 + s2
) (

r2+ + a2
)

C−

(

1− α2r2+
) . (4.7)
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Setting s = 0, this area reduces to the area of accelerating Kerr black hole [15]. Moreover, rewriting
this area is term of Kerr-Sen mass [1, 30]

MKS =
(

1 + s2
)

m, (4.8)

we have

ABH =
8πMKS r+

C−

(

1− α2r2+
) , (4.9)

which is just the area of Kerr-Sen black holes when α = 0. Since the solution in section 3 is
interpreted as the accelerating version of Kerr-Sen black hole, then one may expect the black hole
contained in the spacetime (4.6) is also rotating just like the generic Kerr-Sen, it can be found that
the corresponding angular velocity at the horizon for this black hole is

ΩBH =
aC−

(

r2+ + a2
)

(1 + s2)
. (4.10)

Interestingly, the acceleration parameter does not appear in this angular velocity, as it should be,
just like in the accelerating Kerr [17]. Using the Killing vector ζµ = [1, 0, 0,ΩBH ] which generates
the black hole event horizon, one can compute the Coulomb potential of the black hole horizon, i.e.

ΦC = − ζµAµ|r=r+ = − 2s√
1 + s2

. (4.11)

To get the temperature, we can make use of the tunneling method [31, 32, 33]. To make the
calculation simpler, we consider the tunneling takes place at x = 1 axis, even though the obtained
result is general [32]. This consideration allows the writing of line element (3.6) to be diagonal,
hence for the radial null geodesic dx = dφ = 0 we have

ds2 = −f (r) dt2 + g−1 (r) dr2 , (4.12)

where

f (r) =
Q

Ω2ρ2Λ2
, g (r) =

QΩ2

ρ2
.

Then the Hawking temperature is given by [32, 33]

TH =

√

(∂rf) (∂rg)

4π

∣

∣

∣

∣

∣

r=r+

. (4.13)

Straightforward calculation yields

TH =
Ω2
+

πρ4+d
3

3
∏

j=1

cj (4.14)

where
c1 = α2r+

(

2r4+ − 3mr3+ + 4a2r2+ − 5ma2r+ + 2a4
)

−m
(

r2+ − a2
)

,

c2 = α2mr2+
(

r2+ − a2
)

−m
(

r2+ − a2
)

,

c3 = αr+
(

a2 + r2+ + 2ms2r+
)

+ 2m
(

1 + s2
)

r+ ,
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and
d = 2m

(

1 + s2
) {

α
(

m (r+ − r−) + 2m2 − a2
)

+ r+
}

.

Taking the non-accelerating limit of this temperature, i.e. α = 0, we get

TH =
r+ −m

4πmr+ (1 + s2)

which is the Hawking temperature for Kerr-Sen black hole [34]. Furthermore, one can observe that
the Hawking temperature (4.14) is independent of any frame being considered, either Einstein or
string ones.

Some other main properties of the black hole, that may be extracted from the available solution
presented in the previous section are the mass, electric charge, and angular momentum. These are
sometime referred as the conserved quantities in the theory, i.e. related to the symmetries possessed
by the system. Nevertheless, the traditional approaches in computing these quantities for the non-
accelerating Kerr-Sen black holes [1, 30, 34] cannot be used to compute the mass, electric charge,
and angular momentum of the accelerating version. The obvious reason is the non-flat nor non-AdS
behavior of its asymptotic. In fact, even in Einstein-Maxwell theory, special treatments are needed
to get the conserved quantities of an accelerating Kerr-Newman black holes [35, 16, 15, 36]. In
appendix B, we highlight an attempt to get the conserved charges for spacetime solution in the low
energy heterotic string theory.

5 Discussions

In this paper we have obtained new solutions in the low energy of heterotic string theory, describing
a pair of accelerating, rotating, and charged black holes in this theory. In principle, we can get
the accelerating Kerr-Sen-NUT solution, which is analogous to the Kerr-Newman-NUT spacetime
in Einstein-Maxwell theory. Nevertheless, to avoid the pathological conic singularity due to the
presence of NUT parameter, we focus only in the case without this NUT charge. Nevertheless,
for interested readers, solutions incorporating the NUT parameter are presented in app. A. In
obtaining these solutions, we have employed the Hassan-Sen transformation which can be viewed
as a generating solutions method in the low energy limit of heterotic string theory. We also manage
to write down a general form of fields solutions in low energy heterotic string theory as some
functions of the axially symmetric and stationary vacuum Einstein spacetime solutions. Some
properties of the black hole solution such as area, angular velocity, and Hawking temperature are
given. However, works presented in this paper are limited to the seed metric which solves the
vacuum Einstein equations.

Nonetheless, due to the “strange” asymptotics of the obtained solution and more involved
equation of motions for the fields, we have not been able to present the conserved charges in the
system. To work this out, we may require the integrability consideration in the covariant phase
approach, like the one considered in the Einstein-Maxwell theory [35]. This line of research is under
investigation, where the covariant phase method to get the conserved charges related to Kerr-Sen
spacetime has been discussed in [34]. In this paper, we also present a new solution describing
the non-accelerating Kerr-Sen-NUT spacetime, whose further physical properties investigations are
of particular interests of the reader. Finally, in the line of holographic researches [34, 35, 39],
holography studies related to the new accelerating black hole solutions reported in this work is also
a promising future project.
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A Solution with NUT parameters

In the main body of this paper, we avoid discussing the solution with NUT charge since its
pathological conic singularity which comes from the NUT parameter in the solution. Never-
theless, since the accelerating Kerr-NUT metric [17] solves the vacuum Einstein equation, in
principle one can also employ the Hassan-Sen transformation to this solution in generating
the set of field solutions representing the accelerating Kerr-Sen-NUT system. Employing the
general form of fields (2.14) - (2.18) to the seed spacetime solution (2.23) yields

ds2string = −Ξ



dt−
Qa (1− x) (a (1 + x) + 2l)− Pω2

(

r2 + (l + a)2
)

a (Q− Pω2)
dφ





2

+
̺2

Ω2

(

dr2

Q
+

a2dx2

ω2P

)

+
QPω2̺2

Ω2a2 (Q− Pω2)
dφ2 , (A.1)
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where

Ξ =

(

Q− Pω2
)

Ω2̺2

(Ω2̺2 (1 + s2)− s2 (Q− Pω2))2
. (A.2)

The non-gravitational fields accompanying the above metric are

Aµdx
µ =

2s
√
1 + s2

Ω2̺2 (1 + s2)− s2 (Q− Pω2)

[(

Ω2̺2 −Q+ Pω2
)

dt

+

(

Q (1− x) (a (1 + x) + 2l)− Pω2

a

(

r2 + (l + a)2
)

)

dφ

]

, (A.3)

Φ = − ln

[

Ω2̺2
(

1 + s2
)

− s2
(

Q− Pω2
)

Ω2̺2

]

, (A.4)

and

Btφ = −Bφt =
Qa (1− x) (a (1 + x) + 2l)− Pω2

(

r2 + (l + a)2
)

a (Ω2̺2 (1 + s2)− s2 (Q− Pω2))
. (A.5)

Setting α = 0, k =
(

a2 − l2
)

ω−2, ǫ = 1, ω = a, and n = l in this solution leads to the Kerr-
Sen-NUT system. Explicitly, to write down the Kerr-Sen-NUT solution, one simply replace

Ω = 1 , P = 1− x2 , Q = r2 − 2mr + a2 − l2 , (A.6)

in the solutions (A.1) - (A.5). This Kerr-Sen-NUT system resembles the well known Kerr-
Newman-NUT solution in Einstein-Maxwell theory [17].

B Conserved charges

In [34], the author managed to compute the central charge associated to the conformal sym-
metry of the near region extremal Kerr-Sen black holes. This was done to established the
Kerr/CFT correspondence in the low energy limit of heterotic string theory. The conserved
charge employed in this work is that from the covariant phase framework, or sometime referred
as the Barnich-Brandt method [37]. The charge reads

Q(ξ,λ,ψ) =
1

8π

∫

dSµν

(

kµν(g) + kµν(Φ) + kµν(A) + kµν(B)

)

, (B.1)

where

kµν(g) = ξµ∇σh
νσ − ξµ∇νh− ξσ∇µhνσ − h

2
∇µξν + hµσ∇σξ

ν − 1

2
hσµ (∇νξσ +∇σξ

µ) , (B.2)

kµν(A) =
1

2π

[(

−h

2
Fµν + 2Fµσhνσ − fµν

)

(ξσAσ + λ)− Fµνξσaσ − 2F σµξνaσ

]

− 1

2
aµ (ξσF

νσ + ∂ν (ξσAσ + λ)) , (B.3)

kµν
(Φ)

=
2

3
ϕξµ∂νΦ , (B.4)
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and

kµν(B) =
1

3

(

δκρδ
σ
βbλα + δκρ δ

σ
αbβλ + δκρδ

σ
λbαβ

)

ξλHµνρ

+
2

3

[

1

2
ξλbρλH

µρν +

(

1

2
ξλBρλ + Bρ

)(

hµρν +
h

2
Hµρν

)]

+
1

2
bαµ

(

Bν
ρ∂αξ

ρ +Bρα∂
νξρ + ξρ∂ρB

ν
α + ∂νBα − ∂αBν

)

. (B.5)

In equation above, integration over the surface S is defined as

dSµν =

√−g

4
εµναβdx

α ∧ dxβ , (B.6)

with ε0123 = 1. Furthermore,

hµνρ = ∂µbνρ + ∂ρbµν + ∂νbρµ −
1

4
(aµfνρ + aρfµν + aνfρµ) , (B.7)

and
fµν = ∂µaν − ∂νaµ . (B.8)

In (B.3) and (B.5), the functions λ and Bα are related to the gauge freedom of Aµ and Bµν ,

Aµ → Aµ + ∂µλ , (B.9)

Bµν → Bµν + ∂µBν − ∂νBµ . (B.10)

The fields denoted by lower case letters, i.e. hµν , aµ, bµν are variation of the spacetime metric
gµν , vector field Aµ, and second rank antisymmetric field Bµν respectively, depending on what
quantities change in the theory. For example, and this is the consideration in this paper, we
let the “Kerr mass” can vary as m → m+ δm, thence

hµν =
∂gµν
∂m

δm , aµ =
∂Aµ
∂m

δm , bµν =
∂Bµν

∂m
δm , ϕ =

∂Φ

∂m
δm , (B.11)

where ϕ is related to the dilaton. Raising and lowering index in the expressions above are
performed by using gµν , for example h = gµνh

µν .

In the case of non-accelerating Kerr-Sen black holes, the charge (B.1) gives the mass and
angular momentum after considering the Killing vectors ξµ(t) = [−1, 0, 0, 0] and ξµ(φ) = [0, 0, 0, 1]

respectively. Moreover, the author of [30] managed to obtain the mass and angular momentum
of Kerr-Sen black hole by using the generalized ADT method. This can be understood since
the covariant phase and ADT methods are basically equivalent [38]. However, we find that
both methods fail to give the corresponding mass, electric charge, and angular momentum for
accelerating Kerr-Sen black hole, where the outcomes are divergent.
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