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KÄHLER HYPERBOLIC MANIFOLDS AND CHERN NUMBER

INEQUALITIES

PING LI

Abstract. We show in this article that Kähler hyperbolic manifolds satisfy a family of

optimal Chern number inequalities and the equality cases can be attained by some compact

ball quotients. These present restrictions to complex structures on negatively-curved compact

Kähler manifolds, thus providing evidence to the rigidity conjecture of S.-T. Yau. The main

ingredients in our proof are Gromov’s results on the L2-Hodge numbers, the −1-phenomenon

of the χy-genus and Hirzebruch’s proportionality principle. Similar methods can be applied

to obtain parallel results on Kähler non-elliptic manifolds. In addition to these, we term

a condition called “Kähler exactness”, which includes Kähler hyperbolic and non-elliptic

manifolds and has been used by B.-L. Chen and X. Yang in their work, and show that the

canonical bundle of a Kähler exact manifold of general type is ample. Some of its consequences

and remarks are discussed as well.

1. Introduction

Let us start the article by recalling two well-known conjectures related to the negativity of

Riemannian sectional curvature, and their connections via the notion of “Kähler hyperbolic-

ity” introduced by Gromov ([Gr91]). The first one, usually attributed to Hopf, is

Conjecture 1.1 (Hopf). The Euler characteristic χ(M) of a compact 2n-dimensional Rie-

mannian manifold M with sectional curvature K < 0 (resp. K ≤ 0) satisfies (−1)nχ(M) > 0

(resp. (−1)nχ(M) ≥ 0).

This is true for n = 1 and 2 as the Gauss-Bonnet integrands in these two low-dimensional

cases have the desired sign ([Ch55]) but is still open in its full generality for n ≥ 3. Gromov

introduced in [Gr91] the notion of “Kähler hyperbolicity”, which includes compact Kähler

manifolds with negative (Riemannian) sectional curvature (“negatively-curved” for short) as

special cases, and showed that the Euler characteristic of Kähler hyperbolic manifolds have

the expected sign. As a consequence this settled Conjecture 1.1 for Kähler manifolds when

K < 0. By extending Gromov’s idea and notion above to nonnegative version, Cao-Xavier and

Jost-Zuo ([CX01], [JZ00]) independently introduced the concept of “Kähler non-ellipticity”

and established a parallel result and consequently settled Conjecture 1.1 in the case of K ≤ 0

for Kähler manifolds.

The second conjecture, which is due to S.-T. Yau ([Ya82, p. 678]) and can be viewed as a

generalization of the classical Mostow rigidity theorem, is
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Conjecture 1.2 (S.-T. Yau). The complex structure of a negatively-curved compact Kähler

manifold M with dimCM ≥ 2 is unique.

This was solved by F. Zheng ([Zh95]) when dimCM = 2. By introducing in [Si80] the

notion of “strongly negative curvature”, which is slightly stronger than the negativity of

sectional curvature, Y.-T. Siu showed that a compact Kähler manifold homotopy equivalent

to a compact Kähler manifold with strongly negative curvature is either holomorphic or anti-

holomorphic to it, thus establishing the most general form of Conjecture 1.2 to date.

With these materials in mind, a natural question related to negatively-curved compact

Kähler manifolds arises: whether the extra condition of Kählerness can lead to more con-

straints on their geometry and/or topology rather than merely saying that their Euler char-

acteristic has the desired sign? On the other hand, if we are really able to deduce various

geometric restrictions on them, these would provide some positive evidence towards Conjec-

ture 1.2.

Recently B.-L. Chen and X. Yang made some important progress towards this question

and the Hopf Conjecture 1.1 in two articles [CY18] and [CY17]. In the first one [CY18],

They showed that a compact Kähler manifold homotopy equivalent to a negatively-curved

compact Riemannian manifold admits a Kähler-Einstein metric of negative Ricci curvature

([CY18, Thm 1.1]). In fact they deduced this from the Aubin-Yau theorem by noting that

the canonical bundle of a Kähler hyperbolic manifold is ample ([CY18, Thm 2.11]). Thanks

to Yau’s Chern number inequality ([Ya77]), this implies that a complex n-dimensional Kähler

hyperbolic manifold M satisfies

(1.1) c2(−c1)
n−2[M ] ≥

n

2(n + 1)
(−c1)

n[M ],

with equality holds if and only if M is covered by the unit ball in C
n. In their second article

[CY17], they presented some sufficient conditions related to Kähler forms and fundamental

groups for compact Kähler manifold to be Kähler hyperbolic or non-elliptic ([CY17, Thms

1.5, 1.6, 1.7]). Consequently this settles the Hopf Conjecture 1.1 in these situations. One

of their sufficient conditions involved shall be termed “Kähler exactness” in our article (see

Definition 2.6).

The main purpose of this article is to take a step further towards this question by showing

that Kähler hyperbolic manifolds as well as Kähler non-elliptic manifolds indeed satisfy a

family of optimal hern number inequalities (Theorems 2.1 and 2.4). In addition to these,

we shall term a condition called “Kähler exactness” used in [CY17], which include Kähler

hyperbolic and non-elliptic manifolds, and show that a Kähler exact manifold of general type

has ample canonical bundle (Theorem 2.8).

Outline of this article

The rest of this article is structured as follows. In Section 2 our main results in this article

(Theorems 2.1, 2.4 and 2.8) as well as their corollaries are stated, and along this line we set up

some necessary notation and terminology. Sections 3 and 4 are devoted to some background

materials related to the proofs of main results. To be more precise, we review in Section

3 the Hirzebruch χy-genus, its −1-phenomenon and Hirzebruch’s proportionality principle,

which are the starting points of Theorem 2.1. Then in Section 4 we briefly recall the concept

of L2-Hodge numbers, the relationship with the usual Hodge numbers via Atiyah’s L2-index
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theorem, and some vanishing-type results on Kähler hyperbolic and non-elliptic manifolds.

With these preliminaries in hand, in the last Section 5 we shall give the desired proofs of main

results.
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2. Main results

Before stating the main results, let us recall several notions due to Gromov ([Gr91]) and

Hirzebruch ([Hi66]) respectively.

Assume that (M,g) is a Riemannian manifold and π : (M̃, g̃) → (M,g) the universal

covering with g̃ := π∗(g). A (necessarily exact) differential form α on (M,g) is called d-

bounded if α = dβ and the norm
∣∣β
∣∣
g
:= sup

x∈M

∣∣β(x)
∣∣
g(x)

< ∞.

A form α on (M,g) is called d̃-bounded if π∗(α) is d-bounded on (M̃ , g̃). This concept is

interesting only if M̃ is non-compact. With this understood, a compact Kähler manifold is

called Kähler hyperbolic if it admits a Kähler metric such that its associated Kähler form is

d̃-bounded ([Gr91, p. 265]). Obviously this definition is meaningful for only non-compact M̃ .

Whether or not a form α is d̃-bounded has homotopy invariance and depends only on its

cohomology class [α], provided that the manifold M in question is compact, and all bounded

closed k-forms (k ≥ 2) on a complete Riemannian manifold with sectional curvature bounded

above by a negative constant are d̃-bounded, which were all observed by Gromov in [Gr91]

and detailed proofs can be founded in [CY18]. Typical examples of Kähler hyperbolic man-

ifolds include compact Kähler manifolds homotopy equivalent to negatively-curved compact

Riemannian manifolds, compact quotients of the bounded homogeneous symmetric domains

in C
n, and their submanifolds and products ([Gr91, p. 265]).

Given a compact complex n-dimensional manifold M , one can associate to a polynomial

χy(M) ∈ Z[y], called the Hirzebruch χy-genus, in terms of their Hodge numbers hp,q(M) as

follows.

χy(M) :=

n∑

p=0

χp(M) · yp :=

n∑

p=0

[ n∑

q=0

(−1)qhp,q(M)
]
yp.(2.1)

For instance,

χy(CP
n) =

n∑

p=0

(−y)p.

It is known that these χp(M) (0 ≤ p ≤ n) are indices of some Dolbeault-type elliptic operators

and the Hirzebruch-Riemann-Roch theorem tells us that χp(M) can be expressed in terms of

rationally linear combinations of Chern numbers, and χ0(M) is nothing but the Todd genus

of M . For more details on this subject we refer the reader to Section 3.

With these concepts understood, now comes our first main result in this article.
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Theorem 2.1. Suppose that M is a complex n-dimensional Kähler hyperbolic manifold. Then

M satisfies [n2 ] + 1 optimal Chern number inequalities

Ai(c1, . . . , cn)[M ] ≥ (−1)nAi

((n+ 1

1

)
, . . . ,

(
n+ 1

n

))

= (−1)nAi(c1, . . . , cn)[CP
n], 0 ≤ i ≤ [

n

2
],

(2.2)

which can be determined by a recursive algorithm, and whose first three terms read as follows





A0(c1, . . . , cn)[M ] = (−1)ncn[M ] ≥ n+ 1,

A1(c1, . . . , cn)[M ] = (−1)n
[
n(3n−5)

2 cn + c1cn−1

]
[M ] ≥ 2(n− 1)n(n + 1),

A2(c1, . . . , cn)[M ] =(−1)n
[
n(15n3 − 150n2 + 485n − 502)cn + 4(15n2 − 85n+ 108)c1cn−1

+ 8(c21 + 3c2)cn−2 − 8(c31 − 3c1c2 + 3c3)cn−3

]
[M ]

≥(−1)nA2

((n+ 1

1

)
, . . . ,

(
n+ 1

n

))
.

Furthermore,

(1) all the equality cases in (2.2) hold if M is a compact ball quotient with χ0 = (−1)n,

(2) the i-th equality case in (2.2) holds if and only if

(2.3) χp(M) = (−1)n−p, 2i ≤ p ≤ n,

and

(3) any equality case in the first [n+1
4 ] + 1 ones in (2.2) holds if and only if

(2.4) χy(M) = (−1)nχy(CP
n).

Remark 2.2.

(1) The first inequality in (2.2),

(−1)ncn[M ] ≥ n+ 1,

is exactly an improved form of the inequality expected by the Hopf conjecture.

(2) It is interesting to see that both the equality case in (1.1) and those in (2.2) are

achieved by some compact quotients of the unit ball in C
n. Nevertheless, in contrast

to (1.1), we do not know if they are also necessary to the equality cases in (2.2).

(3) As i increases the formula Ai(c1, . . . , cn) involves progressively more and more Chern

numbers, which shall be clear in Section 3.

Compact Kähler manifolds homotopy equivalent to negatively-curved compact Riemannian

manifolds are Kähler hyperbolic, as previously mentioned. So Theorem 2.2 yields the following

consequence, which gives constraints on possible complex structures on such manifolds and

thus provides some positive evidence to Yau’s Conjecture 1.2.
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Corollary 2.3. Compact Kähler manifolds homotopy equivalent to negatively-curved com-

pact Riemannian manifolds satisfy the Chern number inequalities in (2.2) and various char-

acterizations of their equality cases. In particular, they satisfy




(−1)ncn[M ] ≥ n+ 1,

(−1)n
[
n(3n−5)

2 cn + c1cn−1

]
[M ] ≥ 2(n − 1)n(n+ 1).

When n ≥ 2 (resp. n ≥ 3), the first (resp. second) equality holds if and only if χy(M) =

(−1)nχy(CP
n).

In order to attack Conjecture 1.1 in the Kählerian case when K ≤ 0 by extending Gro-

mov’s idea, Cao-Xavier and Jost-Zuo ([CX01], [JZ00]) independently introduced the concept

of “Kähler non-ellipticity”, which includes nonpositively curved compact Kähler manifolds,

and showed that their Euler characteristics have the desired property. A (necessarily exact)

differential form α on a complete Riemannian manifold (M,g) is called d-sublinear if α = dβ

and ∣∣β(x)
∣∣
g(x)

≤ c
[
1 + ρ(x, x0)

]
, ∀ x ∈ M,

where c is a constant and ρ(x, x0) stands for the Riemannian distance between x and a base

point x0. Clearly a d-bounded form is d-sublinear. This α is called d̃-sublinear if π∗(α) is

d-sublinear on the universal covering (M̃ , g̃). A compact Kähler manifold is called Kähler

non-elliptic if it admits a Kähler metric such that its associated Kähler form is d̃-sublinear.

Similar to Kähler hyperbolic manifolds, it also turns out that any bounded and closed form

on a complete nonpositively-curved Riemannian manifold is d̃-sublinear and the property of

d̃-sublinearity has homotopy invariance ([CX01]).

With these understood, we have the following result for Kähler non-elliptic manifolds by

applying a similar idea to the proof in Theorem 2.1.

Theorem 2.4. Any Kähler non-elliptic manifold satisfy the following [n2 ] + 1 sharp Chern

number inequalities:

(2.5) (−1)nAi(c1, . . . , cn)[M ] ≥ 0, 0 ≤ i ≤ [
n

2
].

In particular, these inequalities hold for compact Kähler manifolds homotopy equivalent to

nonpositively-curved compact Riemannian manifolds.

Remark 2.5. The sharpness of (2.5) can be easily seen from the examples of complex tori

as they are Kähler non-elliptic and their Chern numbers vanish.

In addition to the main results in [Gr91], Gromov showed that a Kähler hyperbolic manifold

is of general type, and asked if its canonical bundle is ample ([Gr91, p. 267]). This was

affirmatively answered by Chen and Yang in [CY18, Thm 2.11] based on some observations

in algebraic geometry and they applied it to deduce one of their main results ([CY18, Thm

1.1]).

Our second main purpose in this article is to generalize the concepts of Kähler hyperbolicity

and non-ellipticity by terming a condition by “Kähler exactness”, which has been used in

[CY17], and show that a Kähler exact manifold of general type has ample canonical bundle.

Recall that on a compact Kähler manifold any Kähler form is closed but can never be exact,

which motivates us to introduce the following notion.
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Definition 2.6. Let ω be a Kähler form on a compact Kähler manifold M and π : M̃ −→ M

the universal covering. This ω is called a Kähler exact form if π∗ω is an exact 2-form on M̃ ,

i.e., there exists a (globally defined) 1-form β on M̃ such that π∗ω = dβ. A compact Kähler

manifold is called Kähler exact if it admits a Kähler exact form.

Remark 2.7.

(1) M is compact exact only if its universal covering M̃ is non-compact.

(2) By definitions Kähler hyperbolic and non-elliptic manifolds, and particularly compact

Kähler manifolds homotopy equivalent to nonpositively curved compact Riemannian

manifolds are Kähler exact. Chen-Yang gave in [CY17] some sufficient conditions for

Kähler exact manifolds to be Kähler hyperbolic or non-elliptic.

(3) It is immediate from the definition that compact complex submanifolds of Kähler

exact manifolds are still Kähler exact.

Inspired by [CY18, Thm 2.11], we shall show in Section 5 the following result.

Theorem 2.8. Suppose that M is a Kähler exact manifold of general type. Then the canonical

bundle of M is ample. This implies that M admits a Kähler-Einstein metric of negative Ricci

curvature and satisfies the Chern number inequality (1.1).

An immediate corollary of Theorem 2.8 is the following result, which is the counterpart to

[CY18, Thm 1.1].

Corollary 2.9. If a compact Kähler manifold of general type is homotopy equivalent to a

nonpositively curved compact Riemannian manifold, then its canonical bundle is ample and

thus it admits a Kähler-Einstein metric of negative Ricci curvature and satisfies the Chern

number inequality (1.1).

Theorem 2.8 and Corollary 2.9 are closely related to two conjectures of S. Kobayashi and F.

Zheng respectively. Recall that a compact complex manifold M is called Kobayashi hyperbolic

if every holomorphic map f : C → M is constant. The following two conjectures related to

Kobayashi hyperbolicity are due to S. Kobayashi ([Ko98, p. 370]) and F. Zheng ([Zh02, Thm

2]) respectively.

Conjecture 2.10 (Kobayashi). If a compact Kähler manifold is Kobayashi hyperbolic, then

its canonical bundle must be ample.

Conjecture 2.11 (Zheng). If a nonpositively curved compact Kähler manifold is of general

type, it must be Kobayashi hyperbolic.

Conjecture 2.11 was verified by Zheng himself in dimension two ([Zh02, Thm 2]). Gromov

pointed out in [Gr91, p. 266] that Kähler hyperbolicity implies Kobayashi hyperbolicity. We

refer the reader to [CX01, Thm 1.2] for an extension and a detailed proof. If Conjecture

2.10 were true, then [CY18, Thm 2.11] would follow immediately. In view of the fact that

Kähler exact manifolds to some extent are generalizations of Kähler hyperbolic and non-

elliptic manifolds, Theorem 2.8 presents some positive evidence to Conjecture 2.10. If both

Conjectures 2.10 and 2.11 were true, then a nonpositively curved compact Kähler manifold

of general type would has ample canonical bundle, which is a special case of Corollary 2.9

and has been observed in [Zh02, §2.4]. So Corollary 2.9 presents some positive evidence to

Conjectures 2.10 and 2.11 somehow.
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3. Hirzebruch’s χy-genus and proportionality principle

We briefly review the notion of the χy-genus, its −1-phenomenon and Hirzebruch’s propor-

tionality principle respectively in the following three subsections.

3.1. The Hirzebruch χy-genus. The χy-genus was first introduced by Hirzebruch in his

seminal book [Hi66] for projective manifolds and can be calculated via his celebrated Hirzebruch-

Riemann-Roch theorem. The later Atiyah-Singer index theorem implies that it still holds for

general compact (almost-)complex manifolds. To be more precise, let (M,J) be a compact

complex manifold with dimCM = n and complex structure J . As usual we denote by ∂̄ the

d-bar operator which acts on the complex vector spaces Ωp,q(M) (0 ≤ p, q ≤ n) of (p, q)-type

complex-valued differential forms on (M,J). The choice of a Hermitian metric on (M,J)

enables us to define the formal adjoint ∂̄∗ of the ∂̄-operator. Then for each 0 ≤ p ≤ n, we

have the following Dolbeault-type elliptic operator Dp:

(3.1) Dp := ∂̄ + ∂̄∗ :
⊕

q even

Ωp,q(M) −→
⊕

q odd

Ωp,q(M),

whose index is denoted by χp(M) in the notation of Hirzebruch in [Hi66]. The Hirzebruch

χy-genus, denoted by χy(M), is the generating function of these indices χp(M):

χy(M) :=

n∑

p=0

χp(M) · yp.

By definition

χp(M) =ind(Dp)

=dimC(kerDp)− dimC(cokerDp)

=dimC

⊕

q even

Hp,q

∂̄
(M)− dimC

⊕

q odd

Hp,q

∂̄
(M)

=

n∑

q=0

(−1)qhp,q(M),

(3.2)

where Hp,q

∂̄
(M) are the spaces of complex-valued ∂̄-harmonic forms and hp,q(M) the Hodge

numbers of M . Consequently χy(M) has the desired expression (2.1):

χy(M) =

n∑

p=0

[ n∑

q=0

(−1)qhp,q
]
yp.

The general form of the Hirzebruch-Riemann-Roch theorem, which is a corollary of the

Atiyah-Singer index theorem, allows us to compute χy(M) in terms of the Chern numbers of

M as follows

(3.3) χy(M) =

∫

M

n∏

i=1

xi(1 + ye−xi)

1− e−xi
,

where x1, . . . , xn are formal Chern roots of (M,J), i.e., the i-th elementary symmetric poly-

nomial of x1, . . . , xn represents the i-th Chern class of (M,J):

c1 = x1 + · · ·+ xn, c2 =
∑

1≤i<j≤n

xixj, . . . , cn = x1x2 · · · xn.
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This χy(M) famously satisfies

χy(M) = (−y)n · χy−1(M),

which are equivalent to the relations χp = (−1)nχn−p and can be derived from either (3.3) or

the Serre duality for the Hodge numbers ([GH78, p. 102]):

χp =

n∑

q=0

(−1)qhp,q =

n∑

q=0

(−1)qhn−p,n−q

=(−1)n
n∑

q=0

(−1)qhn−p,q

=(−1)nχn−p.

(3.4)

For three values of y, this χy-genus is an important invariant: χy(M)
∣∣
y=−1

is the Euler

characteristic of M , χy(M)
∣∣
y=0

= χ0(M) is the Todd genus of M , and χy(M)
∣∣
y=1

is the

signature of M .

3.2. The −1-phenomenon. The purpose of this subsection is to recall a −1-phenomenon

for the χy-genus.

Note that when n are small, the formulas of χp in terms of rationally linear combinations

of Chern numbers can be explicitly written down. For example, χ0 were listed in [Hi66, p. 14]

when n ≤ 6. However, these formulas become more and more complicated as n increases. So

for general n there are no explicit formulas for these χp. Nevertheless, as we have mentioned,

when evaluated at y = −1, χy(M)
∣∣
y=−1

gives the Euler characteristic, which is equal to

the top Chern number cn[M ]. Note that χy(M)
∣∣
y=−1

is exactly the constant term in the

Taylor expansion of χy(M) at y = −1. Indeed, several independent articles ([NR79], [LW90],

[Sa96]), with different backgrounds, observed that, when expanding the right-hand side of

(3.3) at y = −1, its first few coefficients for general n have explicit formulas in terms of Chern

numbers. More precisely, we have the following proposition.

Proposition 3.1. If we denote by Kj(M) (0 ≤ j ≤ n) the coefficients in the Taylor expansion

of χy(M) at y = −1, i.e.,

(3.5)

∫

M

n∏

i=1

xi(1 + ye−xi)

1− e−xi
=:

n∑

j=0

Kj(M) · (y + 1)j ,

then we have

(1) any K2i+1 is a linear combination of K2j for 0 ≤ j ≤ i and so we are only interested

in K2i for 0 ≤ i ≤ [n2 ],

(2) only the Chern classes

c1, c2, . . . , c2i−1, cn−2i+1, cn−2i+2, . . . , cn

are involved in the formula K2i,

(3) there is a recursive algorithm to determine the formulas K2i,

and
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(4) the first few terms are given by





K0(M) = cn[M ],

K1(M) = −1
2ncn[M ],

K2(M) = 1
12

[
n(3n−5)

2 cn + c1cn−1

]
[M ]

K3(M) = − 1
24

[
n(n−2)(n−3)

2 cn + (n− 2)c1cn−1

]
[M ]

K4(M) =
1

5760

[
n(15n3 − 150n2 + 485n − 502)cn + 4(15n2 − 85n + 108)c1cn−1

+ 8(c21 + 3c2)cn−2 − 8(c31 − 3c1c2 + 3c3)cn−3

]
[M ].

Proof. (1) can be seen in [Li17, Lemma 2.1]. (2) is presented in [Sa93, p. 300]. A recursive

algorithm for calculating Kj was described in [LW90, p. 144]. The formulas Kj for j ≤ 6 are

presented respectively in [LW90, p. 141-143], [Sa96, p. 145] and [Sa93, p. 300]. �

For the reader’s convenience, we would like to end this subsection by briefly describing the

history of the discoveries for these formulas and their applications, due to the author’s best

knowledge.

The formula K2 appears implicitly in [NR79, p. 18] and explicitly in [LW90, p. 141-143].

Narasimhan-Ramanan applied K2 to give a topological restriction on some moduli spaces

of stable vector bundles over Riemann surfaces. Libgober-Wood applied K2 to prove the

uniqueness of the complex structure on Kähler manifolds of certain homotopy types [LW90,

Thms 1, 2]. Salamon applied K2 to obtain a restriction on the Betti numbers of hyperKähler

manifolds ([Sa96, Coro. 3.4, Thm 4.1]). In [Hi00], Hirzebruch applied K1, K2 and K3 to

deduce a divisibility result on the Euler number of almost-complex manifolds with c1 = 0.

Inspired by these, the author investigated in [Li15] and [Li17] similar phenomena in pluri-χy-

genus and elliptic genus and uniformly termed them by “−1-phenomena”. In a recent article

[De15], Debarre extended the aforementioned Libgober-Wood’s ideas to refine their results as

well as presented the formulas Kj when n ≤ 9.

3.3. Hirzebruch’s proportionality principle. Let X be a bounded homogeneous symmet-

ric domain in C
n, which is a non-compact Hermitian symmetric space. Dual to X there is a

naturally associated compact type Hermitian symmetric space X̃ . Assume that Γ is a discrete

group of automorphisms of X which has no fixed points and for which X/Γ is a compact quo-

tient manifold. Then the celebrated Hirzebruch’s proportionality principle asserts that the

corresponding Chern numbers of X/Γ and X̃ are proportional with an explicitly determined

proportionality factor ([Hi58, p. 137], [Hi57], [Hi66, §22.3]).

Theorem 3.2 (Hirzebruch’s proportionality principle). For each partition λ of weight n,

denote by cλ(X/Γ) and cλ(X̃) the respective Chern numbers of X/Γ and X̃ with respect to the

partition λ. Then we have

cλ(X/Γ) = χ0(X/Γ) · cλ(X̃), ∀ λ,
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where the proportionality factor is precisely the Todd genus χ0(X/Γ) of X/Γ. In particular,

(3.6) χy(X/Γ) = χ0(X/Γ) · χy(X̃).

What we need in the proof of Theorem 2.1 is only a very special case of Theorem 3.2, which

we record in the following example.

Example 3.3. Take the bounded homogeneous symmetric domain X = B
n, the unit ball in

C
n. Then its compact dual is X̃ = CPn and the proportionality factor χ0(Bn/Γ) = (−1)n by

our assumption in Theorem 2.1. Therefore (3.6) implies that

χy(B
n/Γ) = (−1)n · χy(CP

n),

and consequently by Proposition 3.1 we have

(3.7) Kj(B
n/Γ) = (−1)nKj(CP

n).

4. L2-Hodge numbers and vanishing-type results

In this section we briefly review the basic facts on L2-Hodge numbers and indicate how to

apply Atiyah’s L2-index theorem to obtain the relationship between L2-Hodge numbers and

the ordinary ones. The discussions here are sketchy and only for our later purpose. For a

thorough treatment on these materials we refer the reader to the excellent book [Lü02].

4.1. L2-Hodge numbers. We assume throughout this subsection that (M,g, J) is a compact

complex n-dimensional manifold with a Hermitian metric g, and

π : (M̃, g̃, J̃) −→ (M,g, J)

its universal covering with π1(M) as an isometric group of deck transformations.

LetHp,q

(2)(M̃) be the spaces of L2-harmonic (p, q)-forms on L2Ωp,q(M̃), the squared integrable

(p, q)-forms on (M̃, g̃), and denote by

dimπ1(M)H
p,q

(2)(M̃)

the Von Neumann dimension of Hp,q

(2)(M̃) with respect to π1(M), which is a nonnegative real

number in our situation. Its precise definition is not important in our article but only the

following two basic facts are needed.

Lemma 4.1.

(4.1) dimπ1(M)H
p,q

(2)(M̃ ) = 0 ⇐⇒ Hp,q

(2)(M̃) = {0},

and dimπ1(M)(·) is additive:

(4.2) dimπ1(M)(A⊕B) = dimπ1(M)A+ dimπ1(M)B.

Then the L2-Hodge numbers of M , denoted by hp,q(2)(M), are defined to be

hp,q(2)(M) := dimπ1(M)H
p,q

(2)(M̃ ) ∈ R≥0, (0 ≤ p, q ≤ n).

It turns out that hp,q(2)(M) are independent of the Hermitian metric g and depend only on

(M,J).



KÄHLER HYPERBOLIC MANIFOLDS AND CHERN NUMBER INEQUALITIES 11

The Dolbeault-type operators Dp in (3.1) can be lifted to (M̃, g̃, J̃):

D̃p :
⊕

q even

L2Ωp,q(M̃) −→
⊕

q odd

L2Ωp,q(M̃),

and one can define the L2-index of the lifted operators D̃p by

indπ1(M)(D̃p) :=dimπ1(M)(kerD̃p)− dimπ1(M)(cokerD̃p)

=dimπ1(M)

[ ⊕

q even

Hp,q

(2)(M̃)
]
− dimπ1(M)

[ ⊕

q odd

Hp,q

(2)(M̃ )
]

=
∑

q even

dimπ1(M)H
p,q

(2)(M̃)−
∑

q odd

dimπ1(M)H
p,q

(2)(M̃)
(
by (4.2)

)

=
n∑

q=0

(−1)qhp,q(2)(M).

The celebrated L2-index theorem of Atiyah ([At76]) asserts that

ind(Dp) = indπ1(M)(D̃p)

and so we have the following crucial identities between χp(M) and the L2-Hodge numbers

hp,q(2)(M):

(4.3) χp(M) =

n∑

q=0

(−1)qhp,q(2)(M).

4.2. Vanishing and non-vanishing type results. The following result is the main theorem

in Gromov’s seminal article [Gr91, p. 283].

Theorem 4.2 (Gromov). Let M be a complex n-dimensional Kähler hyperbolic manifold.

Then the spaces of L2-harmonic (p, q)-forms on its universal covering M̃ satisfy

{
Hp,q

(2)(M̃ ) = {0}, p+ q 6= n,

Hp,q

(2)
(M̃ ) 6= {0}, p+ q = n,

which, via the fact (4.1), is equivalent to

{
hp,q
(2)

(M) = 0, p+ q 6= n,

hp,q(2)(M) > 0, p+ q = n.
(4.4)

Remark 4.3. The proof for the vanishing type results in the first situations p + q 6= n is a

direct application of the L2 version’s Lefschetz theorem and is not difficult ([Gr91, p. 273,

1.2.B]), where the existence of a d-bounded Kähler form on M̃ plays a dominant role. The

real hard part is the non-vanishing results in the second situations p+ q = n, where a careful

analysis on the lower bound of the eigenvalues of the Laplacian on L2-harmonic forms was

carried out in [Gr91, p. 274-285].
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A direct consequence of Theorem 4.2 is the solution of the Hopf conjecture in the Kählerian

case ([Gr91, p. 267]):

(−1)nχ(M) =(−1)n
∑

p

(−1)pχp(M)

=
∑

p

hp,n−p

(2) (M) > 0.
(
by (4.3) and (4.4)

)(4.5)

By extending the arguments in the proof of Theorem 4.2 in the first situations p + q 6= n,

Cao-Xavier and Jost-Zuo independently obtained the following ([CX01], [JZ00])

Theorem 4.4 (Cao-Xavier, Jost-Zuo). Let M be a complex n-dimensional Kähler non-elliptic

manifold. Then Hp,q

(2)(M̃) = {0} when p+ q 6= n, i.e.,

(4.6) hp,q(2)(M) = 0, p+ q 6= n.

This implies from (4.5) that (−1)nχ(M) ≥ 0 and thus settles the nonnegative version’s

Hopf conjecture in the Kählerian case.

5. Proofs of main results

With the background materials prepared in Sections 3 and 4, we are ready to prove our

main results in this section.

5.1. Proofs of Theorems 2.1 and 2.4. In this subsection we mainly show Theorem 2.1,

from whose process Theorem 2.4 follows easily.

Assume now that M is a complex n-dimensional Kähler hyperbolic manifold. Then

χp(M) =
n∑

q=0

(−1)qhp,q(2)(M)
(
by (4.3)

)

=(−1)n−php,n−p

(2) (M).
(
by (4.4)

)
(5.1)

Note that χp(M) is by definition an integer. On the other hand, we know from (4.4) that

hp,n−p

(2) (M) is a positive real number. Therefore the equality (5.1) implies that hp,n−p

(2) (M) is

indeed a positive integer and thus

(5.2) hp,n−p

(2) (M) ≥ 1, 0 ≤ p ≤ n.

Still following the notation in (3.5), we have

(−1)n
n∑

j=0

Kj(M) · (y + 1)j =(−1)nχy(M)

=(−1)n
n∑

p=0

χp(M) · yp

=
n∑

p=0

hp,n−p

(2) (M) · (−y)p.
(
by (5.1)

)

(5.3)
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Now comparing the coefficients of the Taylor expansion at y = −1 on both sides of (5.3)

yields

(−1)nKj(M) =

[∑n
p=0 h

p,n−p

(2)
(M)(−y)p

](j)

j!

∣∣∣
y=−1

(0! := 1)

=(−1)j
n∑

p=j

(
p

j

)
hp,n−p

(2) (M).

(5.4)

This implies that

(−1)n+jKj(M) =
n∑

p=j

(
p

j

)
hp,n−p

(2) (M)

≥

n∑

p=j

(
p

j

) (
by (5.2)

)

=(−1)j

[∑n
p=0(−y)p

](j)

j!

∣∣∣
y=−1

=(−1)j

[
χy(CP

n)
](j)

j!

∣∣∣
y=−1

=(−1)jKj(CP
n).

(5.5)

Now we define

Ai(c1, . . . , cn)[M ] := (−1)nK2i(M), 0 ≤ i ≤ [
n

2
].

Then it follows from (5.5) that

Ai(c1, . . . , cn)[M ] ≥(−1)nAi(c1, . . . , cn)[CP
n]

=(−1)nAi

((n+ 1

1

)
, . . . ,

(
n+ 1

n

))
, 0 ≤ i ≤ [

n

2
],

which produce the desired Chern number inequalities (2.2) and, together with Proposition

3.1, the formulas for the first three terms in Theorem 2.1.

Clearly the equality case in (5.5) holds if and only if

hp,n−p

(2) (M) = 1, j ≤ p ≤ n,

which, via (5.1), is equivalent to

(5.6) χp(M) = (−1)n−p, j ≤ p ≤ n,

which precisely give the equality characterization (2.3) in Theorem 2.1. Also note that, if

j ≤ [n+1
2 ], the relations χp = (−1)nχn−p in (3.4) tell us that the n− j + 1 equalities in (5.6)

indeed are equivalent to χp(M) = (−1)n−p for all p, i.e.,

χy(M) = (−1)n
n∑

p=0

(−y)n = (−1)nχy(CP
n).

This gives the desired equality characterizations in (2.4) as 2i ≤ [n+1
2 ] is equivalent to i ≤

[n+1
4 ].
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In order to complete the proof of Theorem 2.1, it suffices to show that the equality cases

in (2.2) can be realized by some compact quotients of the unit ball in C
n. But it has been

done via (3.7) by applying the Hirzebruch’s proportionality principle in Example 3.3. This

completes the proof of Theorem 2.1.

The proof above can be completely carried over to show Theorem 2.4 for Kähler non-elliptic

manifolds by applying the vanishing-type results (4.6) in Theorem 4.4. The only difference

is that in this case the conditions in (5.2) are unavailable and so accordingly the inequality

(5.5) has to be weakened to

(−1)n+jKj(M) ≥ 0,

which lead to the desired (2.5).

5.2. Proof of Theorem 2.8. Let us complete this article by proving Theorem 2.8 in this

last subsection.

It is well-known, by combining the Kodaira vanishing theorem and the Hirzebruch-Riemann-

Roch theorem, that a projective manifold with ample canonical bundle is of general type.

Conversely, the canonical bundle of a projective manifold of general type may not be ample.

The following fact says that it is the case if an extra condition is assumed.

Lemma 5.1. If a projective manifold of general type contains no rational curves, then its

canonical bundle is ample.

Proof. This fact should be well-known to experts. For example, this was listed in [De01, p.

219] as an exercise with hints and the details were carried out in the proof in [CY18, Thm

2.11]. �

With this lemma in hand, we now proceed to prove Theorem 2.8.

Proof. First note that the manifold M in question is projective. Indeed, M being of general

type implies that its canonical bundle is big and soM is Moishezon ([MM07, p. 88]). Together

with the Kählerness condition we conclude from Moishezon’s theorem that M is projective

(cf. [MM07, p. 95]).

In view of Lemma 5.1, it now suffices to show that M contains no rational curves. The

following arguments are parallel to those in [CY18, Thm 2.11].

Since M is Kähler exact, there exists a Kähler form ω on it such that π∗ω = dβ for some

1-form β on M̃ . Assume that f : CP 1 −→ M is a holomorphic map and we want to show

that f is a constant map, i.e., f∗(ω) ≡ 0. Let π : M̃ −→ M be the universal covering. Due

to the simple-connectedness of CP 1 the map f admits a lifting f̃ to M̃ ,

M̃

π

��
CP 1

f̃

==
④
④
④
④
④
④
④
④

f
// M,

i.e., f = π ◦ f̃ . Therefore
∫

CP 1

f∗ω =

∫

CP 1

(π ◦ f̃)∗(ω) =

∫

CP 1

f̃∗(π∗ω) =

∫

CP 1

f̃∗(dβ) =

∫

CP 1

d(f̃∗β) = 0.
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This means that f∗(ω) ≡ 0 and so f is a constant map, which completes the proof of Theorem

2.8 and this article. �

References

[At76] M. Atiyah: Elliptic operators, discrete groups and von Neumann algebras, Soc. Math. France,
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