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PHASE RETRIEVAL FROM THE NORMS OF AFFINE

TRANSFORMATIONS

MENG HUANG AND ZHIQIANG XU

Abstract. In this paper, we consider the generalized phase retrieval from affine mea-
surements. This problem aims to recover signals x ∈ F

d from the magnitude of the
affine transformations yj = ‖M∗

j x+ bj‖
2
2, j = 1, . . . ,m, where Mj ∈ F

d×r,bj ∈ F
r,F ∈

{R,C} and we call it as generalized affine phase retrieval. We develop a framework for
generalized affine phase retrieval with presenting necessary and sufficient conditions for
{(Mj ,bj)}

m
j=1 having generalized affine phase retrieval property. We also establish results

on minimal measurement number for generalized affine phase retrieval. Particularly, we
show if {(Mj ,bj)}

m
j=1 ⊂ F

d×r × F
r has generalized affine phase retrieval property, then

m ≥ d+⌊d/r⌋ for F = R (m ≥ 2d+⌊d/r⌋ for F = C ). We also show that the bound is tight
provided r | d. These results imply that one can reduce the measurement number by rais-
ing r, i.e. the rank of Mj . This highlights a notable difference between generalized affine
phase retrieval and generalized phase retrieval. Furthermore, using tools of algebraic ge-
ometry, we show that m ≥ 2d (resp. m ≥ 4d−1) generic measurements A = {(Mj , bj)}

m
j=1

have the generalized phase retrieval property for F = R (resp. F = C).

1. Introduction

1.1. Phase retrieval. Phase retrieval aims to recover a signal x ∈ F
d from the measure-

ments |〈aj ,x〉|, j = 1, . . . ,m, where F = R or C and aj ∈ F
d are the measurement vectors.

Phase retrieval is raised in many areas such as X-ray crystallography [13,16], microscopy [15],

astronomy [8], coherent diffractive imaging [11, 17] and optics [19]. To state conveniently,

set A := (a1, . . . ,am) and MA(x) := (|〈a1,x〉|, . . . , |〈am,x〉|) ∈ R
m. Noting that for any

c ∈ F with |c| = 1 we have MA(x) = MA(cx) and hence we can only hope to recover x up to

a unimodular constant. If MA(x) = MA(y) implies x ∈ {cy : c ∈ F, |c| = 1}, we say A has

phase retrieval property for Fd. A fundamental problem in phase retrieval is to give the min-

imal m for which there exists A = (a1, . . . ,am)⊤ ∈ F
m×d which has phase retrieval property

for F
d. For the case F = R, it is well known that the minimal measurement number m is

2d− 1 [1]. For the complex case F = C, this question remains open. Conca, Edidin, Hering

and Vinzant [6] proved m ≥ 4d−4 generic measurement vectors A = (a1, . . . ,am)⊤ ∈ C
m×d

Zhiqiang Xu was supported by NSFC grant (11422113, 91630203, 11331012) and by National Basic
Research Program of China (973 Program 2015CB856000).
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have phase retrieval property for Cd and they furthermore show that 4d− 4 is sharp if d is

in the form of 2k +1, k ∈ Z+. In [18], for the case where F = C and d = 4, Vinzant present

11 = 4d− 5 < 4d− 4 measurement vectors which has phase retrieval property for C4 which

implies that 4d − 4 is not sharp for some dimension d. Beyond the minimal measurement

number problem, one also developed many efficient algorithms for recovering x from MA(x)

(see [4, 5, 10]).

1.2. Generalized phase retrieval and affine phase retrieval. A generalized version

of phase retrieval, which is called as generalized phase retrieval, was introduced by Wang

and Xu [20]. In the generalized phase retrieval, one aims to reconstruct x ∈ F
d through

quadratic samples x∗A1x, . . . ,x
∗Amx where Aj ∈ F

d×d are Hermitian matrix for F = C

(symmetric matrix for F = R). Set A := (Aj)
m
j=1 and MA(x) := (x∗A1x, . . . ,x

∗Amx).

We say A has generalized phase retrieval property if MA(x) = MA(y) implies that x ∈

{cy : c ∈ F, |c| = 1}. In [20], Wang and Xu show the fantastic connection among phase

retrieval, nonsingular bilinear form and embedding. They also study the minimal m for

which there exists A = (Aj)
m
j=1 which has generalized phase retrieval property. Particularly,

they show that for the case F = C, the measurement number m ≥ 4d − 2 − 2α where α

denotes the number of 1’s in the binary expansion of d − 1. If take Aj = aja
∗
j , then

the generalized phase retrieval is reduced to the standard phase retrieval. Furthermore,

if we require Aj , j = 1, . . . ,m, are orthogonal projection matrices, the generalized phase

retrieval is reduced to phase retrieval by projection [2, 3]. Hence, the generalized phase

retrieval includes the standard phase retrieval as well as the phase retrieval by projection

as a special case. Both standard phase retrieval and generalized phase retrieval require the

measurement number is greater than or equal to 4d − 2 − 2α. Hence, one can not reduce

the minimal measurement number heavily by rasing the rank of Aj .

Affine phase retrieval is raised in holography [14] as well as in phase retrieval with back-

ground information [21] which aims to recover x ∈ F
d from |〈aj ,x〉+bj |, j = 1, . . . ,m, where

aj ∈ F
d and bj ∈ F. The authors of [9] develop the general framework of affine phase retrieval

with highlighting the difference between affine phase retrieval and standard phase retrieval.

Unlike the standard phase retrieval where we can only recover x up to a unimodular con-

stant, it is possible to recover x exactly in affine phase retrieval. Particularly, for the case

where F = C, the authors of [9] show that there exist m = 3d measurements {(aj , bj)}
m
j=1
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so that one can recover x from |〈aj ,x〉 + bj |, j = 1, . . . ,m. They furthermore show the

measurement number 3d is sharp for recovering x ∈ C
d from |〈aj ,x〉 + bj|, j = 1, . . . ,m.

Similarly, for the case where F = R, if was shown in [9] that m = 2d measurements are

sufficient and necessary for recovering x from |〈aj ,x〉+ bj |, j = 1, . . . ,m.

1.3. Generalized affine phase retrieval. In this paper, we consider the recovery of x ∈

F
d from the affine quadratic measurements

yj = ‖M∗
j x+ bj‖

2
2, j = 1, . . . ,m,

where Mj ∈ F
d×r and bj ∈ F

r. Set A = {(Mj ,bj)}
m
j=1 ⊂ F

d×r × F
r, we can view A as a

point in F
m(d×r) × F

mr. Define the map MA : Fd → R
m by

(1.1) MA(x) = (‖M∗
1x+ b1‖

2
2, . . . , ‖M

∗
mx+ bm‖22).

Our aim is to study whether a signal x ∈ F
d can be uniquely reconstructed from MA(x).

To state conveniently, we introduce the definition of the generalized affine phase retrieval

property.

Definition 1.1. Let r ∈ Z≥1 and A = {(Mj ,bj)}
m
j=1 ⊂ F

d×r × F
r. We say A has the

generalized affine phase retrieval property if MA is injective on F
d.

We next introduce the connection between generalized affine phase retrieval and gener-

alized phase retrieval. Note that

(1.2) yj = ‖M∗
j x+ bj‖

2
2 = x̃∗Aj x̃, j = 1, . . . ,m,

where

x̃ =

(
x

1

)
and Aj =

(
MjM

∗
j Mjbj

(Mjbj)
∗ b∗

jbj

)
.

The (1.2) shows that generalized affine phase retrieval can be reduced to recover x̃ ∈ F
d+1

from x̃∗Aj x̃, j = 1, . . . ,m. Since we already know the last entry of x̃ is 1, we can recover

x̃ from x̃∗Aj x̃, j = 1, . . . ,m exactly. Hence, the generalized affine phase retrieval can be

considered as the extension of both the generalized phase retrieval and the affine phase

retrieval.
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1.4. Continuous map. Note that x ∈ R
d has d real variables (2d real variables for the

complex case). Naturally, one may be interested in whether it is possible to recover x ∈ R
d

from d nonnegative measurements (2d nonnegative measurements for F = C). We state

the question as follows. For j = 1, . . . ,m, suppose that fj : F
d → R+ is a continuous

nonnegative function, i.e. fj(x) ≥ 0. For x ∈ F
d, set

(1.3) F(x) := (f1(x), . . . , fm(x)) ∈ R
m
+ .

One may be interested in the question:What is the smallest m so that F is injective on R
d?

Under some mild conditions for F, we show that m ≥ d+1 is necessary for F being injective

on R
d (m ≥ 2d+ 1 for Cd). As we will show later, there exists {(Aj ,bj)}

m
j=1 ⊂ R

d×d × R
d

with m = d + 1 so that MA is injective on R
d. This implies that the generalized affine

phase retrieval can achieve the lower bound m = d+ 1. A similar conclusion also holds for

the complex case.

1.5. Our contribution. In this paper, we develop the framework of the generalized affine

phase retrieval. Particularly, we focus on the number of measurements needed to achieve

generalized affine phase retrieval. We first present some equivalent conditions and then

study the minimal measurement number to guarantee the generalized affine phase retrieval

property for both real and complex signals. For F = R, we show that m ≥ d +
⌊
d
r

⌋
(m ≥

2d+
⌊
d
r

⌋
for F = C) is necessary for there existing measurements {(Mj ,bj)}

m
j=1 ⊂ F

d×r×F
r

which have this property. We also show that the bound is tight provided d/r ∈ Z. Compared

with the generalized phase retrieval, the generalized affine phase retrieval can reduce the

measurement number heavily by rasing the rank of Mj. This also highlights a notable

difference between the generalized affine phase retrieval and generalized phase retrieval.

Using the tools developed in [1, 6, 20], we show that m ≥ 2d generic measurements

{(M1,b1), . . . , (Mm,bm)} ∈ F
m(d×r)×mr for F = R (m ≥ 4d− 1 for F = C) can do general-

ized affine phase retrieval for Fd.

2. The minimal measurement number for Continuous map

Recall that F : Fd → R
m
+ is a continuous map. The next theorem shows that the necessary

condition for F being injective is m ≥ d+ 1 under some mild condition for F(x).
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Theorem 2.1. Suppose that F : Fd → R
m
+ is a continuous map which satisfies

(2.1) lim
R→+∞

inf‖x‖≥R‖F(x)‖ = +∞.

Then if m = d and F = R (m = 2d for F = C), then F is not injective on F
d.

Proof. Note that Cd ∼= R
2d. We just need consider the case where F = R. To this end, we use

S
d to denote the d-sphere and use N to denote the north pole of Sd. Let g : Rd → S

d \ {N}

be the natural homeomorphism between R
d and S

d \ {N}. Then Fg := g ◦ F ◦ g−1 is the

operator which maps Sd \ {N} to g(Rd
+) ⊂ S

d \ {N}. Set

F̃g(x) :=

{
Fg(x), x ∈ S

d \ {N}
x, x = N

.

Since F satisfies (2.1), F̃g is continuous on S
d. Note that F̃g(S

d) ⊂ g(Rd
+) ∪ {N}. Thus

the range of F̃g is not the whole S
d, which means that F̃g(S

d) →֒ R
d. We now get a

continuous map from S
d to R

d and we abuse the notation and still use F̃g to denote the

map. By Borsuk-Ulam theorem, there exists {x,−x} ⊂ S
d such that F̃g(x) = F̃g(−x). Let

y1 = g−1(x) and y2 = g−1(−x), and then F(y1) = F(y2) since g is injective. Now, we

claim that y1 6= ∞ and y2 6= ∞. Indeed, if y1 = ∞, then x = N since x = g(y1). Hence

−x is the south pole which implies that F(y2) is finite since y2 = g−1(−x). Hence, we find

two points y1 6= y2 ∈ R
d, but F(y1) = F(y2), which arrives at the conclusion. �

Remark 2.2. In Theorem 2.1, we require that the image of F = (f1, . . . , fm) is a subset

of Rd
+. If we remove the requirement of fj(x) ≥ 0, then there exists a map F : Rd → R

d

which is injective on R
d. In fact, we just take F(x) = (〈a1,x〉, . . . , 〈ad,x〉) where aj ∈ R

d

satisfying span{a1, . . . ,ad} = R
d, and then F is injective on R

d. Moreover, if we remove

the condition (2.1), we can set F(x) := (exp(x1), . . . , exp(xd)) which is also injective on R
d.

3. Generalized affine phase retrieval for real signals

In this section, we consider the generalized affine phase retrieval for real signals. We first

state several equivalent conditions for the generalized affine phase retrieval. Suppose that

M ∈ R
d×r and b ∈ R

r. Then the following formula is straightforward to check:

(3.1) ‖M⊤x+ b‖22 − ‖M⊤y + b‖22 = 4
(
u⊤MM⊤v + (Mb)⊤v

)
for any x,y ∈ R

d

where u = 1
2(x+ y) and v = 1

2(x− y).
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Theorem 3.1. Suppose that r ∈ Z≥1. Let A = {(Mj ,bj)}
m
j=1 ⊂ R

d×r × R
r. Then the

followings are equivalent:

(1) A has the generalize affine phase retrieval property for R
d.

(2) For any u,v ∈ R
d and v 6= 0, there exists a j with 1 ≤ j ≤ m such that

u⊤MjM
⊤
j v + (Mjbj)

⊤v 6= 0.

(3) span{MjM
⊤
j u+Mjbj}

m
j=1 = R

d for any u ∈ R
d.

(4) The Jacobian of MA has rank d for all x ∈ R
d.

Proof. (1)⇔(2). Assume that there exist x 6= y in R
d such that MA(x) − MA(y) = 0.

Then from (3.1) for all j we have

‖M⊤
j x+ bj‖

2
2 − ‖M⊤

j y+ bj‖
2
2 = 4(u⊤MjM

⊤
j v + (Mjbj)

⊤v) = 0.

Note that v 6= 0 and then we conclude a contradiction with (2). It means that (2) ⇒ (1).

The converse also follows from the same argument.

(2)⇔(3). If for some u such that span{MjM
⊤
j u +Mjbj}

m
j=1 6= R

d, then there exists a

v 6= 0 such that v ⊥ span{MjM
⊤
j u+Mjbj}

m
j=1. It implies that u⊤MjM

⊤
j v+(Mjbj)

⊤v = 0

for all j = 1, . . . ,m. This is a contradiction. The converse clearly also holds.

(3)⇔(4). Note that the Jacobian J(x) of the map MA at x ∈ R
d is exactly

J(x) = 2[M1M
⊤
1 x+M1b1, . . . ,MmM⊤

mx+Mmbm].

Thus (3) is equivalent to that the rank of J(x) is d for all x ∈ R
d. �

Corollary 3.2. Suppose that r ∈ Z≥1 and A = {(Mj ,bj)}
m
j=1 where (Mj ,bj) ∈ R

d×r ×R
r.

If A has generalized affine phase retrieval property for R
d then m ≥ d+

⌊
d
r

⌋
.

Proof. To this end, we just need show that if m ≤ d +
⌊
d
r

⌋
− 1, then A is not generalized

affine phase retrievable for Rd. When r ≥ d+1, the conclusion follows from (3) in Theorem

3.1 directly. Hence, we only consider the case where r ≤ d. A simple observation is that

there exists u ∈ R
d such that M⊤

j u+bj = 0, j = 1, . . . ,
⌊
d
r

⌋
. Thus, if m ≤

⌊
d
r

⌋
+ d− 1 then

span{MjM
⊤
j u+Mjbj}

m
j=1 = span{MjM

⊤
j u+Mjbj}

m
j=⌊ d

r ⌋+1
6= R

d.

According to (3) in Theorem 3.1, we arrive at the conclusion. �
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According to the above corollary, if {(Aj ,bj)}
m
j=1 is generalized affine phase retrievable

for Rd then m ≥ d+
⌊
d
r

⌋
. We next show the bound d+

⌊
d
r

⌋
is tight provided r | d. To this

end, we introduce the following lemma:

Lemma 3.3. Suppose that b1, . . . ,br+1 ∈ R
r satisfy

(3.2) span{b2 − b1,b3 − b1, . . . ,br+1 − b1} = R
r.

Then x = y if and only if ‖x+ bj‖2 = ‖y + bj‖2 for all j = 1, . . . , r + 1 where x,y ∈ R
r.

Proof. We denote z := x− y ∈ R
r and t := (‖x‖22 − ‖y‖22)/2. Then ‖x+ bj‖2 = ‖y + bj‖2

is equivalent to b⊤
j z + t = 0 for all j = 1, . . . , r + 1. To this end, we just need show that

‖x+ bj‖2 = ‖y + bj‖2 for all j = 1, . . . , r+ 1 implies x = y. According to (3.2), the linear

system 


b⊤
1 1
...

...
b⊤
r+1 1




(
z

t

)
= 0

has only zero solution, i.e., (z, t) = 0, which implies x = y. �

Theorem 3.4. Suppose that r ∈ Z≥1 and m ≥ d +
⌊
d
r

⌋
+ ǫd,r where ǫd,r = 0 if d/r ∈ Z

and 1 if d/r /∈ Z. Then there exist {(Mj ,bj)}
m
j=1 ⊂ R

d×r ×R
r which has generalized affine

phase retrieval property for R
d.

Proof. We set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,

⌊
d

r

⌋

and

T⌊ d
r ⌋+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

Note that if d/r is an integer, then T⌊ d
r ⌋+1 = ∅. For x ∈ R

d, set xTt := xITt where ITt

denotes the indicator function of the set Tt (namely ITt(s) = 1 if s ∈ Tt and 0 if s /∈ Tt).

Similarly, we use (Mj)Tt ∈ R
r×r to denote a submatrix of Mj ∈ R

d×r with row indexes in

Tt. We assume that {(Mj ,bj)}
m
j=1 satisfy the following conditions:

(i) The matrix (Mj)Tt = Ir and Mj \ (Mj)Tt is a zero matrix for j = (t − 1)(r + 1) +

1, . . . , t(r + 1) and t = 1, . . . , ⌊d/r⌋, where Ir ∈ R
r×r is the identity matrix.

(ii) Set b(t−1)(r+1)+k = b′
k for k = 1, . . . , r+1, t = 1, . . . , ⌊d/r⌋. The vectors b′

1, . . . ,b
′
r+1 ∈

R
r satisfy span{b′

2 − b′
1,b

′
3 − b′

1, . . . ,b
′
r+1 − b′

1} = R
r.
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Then, based on Lemma 3.3, for each t = 1, . . . , ⌊d/r⌋, we can recover xTt from ‖M⊤
j x+ bj‖2, j =

(t−1)(r+1)+1, . . . , t(r+1). Hence, when d/r ∈ Z, we can recover x = xT1 + · · ·+xT(d/r+1)

from ‖Mjx+ bj‖2, j = 1, . . . ,m where m = (r + 1) ⌊d/r⌋ = d+ ⌊d/r⌋.

When d/r is not an integer, we need consider the recovery of xT⌊d/r⌋+1
. Note that

#T⌊d/r⌋+1 = d − r ⌊d/r⌋. Similar as before, we can construct matrix Mj ∈ R
d×r, and

bj ∈ R
r, j = ⌊d/r⌋ (r + 1) + 1, . . . , ⌊d/r⌋ + d + 1 so that one can recover xT⌊d/r⌋+1

from

‖M⊤
j x+ bj‖2, j = ⌊d/r⌋ (r+1)+1, . . . , ⌊d/r⌋+d+1. Combining the measurement matrices

above, we obtain the measurement numberm = ⌊d/r⌋ (r+1)+d−r ⌊d/r⌋+1 = d+⌊d/r⌋+1

is sufficient to recover x provided d/r is not an integer. �

Remark 3.5. If we take r = d in Theorem 3.4, we can construct m = d + 1 matrices

{(Mj ,bj)}
m
j=1 so that MA(x) = (‖M∗

1x + b1‖
2
2, . . . , ‖M

∗
mx + bm‖22) is injective on R

d.

Hence, generalized affine phase retrieval can achieve the lower bound m = d + 1 which is

presented in Theorem 2.1.

As shown in [20, Theorem 2.3], the measurements matrices which have generalize phase

retrieval property is an open set. The following theorem shows that the set of A having

generalized affine phase retrieval property is not an open set in R
m(d×r) ×R

mr. The result

shows a difference between generalized phase retrieval and generalized affine phase retrieval.

Theorem 3.6. Let r ∈ Z≥1 and m ≥ d+
⌊
d
r

⌋
+ǫd,r where ǫd,r = 0 if d/r ∈ Z and 1 if d/r /∈ Z.

Then the set of generalized affine phase retrieval {(M1,b1), . . . (Mm,bm)} ∈ R
m(d×r)×R

mr

is not an open set in R
m(d×r) × R

mr.

Proof. To this end, we only need to find a measurement set {(M1,b1), . . . , (Mm,bm)} ∈

R
m(d×r)×R

mr which has generalized affine phase retrieval property for Rd, but for any ǫ > 0

there exists a small perturbation measurement set {(M̃1,b1), . . . , (M̃m,bm)} ∈ R
m(d×r) ×

R
mr with ‖Mj − M̃j‖F ≤ ǫ which is not generalized affine phase retrievable.

We first consider the case where r = d. Without loss of generality we only need to

consider the case m = d + 1 (for the case where m > d + 1, we just take (Mj ,bj) = 0 for

j = d+2, . . . ,m). Set Mj := Id, j = 1, . . . , d+1, and assume that b1, . . . ,bd+1 ∈ R
d satisfy

span{b2 − b1, . . . ,bd+1 − b1} = R
d.
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Here, we also require that the first entry of b2, . . . ,bd+1 ∈ R
r is zero, i.e., b2,1 = · · · =

bd+1,1 = 0. According to Lemma 3.3, the measurement set {(M1,b1), . . . , (Md+1,bd+1)} ∈

R
(d+1)(d×d) × R

(d+1)d has generalized affine phase retrievable property for Rd.

We perturb M1 to M̃1 = Id + δb1,1E21, where E21 denotes the matrix with (2, 1)-th

entry being 1 and all other entries being 0 and δ > 0. Furthermore, we let M̃j = Mj

for j = 2, . . . , d + 1. Then {(M̃1,b1), . . . , (M̃d+1,bd+1)} ∈ R
(d+1)(d×r) × R

(d+1)r is not

generalized affine phase retrievable. To see this, we let x = (b1,1,−1/δ, 0, . . . , 0)⊤ and

y = (−b1,1,−1/δ, 0, . . . , 0)⊤. It is easy to check that

‖M̃⊤
j x+ bj‖2 = ‖M̃⊤

j y + bj‖2 j = 1, . . . , d+ 1.

By taking δ sufficiently small, we will have ‖Mj − M̃j‖F ≤ ǫ, which complete the proof for

the case where r = d.

We next consider the case where r ≤ d − 1. Similar with the proof of Theorem 3.4, we

set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,

⌊
d

r

⌋

and

T⌊ d
r ⌋+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

For m = d +
⌊
d
r

⌋
+ ǫd,r, we require that {(M1,b1), . . . , (Mm,bm)} satisfy the conditions

(i) and (ii) in the proof of Theorem 3.4. We furthermore require that the first entry of

b2, . . . ,bm is 0, i.e., b2,1 = · · · = bm,1 = 0. Note that (M1)T1 = Ir. We perturb (M1)T1

to (M̃1)T1 = Ir + δb1,1E21 and M̃j = Mj , j = 2, . . . ,m. Then similar as before (M̃j ,bj)
m
j=1

does not have affine phase retrieval property but we will have ‖Mj − M̃j‖F ≤ ǫ by taking δ

sufficiently small. We complete the proof for r ≤ d− 1. �

The following theorem shows that if the measurements number m ≥ 2d, then a generic

{(M1,b1), . . . , (Mm,bm)} ∈ R
m(d×r) × R

mr has generalized affine phase retrieval property

for Rd.

Theorem 3.7. Let m ≥ 2d and r ∈ Z≥1. Then a generic A = {(M1,b1), . . . , (Mm,bm)} ∈

R
m(d×r) × R

mr has generalized affine phase retrieval property for R
d.

To prove this theorem, we introduce some notations and a lemma. First, recall that

yj = ‖M∗
j x+ bj‖

2
2 = x̃∗Aj x̃, j = 1, . . . ,m,
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where

x̃ =

(
x

1

)
and Aj =

(
MjM

∗
j Mjbj

(Mjbj)
∗ b∗

jbj

)
.

Thus, the map MA can be rewritten as

MA(x) := (‖M∗
1x+ b1‖

2
2, . . . , ‖M

∗
mx+ bm‖22)

= (tr(A1x̃x̃
∗), . . . , tr(Amx̃x̃∗)).

For {(M1,b1), . . . , (Mm,bm)} ∈ C
m(d×r) ×C

mr, we define the map T : C(d+1)×(d+1) → C
m

by

(3.3) T(Q) := (tr(A∗
1Q), . . . , tr(A∗

mQ)) .

Lemma 3.8. Suppose that r ∈ Z≥1. Then A = {(M1,b1), . . . , (Mm,bm)} ∈ R
m(d×r)×R

mr

is not generalized affine phase retrievable if and only if there exists nonzero Q ∈ R
(d+1)×(d+1)

satisfies

(3.4)
Q⊤ = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2,
T(Q) = 0, Q2

1,d+1 + · · ·+Q2
d,d+1 = 1.

Proof. Assume that A is not generalized affine phase retrievable, and then there exist x,y ∈

R
d with x 6= y such that MA(x) = MA(y). It implies that

T(x̃x̃⊤ − ỹỹ⊤) = 0,

where

x̃ =

(
x

1

)
, ỹ =

(
y

1

)
.

Take Q := λ(x̃x̃⊤ − ỹỹ⊤) where λ = 1/‖x − y‖22 ∈ R is a constant. Then Q is a nonzero

matrix which satisfies (3.4).

We next assume there exists a nonzero Q0 satisfies (3.4). According to the spectral

decomposition theorem, we have

Q0 = λ1ũũ
⊤ − λ2ṽṽ

⊤

where λ1, λ2 ∈ R and ũ, ṽ are normalized orthogonal vectors in R
d+1. Since (Q0)d+1,d+1 = 0,

which gives that

λ1ũ
2
d+1 − λ2ṽ

2
d+1 = 0.

Thus λ1 and λ2 have the same sign. We claim that λ1λ2 6= 0 and ũd+1ṽd+1 6= 0. Indeed,

if λ2 = 0, then ũd+1 = 0. Hence, we obtain (Q0)1,d+1 = · · · = (Q0)d+1,d+1 = 0 which
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contradicts with (3.4). So, λ2 6= 0. Similarly, we can show λ1 6= 0, ũd+1 6= 0 and ṽd+1 6= 0.

We take x̃ := ũ/ũd+1 and ỹ := ṽ/ṽd+1, and then Q0 can be rewritten as

Q0 = λ1ũ
2
d+1x̃x̃

⊤ − λ2ṽ
2
d+1ỹỹ

⊤ = c(x̃x̃⊤ − ỹỹ⊤)

where c = λ1ũ
2
d+1 = λ2ṽ

2
d+1 ∈ R is a constant. Since T(Q0) = 0, it gives that T(x̃x̃⊤) =

T(ỹỹ⊤). We write x̃ = (x, 1)⊤ and ỹ = (y, 1)⊤ and then MA(x) = MA(y) which implies

that A is not generalized affine phase retrievable. �

Proof of Theorem 3.7 . We use Gm,d,r to denote the subset of

(M1,b1, . . . ,Mm,bm, Q) ∈ C
d×r × C

r × · · · × C
d×r × C

r × C
(d+1)×(d+1),

which satisfies the following property:

Q⊤ = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2,
T(Q) = 0, Q2

1,d+1 + · · ·+Q2
d+1,d+1 = 1.

The Gm,d,r is a well defined complex affine variety because the defining equations are poly-

nomials in each set of variables. We next consider the dimension of the complex affine

variety Gm,d,r. To this end, let π1 be projections on the first 2m coordinates of Gm,d,r, i.e.,

π1(M1,b1, . . . ,Mm,bm, Q) = (M1,b1, . . . ,Mm,bm).

Similarly, we can define π2 by

π2(M1,b1, . . . ,Mm,bm, Q) = Q.

We claim that π2(Gm,d,r) = Ld where

Ld := {Q ∈ C
(d+1)×(d+1) : Q⊤ = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2, Q2

1,d+1+· · ·+Q2
d+1,d+1 = 1}.

Indeed, for any fixed Q′ ∈ Ld, there exist {(M ′
j ,b

′
j)}

m
j=1 ∈ C

d×r × C
r satisfying T(Q′) = 0,

because for each j the equation tr((A′
j)

∗Q′) = 0 is a polynomial for the variables (M ′
j ,b

′
j).

This implies that (M ′
1,b

′
1, . . . ,M

′
m,b′

m, Q′) ∈ Gm,d,r and π2(M
′
1,b

′
1, . . . ,M

′
m,b′

m, Q′) = Q′.

Thus we have π2(Gm,d,r) = Ld. Note that Ld ⊂ C
(d+1)×(d+1) is an affine variety with

dimension 2d− 1 and hence dim(π2(Gm,d,r)) = 2d− 1.

We next consider the dimension of the preimage π−1
2 (Q0) ∈ C

d×r×C
r×· · ·×C

d×r×C
r for

a fixed nonzero Q0 ∈ Ld. For each pair (Mj ,bj) ∈ C
d×r × C

r , the equation tr(A∗
jQ0) = 0

defines a hypersurface of dimension dr+ r− 1 in C
d×r ×C

r. Hence, the preimage π−1
2 (Q0)
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has dimension m(dr + r − 1). Then, according to [12, Cor.11.13]

dim(Gm,d,r) = dim(π2(Gm,d,r)) + dim(π−1
2 (Q0))

= m(dr + r − 1) + 2d− 1.

If m ≥ 2d, then

dim(π1(Gm,d,r)) ≤ dim(Gm,d,r) = m(dr + r − 1) + 2d− 1 < m(dr + r).

Hence,

dimR((π1(Gm,d,r))R) ≤ dim(π1(Gm,d,r)) < m(dr + r) = dim(Rm(d×r) × R
mr),

which implies that (π1(Gm,d,r))R lies in a sub-manifold of Rm(d×r) × R
mr. Here, the first

inequality follows from [7]. However, Lemma 3.8 implies that (π1(Gm,d,r))R contains pre-

cisely these {(M1,b1), . . . , (Mm,bm)} which is not generalized affine phase retrieval for Rd.

Hence, we arrive at conclusion. �

4. Generalized affine phase retrieval for complex signals

We consider the complex case in this section. Then for any x,y ∈ C
d, we have

(4.1) ‖M∗x+ b‖22 − ‖M∗y + b‖22 = 4R (u∗MM∗v + (Mb)∗v)

where u = 1
2(x+ y) and v = 1

2(x− y).

Theorem 4.1. Suppose that r ∈ Z≥1. Let A = {(Mj ,bj)}
m
j=1 ⊂ C

d×r × C
r. Then the

followings are equivalent:

(1) A has the generalize affine phase retrieval for C
d.

(2) For any u,v ∈ C
d and v 6= 0, there exists a j with 1 ≤ j ≤ m such that

R(u∗MjM
∗
j v+ (Mjbj)

∗v) 6= 0.

(3) Viewing MA as a map R
2d → R

m, the real Jacobian of MA(x) has rank 2d for all

x ∈ R
2d.

Proof. (1)⇔(2). We first shows that (2) ⇒ (1). We assume that (1) does not hold. Then

there exist x 6= y in C
d such that MA(x) = MA(y). From (4.1) for all j we have

‖M∗
j x+ bj‖

2
2 − ‖M∗

j y + bj‖
2
2 = 4R(u∗MjM

∗
j v + (Mjb)

∗v) = 0.
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Note that v 6= 0, then we conclude a contradiction with (2), which implies (1) holds. The

converse also follows from the similar argument.

(2)⇔(3). Note that MjM
∗
j is a Hermitian matrix and we can write MjM

∗
j = Bj + iCj

with Bj , Cj ∈ R
d×d and B⊤

j = Bj, C
⊤
j = −Cj . Let

Fj =

(
Bj −Cj

Cj Bj

)
.

Then for any u = uR + iuI ∈ C
d, we have

‖M∗
j u+ bj‖

2
2 = ũ⊤Fjũ+ 2c̃⊤j ũ+ b∗

jbj .

where

ũ =

[
uR

uI

]
and c̃j =

[
(Mjbj)R
(Mjbj)I

]
.

We can calculate the real Jacobian J(u) of the map MA at u ∈ C
d is exactly

J(u) = 2[F1ũ+ c̃1, . . . , Fmũ+ c̃m].

For any v = vR + ivI ∈ C
d, we have

(4.2) 2R(u∗MjM
∗
j v + (Mjbj)

∗v) = [v⊤
R,v

⊤
I ]Jj(u),

where Jj(u) denotes the j-column of J(u), vR and vI denote the real and image part of v,

respectively. Thus it is clear that (2) and (3) are equivalent. �

Corollary 4.2. Let r ∈ Z≥1 and A = {(Mj ,bj)}
m
j=1 ⊂ C

d×r × C
r. If A has generalized

affine phase retrievable property for C
d then m ≥ 2d+ ⌊d/r⌋.

Proof. To this end, we just need show that A does not have generalized affine phase re-

trievable property for Cd provided m ≤ 2d+ ⌊d/r⌋ − 1. A simple observation is that there

exists a u0 ∈ C
d such that M∗

j u0 + bj = 0 for all j = 1, . . . , ⌊d/r⌋. Fix u0, the following

system are homogeneous linear equations for the variable vR,vI ∈ R
d:

(4.3) R((MjM
∗
j u0 +Mjbj)

∗v) = 0, j = ⌊d/r⌋+ 1, . . . ,m.

Note that those equations have 2d real variables vR,vI , but the number of equations is

at most 2d − 1. It means that (4.3) must have a nontrivial solution v0 6= 0. Hence, if

m ≤ 2d+ ⌊d/r⌋ − 1, then there exist u0,v0 ∈ C
d with v0 6= 0 so that

R(u∗
0MjM

∗
j v0 + (Mjbj)

∗v0) = 0, for all j = 1, . . . ,m

which contradicts with (2) in Theorem 4.1. �
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Lemma 4.3. Let z1, z2 ∈ C
r and suppose that b1, . . . ,b2r+1 ∈ C

r satisfy

(4.4) spanR{b2 − b1, . . . ,b2r+1 − b1} = C
r.

Then z1 = z2 if ‖z1 + bj‖2 = ‖z2 + bj‖2 for all j = 1, . . . , 2r + 1.

Proof. We set zR := z1,R − z2,R ∈ R
r, zI := z1,I − z2,I ∈ R

r and t := (‖z1‖
2
2 − ‖z2‖

2
2)/2.

Then ‖z1 + bj‖2 = ‖z2 + bj‖2 implies that b⊤
j,RzR +b⊤

j,IzI + t = 0 for all j = 1, . . . , 2r+1.

The (4.4) implies that the rank of the matrix

A =




b⊤
1,R b⊤

1,I 1
...

...
...

b⊤
2r+1,R b⊤

2r+1,I 1




is 2r+1. And hence A[z⊤R, z
⊤
I , t]

⊤ = 0 has only zero solution which means that z1 = z2. �

Next, we will show that the bound m ≥ 2d+ ⌊d/r⌋ is tight provided r | d.

Theorem 4.4. Suppose that m ≥ 2d + ⌊d/r⌋ + ǫd,r where ǫd,r = 0 if d/r ∈ Z and 1 if

d/r /∈ Z. There exists A = {(Mj ,bj)}
m
j=1 ⊂ C

d×r × C
r which has generalized affine phase

retrieval property for C
d.

Proof. We set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,

⌊
d

r

⌋

and

T⌊ d
r ⌋+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

We first consider the case where d/r is an integer with T⌊ d
r ⌋+1 = ∅. Similarly to the real

case, for x ∈ C
d, set xTt := xITt where ITt denotes the indicator function of the set Tt. Let

(Mj)Tt ∈ C
r×r denote a submatrix of Mj ∈ C

d×r with row indexes in Tt. We assume that

(Mj ,bj), j = 1, . . . ,m, satisfy the following conditions:

(i) The matrix (Mj)Tt = Ir and Mj \ (Mj)Tt is a zero matrix for j = (t − 1)(2r + 1) +

1, . . . , t(2r + 1) and t = 1, . . . , ⌊d/r⌋, where Ir is r × r the identity matrix.

(ii) Set b(t−1)(2r+1)+k = b′
k for k = 1, . . . , 2r+1, t = 1, . . . , ⌊d/r⌋. The vectors b′

1, . . . ,b
′
2r+1 ∈

C
r satisfy spanR{b

′
2 − b′

1,b
′
3 − b′

1, . . . ,b
′
2r+1 − b′

1} = C
r.
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Then based on Lemma 4.3, for each t = 1, . . . , ⌊d/r⌋, we can recover xTt from ‖M∗
j x+ bj‖2, j =

(t−1)(2r+1)+1, . . . , t(2r+1). Hence, when d/r ∈ Z, we can recover x = xT1+· · ·+xT(d/r+1)

from ‖M∗
j x+ bj‖2, j = 1, . . . ,m where m = (2r + 1) ⌊d/r⌋ = 2d+ ⌊d/r⌋.

When d/r is not an integer, we need consider the recovery of xT⌊d/r⌋+1
. Note that

#T⌊d/r⌋+1 = d − r ⌊d/r⌋. Similar as before, we can construct matrix Mj ∈ C
d×r, and

bj ∈ C
r, j = ⌊d/r⌋ (2r+1)+1, . . . , ⌊d/r⌋ (2r+1)+2d−2r ⌊d/r⌋+1 so that one can recover

xT⌊d/r⌋+1
from ‖M∗

j x+ bj‖2, j = ⌊d/r⌋ (2r + 1) + 1, . . . , ⌊d/r⌋ (2r + 1) + 2d − 2r ⌊d/r⌋ + 1.

Combining the measurement matrices above, we obtain the measurement number m =

⌊d/r⌋ (2r+1) + 2d− 2r ⌊d/r⌋+1 = 2d+ ⌊d/r⌋+1 is sufficient to recover x provided d/r is

not an integer. �

Similar to the real case, the set of A ∈ C
m(d×r) × C

mr which can do generalized affine

phase retrieval is not an open set.

Theorem 4.5. Let r ∈ Z≥1 and m ≥ 2d +
⌊
d
r

⌋
+ ǫd,r where ǫd,r = 0 if d/r ∈ Z and 1

if d/r /∈ Z. Then the set of generalized affine phase retrieval {(M1,b1), . . . , (Mm,bm)} ∈

C
m(d×r) × C

mr is not an open set.

Proof. We only need to find a measurement set {(M1,b1), . . . , (Mm,bm)} ∈ C
m(d×r)×C

mr

which has generalized affine phase retrieval property for Cd, but for any ǫ > 0 there exists

a small perturbation measurement set {(M̃1,b1), . . . , (M̃m,bm)} ∈ C
m(d×r) × C

mr with

‖Mj − M̃j‖F ≤ ǫ which is not generalized affine phase retrievable.

We first consider the case where r = d. Without loss of generality we only need to

consider the case m = 2d+1 (for the case where m > 2d+1, we just take (Mj ,bj) = (0,0)

for j = 2d+ 2, . . . ,m). Set Mj := Id, j = 1, . . . , 2d+ 1, and

(4.5) bj =





iej j = 1, . . . , d
ej j = d+ 1, . . . , 2d
0 j = 2d+ 1

,

where {e1, . . . , ed} is the canonical basis vectors in C
d, i.e. the jth entry of ej is 1 and other

entries are 0. A simple observation is that that b1, . . . ,b2d+1 ∈ C
d satisfy

spanR{b2 − b1, . . . ,b2d+1 − b1} = C
d.

According to Lemma 3.3, the measurement set {(Mj ,bj)}
2d+1
j=1 has generalized affine phase

retrievable property for Cd.
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We perturb M1 to M̃1 = Id + iδE12 − iδE21, where E12 denotes the matrix with (1, 2)-th

entry being 1 and all other entries being 0 and δ > 0. Furthermore, we let M̃j = Mj

for j = 2, . . . , 2d + 1. Then {(M̃j ,bj)}
m
j=1 ⊂ C

d×r × C
r is not generalized affine phase

retrievable. To see this, we let x = (i,− 1
2δ , 0, . . . , 0)

⊤ and y = (−i,− 1
2δ , 0, . . . , 0)

⊤. It is

easy to check that

‖M̃∗
j x+ bj‖2 = ‖M̃∗

j y + bj‖2 j = 1, . . . , 2d+ 1.

By taking δ sufficiently small, we will have ‖Mj − M̃j‖F ≤ ǫ, which complete the proof for

the case where r = d.

We next consider the case where r ≤ d− 1. Using the notations in Theorem 4.4, we set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,

⌊
d

r

⌋

and

T⌊ d
r ⌋+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

For m = 2d+
⌊
d
r

⌋
+ ǫd,r, we require that {(Mj ,bj)}

m
j=1 satisfy the conditions (i) and (ii) in

the proof of Theorem 4.4, i.e.,

(i) The matrix (Mj)Tt = Ir and Mj \ (Mj)Tt is a zero matrix for j = (t − 1)(2r + 1) +

1, . . . , t(2r + 1) and t = 1, . . . , ⌊d/r⌋, where Ir is r × r the identity matrix.

(ii) Set b(t−1)(2r+1)+k = b′
k for k = 1, . . . , 2r+1, t = 1, . . . , ⌊d/r⌋. The vectors b′

1, . . . ,b
′
2r+1 ∈

C
r satisfy spanR{b

′
2 − b′

1,b
′
3 − b′

1, . . . ,b
′
2r+1 − b′

1} = C
r.

Particularly, we require that b′
1, . . . ,b

′
2r+1 ∈ C

r are similarly defined by (4.5). Note that

(M1)T1 = Ir. Similar as before, we perturb (M1)T1 to (M̃1)T1 = Ir + iδE12 − iδE21 and

M̃j = Mj, j = 2, . . . ,m. Then {(M̃j ,bj)}
m
j=1 does not have affine phase retrieval property

but we will have ‖Mj − M̃j‖F ≤ ǫ by taking δ sufficiently small, which completes the proof

for r ≤ d− 1.

�

Theorem 4.6. Let r ∈ Z≥1 and m ≥ 4d− 1. Then a generic {(M1,b1), . . . , (Mm,bm)} ∈

C
m(d×r) × C

mr has generalized affine phase retrieval property for C
d.

To this end, we introduce some lemmas.
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Lemma 4.7. Suppose that r ∈ Z≥1. Then A = {(M1,b1), . . . , (Mm,bm)} ∈ C
m(d×r)×C

mr

is not generalized affine phase retrievable if and only if there exists nonzero Q ∈ C
(d+1)×(d+1)

satisfies

(4.6)
Q∗ = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2, T(Q) = 0,
Q1,d+1 ·Qd+1,1 + · · ·+Qd,d+1 ·Qd+1,d = 1,

where the linear operator T is defined in (3.3).

The proof of Lemma 4.7 is similar with one of Lemma 3.8. We omit the detail here. To

state conveniently, we use Cd×d
sym to denote the set of symmetric complex d× d matrices and

use C
d×d
skew to denote the set of skew-symmetric complex d× d matrices.

Definition 4.8. Let Gm,d,r denote the set of (U1, c1, V1,d1, . . . , Um, cm, Vm,dm,X, Y ) where

Uj , Vj ∈ C
d×r, cj ,dj ∈ C

r, X ∈ C
(d+1)×(d+1)
sym , Y ∈ C

(d+1)×(d+1)
skew which satisfy the following

properties:

Xd+1,d+1 = 0, rank(X + iY ) ≤ 2, 〈Aj ,X + iY 〉 = 0, j = 1, . . . ,m
(X1,d+1 + iY1,d+1)(Xd+1,1 + iYd+1,1) + · · ·+ (Xd,d+1 + iYd,d+1)(Xd+1,d + iYd+1,d) = 1,

where

(4.7) Aj =

(
MjM

∗
j Mjbj

(Mjbj)
∗ b∗

jbj

)
,

Mj = Uj + iVj and bj = cj + idj .

Recall that rank(X+ iY ) ≤ 2 is equivalent to the vanishing to all 3×3 minors of X+ iY .

Hence, we can view Gm,d,r as a complex affine variety. Next, we consider the dimension of

Gm,d,r.

Lemma 4.9. The complex affine variety Gm,d,r has dimension (2dr + 2r − 1)m+ 4d− 2.

Proof. Let G
′

m,d,r be the set of (U1, c1, V1,d1, . . . , Um, cm, Vm,dm, Q) where Uj , Vj ∈ C
d×r, cj ,dj ∈

C
r, Q ∈ C

(d+1)×(d+1) which satisfy

Qd+1,d+1 = 0, rank(Q) ≤ 2, 〈Aj , Q〉 = 0, j = 1, . . . ,m
Q1,d+1 ·Qd+1,1 + · · · +Qd,d+1 ·Qd+1,d = 1,

where matrices Aj are defined by (4.7). Note that G
′

m,d,r is a well defined complex affine

variety because the defining equations are polynomials in each set of variables. It is clear

that Gm,d,r and G
′

m,d,r are linear isomorphic since we can identify C
d×d
sym×C

d×d
skew with C

d×d by

the map (X,Y ) 7→ X + iY = Q. Indeed, any complex matrix Q can be uniquely written as

Q = X + iY where X = (Q+Q⊤)/2 is a complex symmetric matrix and Y = (Q−Q⊤)/2i



18 MENG HUANG AND ZHIQIANG XU

is a complex skew-symmetric matrix. Hence, to this end, it is sufficient to consider the

dimension of G
′

m,d,r.

We let π1 and π2 be projections on the first 4m coordinates and the last coordinate of

G
′

m,d,r, respectively, i.e.,

π1(U1, c1, V1,d1, . . . , Um, cm, Vm,dm, Q) = (U1, c1, V1,d1, . . . , Um, cm, Vm,dm)

and

π2(U1, c1, V1,d1, . . . , Um, cm, Vm,dm, Q) = Q.

We claim that π2(Gm,d,r) = Ld where

Ld := {Q ∈ C
(d+1)×(d+1) : Qd+1,d+1 = 0, rank(Q) ≤ 2, Q1,d+1·Qd+1,1+· · ·+Qd,d+1·Qd+1,d = 1}.

Indeed, for any fixed Q′ ∈ Ld, there exists {(U ′
j , c

′
j , V

′
j ,d

′
j)}

m
j=1 ∈ C

d×r × C
r × C

d×r × C
r

satisfying 〈A′
j , Q

′〉 = 0, j = 1, . . . ,m. It is because that for each j the equation 〈A′
j , Q

′〉 = 0

is a polynomial which only contain variables (U ′
j, c

′
j , V

′
j ,d

′
j). Thus we have π2(G

′
m,d,r) =

Ld. Note that Ld ⊂ C
(d+1)×(d+1) is an affine variety with dimension 4d − 2 and hence

dim(π2(G
′
m,d,r)) = 4d− 2.

We next consider the dimension of the preimage π−1
2 (Q0) for a fixed nonzero Q0 ∈ Ld.

For each pair (Uj , cj , Vj ,dj) , the equation 〈Aj , Q0〉 = 0 defines a hypersurface of dimension

2dr + 2r − 1 in C
d×r × C

r × C
d×r × C

r. Hence, the preimage π−1
2 (Q0) has dimension

m(2dr + 2r − 1). Then, according to [12, Cor.11.13]

dim(Gm,d,r) = dim(G′
m,d,r) = dim(π2(G

′
m,d,r)) + dim(π−1

2 (Q0))

= m(2dr + 2r − 1) + 4d− 2.

�

Proof of Theorem 4.6 . For each (Mj ,bj) ∈ C
d×r × C

r, we use Uj, Vj and cj ,dj to denote

the real and imaginary part of Mj and bj, respectively. By Lemma 4.7, a tuple of real

matrices {(Uj , cj , Vj ,dj)}
m
j=1 for which the corresponding {(Mj ,bj)}

m
j=1 does not have gen-

eralized affine phase retrieval property gives a point {(Uj , cj , Vj ,dj)}
m
j=1 ∈ π1((Gm,d,r)R) ⊂

(π1(Gm,d,r))R. A simple observation is that, if m ≥ 4d− 1, then

dim(π1(Gm,d,r)) ≤ dim(Gm,d,r) = m(2dr + 2r − 1) + 4d− 2 < m(2dr + 2r).
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Hence,

dimR((π1(Gm,d,r))R) ≤ dim(π1(Gm,d,r)) < m(2dr + 2r) = dim(Rd×r × R
r × R

d×r × R
r).

This implies that the set

{(Mj ,bj)
m
j=1 ∈ C

d×r×C
r : (Mj ,bj)

m
j=1 does not have generalized affine phase retrieval property}

corresponds to a set {(Uj , cj , Vj ,dj)}
m
j=1 which lies in a sub-manifold of Rd×r×R

r×R
d×r×

R
r. Hence, we arrive at conclusion. �
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