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Higher time derivatives in the microcanonical ensemble
describe dynamics of flux–coupled classical and quantum

oscillators
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Université de Tours, Université d’Orléans
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Abstract

We show that it is possible to consistently describe dynamical systems, whose equations
of motion are of degree higher than two, in the microcanonical ensemble, even if the higher
derivatives aren’t coordinate artifacts. Higher time derivatives imply that there are more
than one Hamiltonians, conserved quantities due to time translation invariance, and, if the
volume in phase space, defined by their intersection, is compact, microcanonical averages
can be defined and there isn’t any instability, in the sense of Ostrogradsky, even though
each Hamiltonian, individually, may define a non–compact (hyper)surface.

We provide as concrete example of these statements the Pais–Uhlenbeck oscillator and
show that it can describe a system that makes sense in the microcanonical ensemble. It
describes two oscillators that are coupled by imposing a fixed phase difference, that thereby
describes a non–local interaction between them. The consistent quantum dynamics can
straightforwardly be expressed using two pairs of creation and annihilation operators,
with the phase difference describing a flux, that describes the interaction.

The properties of the action imply that particular solutions, that would describe in-
dependent oscillators, are, in general, not admissible.The reason is that the coordinate
transformation, that would decouple the oscillators isn’t a symmetry of the action–unless
a “BPS bound” is saturated. Only then do they decouple. But, in these cases, the ac-
tion does describe one, not two, oscillators, anyway and the higher derivative term is a
coordinate artifact.
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A dynamical system, that’s invariant under time translations, possesses a corresponding
conserved quantity, the energy. For a system with a finite number of degrees of freedom, the
equation

H(p, q) = E (1)

defines a (hyper)surface in phase space, where p and q denote the phase space variables. All
points on this (hyper)surface–that will be a curve, for one degree of freedom–are equivalent.
This means that, within the microcanonical ensemble, defined by this relation, all physical
quantities are obtained by taking averages over the “angular variables” of the constant energy
(hyper)surface:

〈O〉 =
∫

dpdqOδ(H(p, q)−E)
∫

dpdq δ(H(p, q)−E)
(2)

So for the simple harmonic oscillator, H(p, q) = (p2 + q2)/2 and we are immediately incited to
use “polar” coordinates, exchanging (p, q) for 2E = p2 + q2 and θ = tan−1 q/p. In this way the
denominator becomes equal to 2π and the numerator becomes equal to

2π 〈O(E)〉 =
∫ 2π

0

dθO(E, θ) ⇔ 〈O(E)〉 =
∫ 2π

0

dθ

2π
O(E, θ) ≡

∫ 2π

0

dθ ρ(θ)O(E, θ) (3)

In this case the group is SO(2) ⊂ SL(2,R), a compact subgroup. We remark that 2π is
the “volume of the (hyper)surface” in this case and this expression makes sense, because this
number is finite; ρ(θ) is normalizable.

If we repeat the calculation for the case of the “inverted oscillator”, where H(p, q) =
(p2 − q2)/2, though, we find that we are moving along a hyperbola, instead of on a circle,
in phase space, so when we perform the change of variables to the branch of the hyperobla,
p =

√
2E coshχ, q =

√
2E sinhχ,

〈O(E)〉 =
∫∞

−∞
dχO(E, χ)
∫∞

−∞
dχ

=

∫ ∞

−∞

dχρ(χ)O(E, χ) (4)

we find that we have a problem: instead of 2π, we get infinity in the denominator; even though
the energy is finite. The problem is that the constant energy manifold, of the group SO(1, 1) ⊂
SL(2,R), has infinite volume and it’s not possible to apply a cutoff on it that can be removed–
any quantity will be affected by its presence. The density ρ(χ) isn’t normalizable and can’t
be reconstructed from the moments. It’s this incompleteness that makes the microcanonical
ensemble ill–defined in this case and makes any coupling to a bath, i.e. the canonical ensemble,
problematic. Stated differently, the change of variables from “Cartesian” to “polar” coordinates
doesn’t resolve the Hamiltonian constraint; it can’t account for the states at infinity; and the
reason it can’t is that the particle undergoes accelerated motion, without bound.

In the literature this instability is conflated with the so–called Ostrogradsky instability [1],
that arises when the constant energy (hyper)surface is non–compact, because of multi–linear
terms in the Hamiltonian.
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In both cases the problem is that the particle seems to undergo unbounded, accelerated
motion. One way to resolve this is to identify the multilinear terms as describing the interaction
of the particle with external fields. For the inverted oscillator, for instance, one can replace the
−q2/2 term by (F 2/2) − Fq and recognize that the appropriate description is the interaction
of the particle with an external field (a point that appears to have been overlooked in the
comprehensive review [2]. Similarly, a term that’s linear in the momentum can be absorbed
in the redefinition of the momentum and its coefficient recognized as a vector potential (the
symmetric part is a total derivative).

However there is a remarkable difference between a linear term in momentum, from a linear
term in position: the former describes, in fact, bounded motion perpendicular to the magnetic
field and uniform motion, that may be eliminated by a Galilean transformation, along it;
whereas the latter describes non–uniform, unbounded motion, along the electric field; that can’t
be eliminated by a Galilean transformation. The former describes the motion of the particle
in a “flux background” [3, 4]; the latter describes the motion of a particle in “geometrical”
background, that can be described through an “Eisenhart lift” [5, 6, 7]. These facts were, of
course, not known in Ostrogradsky’s time; but they are now.

It is worth mentioning that, when working in phase space, which variable(s) are position(s)
and which are momenta represents a choice of coordinates. Therefore the corresponding fields
must transform accordingly under symplectic transformations; this has attracted the attention
it deserves only recently under the heading of “double field theory” [8, 9, 10, 11].

These redefinitions work when the equations of motion contain two time derivatives. Things
become more complicated, when they contain higher derivatives. In that case terms that are
multilinear in the dynamical variables appear in the integrals of motion in a way that seems to
indicate that these don’t define compact regions in phase space–illustrating the Ostrogradsky
instability. But how to resolve it doesn’t appear as obvious as in the case of systems with
two derivatives, since the interpretation of the equations as describing the motion of individual
particles is problematic, since these are, typically, in interaction.

So the question arises, whether it is possible to impose constraints that will lead to sys-
tems with compact constant energy surface, therefore leading to a situation where the energy
is bounded by a universal constant. The activity in this area has focused on introducing con-
straints that eliminate the higher derivatives altogether and, in particular, in ways that lead to
compact constant energy (hyper)surfaces [12, 13, 14, 15, 16, 17, 18, 19]. In this way the higher
derivatives are understood as coordinate artifacts; so, if their instabilities are absent, so are
the benefits, accrued from their presence, namely improved behavior of the systems at short
distances.

Further applications to field theories, in particular, gravity [5, 16, 17, 19, 20, 21, 22] has
relied on intuition acquired from studying particle systems with higher derivatives, e.g. [16, 17,
18, 19, 23], so it’s worthwhile to study these from another point of view.

There’s been considerable effort, also, devoted to trying to define the Euclidian path inte-
gral [24, 25, 26, 27, 28, 29], in terms of single particle states, with local dynamics, without,
however, a conclusive result.
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The reason, in summary, is that, while it is, of course, possible to describe the dynamics
in terms of a single particle, the dynamics won’t be, necessarily, local, since the target space
is two–dimensional and dimensional reduction to one dimension can’t be implemented. That’s
the real issue and that’s why these attempts haven’t succeeded.

Of course it shouldn’t be surprising that equations of motion of even degree greater than
two in the worldvolume variables can describe many particles–or fields–in interaction: By defi-
nition it’s possible to express a differential equation of degree 2n as a system of n differential
equations, of degree two. The question is how can “sensible” interactions, described at the
level of equations of second order, be repackaged in terms of equations of higher order–and vice
versa. Or, whether time–dependent solutions, consistent with the constraints, can be found.

The prototype is the so–called Pais–Uhlenbeck oscillator [30], that’s described by a linear
equation, of fourth order. The question, in view of the introductory remarks, is whether the
phase space, defined by the constants of motion, can be compact or non–compact. If it is
non–compact, then the system is open. if it is compact, then the system is consistently closed
in the microcanonical ensemble. We shall find that there do exist parameter values for which
the latter situation is relevant: the Pais–Uhlenbeck system can be consistently closed in the
microcanonical ensemble, without any constraints, that have been discussed in the literature.

However the consistently closed system, generically, doesn’t describe one particle, but two.
In other words, the target space is, generically, two–dimensional.

We shall work in real time, since we wish to investigate the microcanonical ensemble, as a
prelude towards understanding what the correct way of defining the canonical ensemble might
be; and we’re interested in the space of solutions of the classical equations of motion.

The (classical) action of the Pais–Uhlenbeck oscillator is given by the following expression

SPU[φ] =

∫

dt

{

1

2
φ̇2 − Ω2

2
φ2 +

Γ

2
φ̈2

}

(5)

This action is, for the moment, simply a way for defining an abstract variational problem–
whether it is the action of one particle or many particles (or whether it can’t be assigned to
any physical system at all) remains to be understood.

Whatever physical meaning may be attached to the function φ(t), what is unambiguous is
that extremization of this functional of φ(t) implies solving the corresponding Euler–Lagrange
equation

Γ
d4φ

dt4
− d2φ

dt2
− Ω2φ = 0 (6)

obtained the usual way:

δS =

{

δφ(φ̇− Γ
···

φ) + δφ̇Γφ̈

}
∣

∣

∣

∣

tf

ti

+

∫ tf

ti

dt δφ

{

Γ
d4φ

dt4
− d2φ

dt2
− Ω2φ

}

(7)

To eliminate the boundary terms, one must impose that
{

δφ(φ̇− Γ
···

φ) + δφ̇Γφ̈

}
∣

∣

∣

∣

tf

ti

= 0 (8)
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It is quite straightforward, when this boundary term vanishes, to find two conserved quantities,
that we shall call E1 and E3. They can be found by multiplying the equation of motion by
dφ/dt and d3φ/dt3 respectively:

φ̇

(

Γ
d4φ

dt4
− d2φ

dt2
− Ω2φ

)

= 0 ⇔ E1 =
1

2

(

φ̇2 + Ω2φ2
)

− Γ

(

dφ

dt

d3φ

dt3
− 1

2

(

d2φ

dt2

)2
)

d3φ

dt3

(

Γ
d4φ

dt4
− d2φ

dt2
− Ω2φ

)

= 0 ⇔ E3 =
1

2
Γ

(

d3φ

dt3

)2

− 1

2

(

φ̈+ Ω2φ
)2

+
Ω2

2

(

φ̇2 + Ω2φ2
)

(9)
With these expressions available, we can compute the microcanonical partition function,

Z(E1, E3; Ω,Γ) =

∫

du0 du1 du2 du3 δ(E1 − E1(u0, u1, u2, u3))δ(E3 − E3(u0, u1, u2, u3)) (10)

where uI ≡ φ(I)(t), the successive derivatives of u0 ≡ φ(t) = φ(0)(t). If the two hypersurfaces
intersect, in a surface of finite area, then this partition function is finite and the microcanonical
averages have a chance of being well–defined. If they don’t intersect, or they intersect along a
non–compact surface, the partition function either vanishes or diverges and the microcanonical
averages don’t exist. That there are two conserved quantities has been overlooked in the
literature to date.

The partition function, thus, depends on four variables: the two conserved charges and the
parameters, Ω and Γ.

If Γ = 0, E1 and E3 are linearly dependent, since, in that case, φ̈ = −Ω2φ, therefore,

E3(Γ = 0) = Ω2E1(Γ = 0) (11)

If we choose Ω2 > 0, Γ < 0 and −4Ω2Γ < 1, which means that −1 < 4Ω2Γ < 0, then the roots
of the characteristic equation

Γλ4 − λ2 − Ω2 = 0 ⇔ λ = ±
√

1

2Γ

(

1±
√
1 + 4Ω2Γ

)

(12)

are pure imaginary, ±iω1,2, with ω1,2 real, therefore the general solution is

φ(t) = K1e
iω1t +K2e

−iω1t +K3e
iω2t +K4e

−iω2t (13)

and describes a bounded function, for all finite values of the constants–as long as ω1 6= ω2. It
doesn’t describe runaway solutions, like the inverted oscillator. However, what matters isn’t
so much the expression of the solution, but the properties of the conserved charges that it
describes, that we shall study presently.

While the individual constants, KI aren’t constrained to be real, φ(t), of course, is. This
means that the constants can be redefined so that φ(t) can be written as

φ(t) = A1 cosω1t+B1 sinω1t+ A2 cosω2t+B2 sinω2t (14)
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with the coefficients, AI and BI real. The ratios of these coefficients define the relative phase–
there’s only one, by time translation invariance, but it will be more convenient when computing
the partition function to use this parametrization.

If −4Ω2Γ = 1, then ω1 = ω2 = Ω
√
2. This is the “degenerate” case [16, 17, 18, 19, 23]. The

equation, in this case, takes the form

(

d2

dt2
+ 2Ω2

)2

φ(t) = 0 (15)

whose general solution is given by the expressions

φ(t) = A1 cosΩ
√
2t+B1 sinΩ

√
2t + t

(

A2 cosΩ
√
2t+B2 sinΩ

√
2t
)

(16)

We remark that this doesn’t describe a bounded function, unless A2 = 0 and B2 = 0. However
this doesn’t, necessarily, mean that it doesn’t describe a physical system, as we shall see, when
we compute the expressions for E1 and E3.

Another special case is when one, at least, of the frequencies vanishes, i.e. Ω = 0. In that
case the equation of motion takes the form

Γ
d4φ

dt4
− d2φ

dt2
= 0 ⇔ d4φ

dt4
+ γ2d

2φ

dt2
= 0 (17)

where we’ve set γ2 ≡ −1/Γ > 0.
We realize that, by setting d2φ/dt2 ≡ χ(t), we obtain a second order equation for χ(t),

whose solution is
χ(t) = A cos γt+B sin γt (18)

therefore

φ(t) = −A

γ2
cos γt− B

γ2
sin γt+ Ct +D ≡ K cos(γt+ α) + Ct+D (19)

We can eliminate D by time translation invariance, as will be confirmed from the expressions
for the conserved quantities, E1 and E3; it doesn’t seem that we can eliminate C, however.

So what we shall do in the following is compute the partition function, for the solutions
obtained–and check, whether the point(s) in phase space, that describe one harmonic oscillator,
alone, do belong to the admissible states or not (once it’s established that these exist at all)–in
other words, whether the integration over the complementary variables (a) factorizes and (b)
is finite. If either condition isn’t meant the “unwanted” mode doesn’t decouple.

To this end, we shall express the conserved quantities, E1 and E3, in terms of the integration
constants and integrate over the latter.

A straightforward (though lengthy) calculation leads to the following expressions for E1 and
E3 in terms of the constants, in the three cases studied:
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• −1 < 4Ω2Γ < 0:

E1 = − ω2
1 − ω2

2

2(ω2
1 + ω2

2)

(

(A2
1 +B2

1)ω
2
1 − (A2

2 +B2
2)ω

2
2

)

E3 = − ω2
1 − ω2

2

2(ω2
1 + ω2

2)

(

(A2
1 +B2

1)ω
4
1 − (A2

2 +B2
2)ω

4
2

)

(20)

These relations define two hyperbolas, that intersect in four points, since their asymptotes
aren’t identical, generically–as long as E1E3 6= 0 and ω1 6= ω2.

These four points define the physical states of the system, i.e. the motion of the two
oscillators.

This becomes very clear, if we set x2
1 = A2

1+B2
1 and x2

2 = A2
2+B2

2 , in the (A1, B1), (A2, B2)
pairings. We easily solve for x2

1 = H1(E1, E3) and x2
2 = H2(E1, E3). Now x1 and x2 need

not be non–negative. They just need to be real.

The microcanonical partition function is given by the expression

Z =

∫

dA1dB1dA2dB2 δ(E1 −E1(A1, B1, A2, B2))δ(E3 −E3(A1, B1, A2, B2)) =
∫

dA1 dB1 δ(A
2
1 +B2

1 −H1(E1, E3))

∫

dA2 dB2 δ(A
2
2 +B2

2 −H2(E1, E3)) = π2
(21)

for the values ofE1 and E3 that lead to intersecting hyperbolas, i.e. for whichH1(E1, E3) ≥
0 and H2(E1, E3) ≥ 0. The factorization doesn’t mean that the oscillators decouple, since
the constraints do depend on both charges E1 and E3.

• −4Ω2Γ = 1 ⇔ ω1 = ω2 = ω: (the “degenerate” case): In this case, Ω2 = ω2/2 and
Γ = −1/(2ω2). The corresponding expressions for E1 and E3 read

E1 = −(A2
2 +B2

2)− ω(A2B1 − A1B2)
E3 = −2(A2

2 +B2
2)ω

2 − ω3(A2B1 −A1B2)
(22)

This case is of particular interest, since the function φ(t), given by (16) isn’t bounded–and
the term that isn’t bounded doesn’t seem to represent a coordinate transformation that
is an isometry of the two–derivative action of the bounded motion.

However, appearances are deceiving!

We readily find that

E1ω
2 −E3 = ω2(A2

2 +B2
2) ⇔ A2

2 +B2
2 = E1 −

E3

ω2
(23)

which implies that

A1B2 −A2B1 =
E1 + A2

2 +B2
2

ω
=

2E1 − E3

ω2

ω
=

2E1

ω
− E3

ω3
(24)
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and we recognize the definitions of energy and of angular momentum of a particle moving
on a plane–this is nothing more than motion in a uniform magnetic field, written in a very
complicated way! This system describes a single particle–but in the presence of a flux,
that can’t be gauged away, if 2E1ω

2−E3 6= 0, so the particle explores a two–dimensional
target space. The two constraints leave two zeromodes, that describe the center of the
particle’s circular motion.

Incidentally, we notice that, while E1 and E3 are independent constants of motion, they
must satisfy the relation E1ω

2 ≥ E3, for a solution to exist. The equality implies that
A2 = 0 = B2, and the second condition, then, implies that 0 = 2E1ω

2 − E3. Both can
only be satisfied if E1 = 0 = E3, which leaves A1 and B1 arbitrary, thereby describing a
free, physical, oscillator, since the flux that binds it vanishes.

Indeed, 2E1ω
2 − E3 = 0 ⇔ Ω2E1 − E3 = 0 is consistent with the condition that the

higher derivative term is an artifact (cf. eq. (11); and E1ω
2 ≥ E3 is a “BPS bound”, with

equality describing, precisely, the fact that the flux doesn’t bind the particle.

Therefore, iff the BPS bound is saturated, the higher derivative is a coordinate artifact,
since the equation is reducible to an equation with two derivatives. If the bound isn’t
saturated, the particle doesn’t decouple from the flux.

• Ω = 0: We readily find that

E1 = −A2

2
− B2

2

E3 =
E1

γ2
+

C2

2

(25)

The partition function takes the form

Z =

∫

dA dB dC δ
(

2E1 + A2 +B2
)

δ
(

2(γ2E3 − E1)− γ2C2
)

(26)

which is finite and non-zero, as long as E1 ≤ 0 and E3γ
2 − E1 ≥ 0.

We remark that the expressions for each of the conserved quantities, E1 and E3 in the three
cases, generically, are not of definite sign; but that’s not relevant. What is relevant, for the
microcanonical partition function, is that the intersection of the two surfaces be non–zero and
finite.

In conclusion, we have found that the correct interpretation of the Pais–Uhlenbeck oscillator
is that it describes two– not one–particle states, unless the “BPS bound” is saturated, when
1+4Ω2Γ = 0, or when Ω = 0, in which case it does describe just one particle–a single harmonic
oscillator.

If −1 < 4Ω2Γ < 0, the Pais–Uhlenbeck oscillator, when it describes a bounded function,
describes two, interacting oscillators, that are never free. The interaction can be described
through their phase coherence, which implies that they are linked through a flux.
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Another way of describing the system, however, is as a single particle, in a background,
that carries flux. The reason is that the solution is a sum of two terms, that each describe a
harmonic oscillator; but each term isn’t an isometry for the two–derivative action that describes
the other.

In both cases, the appropriate quantum description is obtained, as usual, by replacing
the coefficients, AI and BI by operators and imposing canonical commutation relations. The
two oscillators described this way can be packaged, à la Schwinger, in an angular momentum
algebra. The question that remains to be clarified is, whether the vacua, annihilated by each
annihilation operator, are equivalent, or not.

For the degenerate case, 4Ω2Γ = −1, quantization follows the route of Landau and Peierls.
Specifically, we may solve

A2
2 +B2

2 = E1 −
E3

ω2
(27)

in terms of annihilation and creation operators: b = A2 + iB2, b
† = A2 − iB2 and a = A1 +

iB1, a
† = A1 − iB1; in which case the relation

A1B2 −A2B1 =
2E1

ω
− E3

ω3
(28)

implies that a and b can’t annihilate the same state, therefore the vacua aren’t equivalent,
if the BPS bound isn’t saturated. This is a hallmark of quantum systems, in non–trivial
gravitational backgrounds, since the work of Hawking [31] (cf. also the work of Unruh [32]
and [33] for a comprehensive review). What wasn’t appreciated then was that non–trivial
gravitational backgrounds could be described by fluxes, e.g. along the lines of [3, 4].

When −1 < 4Ω2Γ < 0, we may, also, solve eqs. (20), in terms of four operators,

A2
1 +B2

1 = H1(E1, E3)
A2

2 +B2
2 = H2(E1, E3)

(29)

and we may define, as usual, creation and annihilation operators, a = A1 + iB1, a
† = A1 − iB1,

b = A2 + iB2, b
† = A2 − iB2. in terms of these. These operators define the dynamics of the

quantum system completely and consistently.
To show that the vacua, |0〉a,b, defined by a|0〉a = 0 and b|0〉b = 0, aren’t equivalent, it

suffices to note that eqs. (20) can be written in terms of the number operators, Na ≡ A2
1 +B2

1

and Nb ≡ A2
2 + B2

2 ; as long as E1 and E3 don’t both vanish, it’s not possible to have Na = 0
and Nb = 0. If E1 and E3 both vanish, on the other hand, it’s not possible that Na or Nb be
non–zero. So the only state of the system is the vacuum state, for both oscillators.

For Ω = 0, there is but one relation, A2 + B2 = H(E1, E3, C), therefore one oscillator, in
a flat background. Nevertheless, a “BPS bound”, also, exists in this case, since E1γ

2 ≥ E3.
When the bound is saturated, C = 0.

C can, indeed, be identified with the velocity of the “partner” to the oscillator described by
(A,B). So this case seems to describe an oscillator, interacting with a free particle–that moves
with a fixed velocity–prescribed by the initial conditions.
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It is in the way described here that transition amplitudes and probabilities can be defined
and, thus, the consistent path integral in the presence of quantum fluctuations can be defined.

These results open up new perspectives for describing entangled qubits and quantum oscil-
lators in flux backgrounds, that have become the subject of real experiments [34, 35, 36, 37].

Acknowledgements: It’s a pleasure to thank G. W. Gibbons and J. Iliopoulos for many
discussions on the Pais–Uhlenbeck oscillator and S. Mukohyama and K. Noui for discussions
on the constraints of higher derivative theories.
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