
ar
X

iv
:1

80
5.

07
96

3v
3 

 [
he

p-
th

] 
 1

4 
A

ug
 2

01
8

Holographic c-theorem and Born-Infeld Gravity Theories

Gökhan Alkaç∗ and Bayram Tekin†

Department of Physics, Faculty of Arts and Sciences,

Middle East Technical University, 06800, Ankara, Turkey

(Dated: August 16, 2018)

Abstract

The requirement of the existence of a holographic c-function for higher derivative theories is a

very restrictive one and hence most theories do not possess this property. Here, we show that,

when some of the parameters are fixed, the D ≥ 3 Born-Infeld gravity theories admit a holographic

c-function. We work out the details of the D = 3 theory with no free parameters, which is

a non-minimal Born-Infeld type extension of new massive gravity. Moreover, we show that these

theories generate an infinite number of higher derivative models admitting a c-function in a suitable

expansion and therefore they can be studied at any truncated order.
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I. INTRODUCTION

Einstein’s theory of gravity needs to be modified at UV (and IR) but it is very hard to

do this modification while keeping its nice properties intact. Salient features of the theory,

for example, the fact that it has a unique vacuum [(flat (Λ0 = 0), de Sitter (Λ0 > 0) or

anti-de Sitter (Λ0 < 0)] and that it has a single massless unitary spin-2 particle about

its vacuum, no longer hold for generic modifications such as adding higher order terms in

the contractions of the Riemann tensor. For example, even a simple modification of the

form R − 2Λ0 + αR2 + βR2
µν induces a massive spin-2 ghost, a massive spin-0 particle and

degeneracy of the vacuum for generic values of α and β. Given this state of affairs, it was

a rather surprising result to see that there is a family of Born-Infeld (BI) type theories in

D > 3 dimensions that have the same features as Einstein’s gravity but with improved high

energy behavior [1, 2]. Explicit construction of these theories requires a rather complicated

analysis since in constant curvature backgrounds one needs to consider the contributions of

infinitely many higher order terms in principle [3]. Therefore, in what follows, we shall only

give a brief description of these theories. The defining action is given by

SBI =
2m2

γ ℓ
(D−2)
P

∫

dDx
√
−g

[
√

det
(

δµν +
γ

m2
Aµ

ν

)

−
(

1 +
γΛ0

m2

)]

, (1)

where γ is a dimensionless parameter (the BI parameter)1 and ℓP is the Planck length.

The minimal version of the A-tensor in generic D-dimensions must be at least quadratic

in the Riemann tensor and its contractions. There are seven possible linearly independent

terms and hence seven a priori free parameters (not counting γ). However, in generic D

dimensions, three of these parameters do not survive when the uniqueness of the vacuum,

the unitarity of the massless spin-2 mode about this vacuum and the condition that there

are no other perturbative modes are imposed. This eventually reduces the tensor Aµν to

Aµν =Rµν + βSµν +
γ

m2

(

a1Wµν + a2CµρνσR
ρσ +

β + 1

4
RµρR

ρ
ν + a4SµρS

ρ
ν

)

(2)

+
γgµν
m2D

[(

(D − 1)2

4 (D − 2) (D − 3)
− a1

)

W − β

4
R2

ρσ +

(

β (β + 2)

2
+

D (4− 3D)

4 (D − 2)2
− a4

)

S2
ρσ

]

withWµν ≡ CµραβC
ραβ

ν andW ≡ gµνWµν . Cµανβ is the Weyl tensor and Sµν = Rµν− 1
D
gµνR

is the traceless Ricci tensor. There are several important points to note here. For the choice

1 We introduce the dimensionful parameter m2, which makes the parameter γ defined in [1] dimensionless.
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γΛ0m
2 = −1, the second term in (1) vanishes and the field redefinition gµν → gµν − γ

m2Aµν

yields a trivial Lagrangian. Therefore, this particular point is excluded from the parameter

space of the theory and so we assume γΛ0m
2 6= −1. The dimensionless parameters β, a1,

a2 and a4 are four free parameters compatible with the above-mentioned requirements for

generic D-dimensions with two exceptions. In D = 4, due to the identity Wµν = 1
4
gµνW,

which is valid for any smooth metric, the parameter a1 drops out and one is left with three

free parameters. In D = 3, the Weyl tensor vanishes and one just sets D = 3 after excluding

terms with the Weyl tensor and arrives at a theory with two free parameters β and a4.

An expansion of the action (1) in 1/m2 yields Einstein + the Gauss-Bonnet combination

+ highly nontrivial terms which preserve all the nice properties of Einstein’s theory even

when the expansion is truncated at a particular order. The vacuum of this theory, which is

given in (49), is unique when the unitarity of the massless spin-2 excitation is imposed, and

at low energies, for the effective cosmological constant Λ = − (D−1)(D−2)
2L2 6= 0, the free part

of the BI action is equivalent to that of the cosmological Einstein’s theory with the effective

Planck constant ℓeffP given as

1

(ℓeffP )D−2
=

1

ℓD−2
P

(

1− γΛ

m2

)(

1 +
γΛ

(D − 2)m2

)D−2

. (3)

It is clear that the D → 3 limit of (2) makes sense after dropping out the terms with the

Weyl tensor. This yields the following A-tensor

Aµν =Rµν + βSµν +
γ

m2

(

β + 1

4
RµρR

ρ
ν + a4SµρS

ρ
ν

)

+
γgµν
3m2

[

−β

4
R2

ρσ +

(

β (β + 2)

2
− 15

4
− a4

)

S2
ρσ

]

. (4)

For D = 3, as we show explicitly in Section IV, the theory becomes a non-minimal BI-type

extension of New Massive Gravity [4].

Let us recall that in D = 3 dimensions, there is a second BI-type gravity which started

all the discussion in this context. It is given by the action [5]

SBINMG = −4m2

ℓP

∫

d3x
√
−g

[
√

det
(

δµν +
σ

m2
Gµ

ν

)

−
(

1− Λ0

2m2

)]

, (5)

where Gµν is the Einstein tensor and σ = ±1. The field redefinition gµν → gµν − σ
m2Gµν

makes the theory trivial for Λ0 = 2m2. Therefore, this point is excluded from the parameter

space. This theory has a massive spin-2 graviton with a mass square m2
g = −σm2 + Λ

3



around its unique vacuum with the effective cosmological Λ = σΛ0

(

1− Λ0

4m2

)

subjected to

the constraint Λ0 < 2m2. It is rather interesting that, when truncated at O(1/m2), this

theory reproduces Einstein’s gravity and at O(1/m4) it reproduces the New Massive Gravity

(NMG) [4] with its two vacua. Therefore, it is named as the Born-Infeld extension of NMG

(BINMG). Furthermore, up to O(1/m8) it gives the theories given in [6] which were obtained

by demanding the existence of a holographic c-function and the theories given in [7] at any

order. Some holographic properties of the theory were studied in [8, 9] and it was also shown

to appear as the counterterm in AdS4 in [10]. Here, motivated by a possible holographic

c-theorem in arbitrary dimensions proposed in [11, 12], which extends the construction of

[13] to both odd and even dimensions, we initiate the study of the holographic properties of

the massless BI theories for D > 3.

The layout of this paper is as follows: In section II, we reconstruct the c-function of

BINMG theory with a method that is useful for the study of generic BI-type gravities.

Section III is devoted to the BI gravities for D ≥ 3 where we construct a monotonically

increasing function which might describe a holographic RG-flow by fixing two of the free

parameters of the theory. In Section IV, we study the D = 3 case, where there remains no

free parameters, and show that the monotonic function takes the value of the central charge

of the boundary field theory at the UV fixed point, by checking the coefficient of the Weyl

anomaly.

II. C-FUNCTION IN BINMG

To set the stage and notation, we start with Einstein’s theory and introduce the relevant

tools in constructing the c-functions. Then, we move on to NMG and BINMG in the

subsequent parts.

A. Einstein’s Theory

Let us first see how the c-function is constructed for 3D Einstein’s gravity defined by the

action

S =

∫

d3x
√
−g

[

1

ℓP
(R− 2Λ0) + LM

]

. (6)
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The matter Lagrangian LM is chosen such that it will induce an RG-flow. We begin with

the domain wall ansatz,

ds2 = e2A(r)(−dt2 + dx2) + dr2, (7)

and then impose the null-energy condition (NEC) for the matter fields, i.e, Tµνζ
µζν ≥ 0 for

an arbitrary null vector ζµ. For the choice ζµ = (ζ t, ζr, ζx) = v(e−A(r), 1, 0), where v is an

arbitrary function, the NEC becomes

v2(e2A(r) Ttt + Trr) ≥ 0, or T t
t − T r

r ≤ 0, (8)

where the latter form is more suitable for our purposes. Using the field equations,

Gµν + Λ0 gµν = ℓP Tµν , (9)

it is easy to see that the null-energy condition implies

T t
t − T r

r =
1

ℓP
(Gt

t −Gr
r) =

1

ℓP
A′′ ≤ 0, (10)

where A′(r) = dA
dr
. This suggests that one can define the function

c(r) :=
1

ℓPA′(r)
, (11)

which is monotonically increasing since

c′(r) = − 1

ℓP

A′′

A′2
≥ 0. (12)

When there is no matter, the metric (7) solves the field equations for Λ0 = − 1
L2 with

A(r) = r
L
, which is the AdS spacetime with the AdS length L, and at the UV boundary

(r → ∞), the value of the function c(r) is the central charge of the dual CFT2

c =
L

ℓP
. (13)

Assuming that the spacetime asymptotes to AdS both in the UV (r → ∞) and the IR

(r → −∞) we have cUV ≥ cIR, establishing the holographic c-theorem and fulfilling the

expectation that the number of degrees of freedom in the UV regime of a field theory is

larger than that of the IR regime.

2 With the usual normalization of Brown and Henneaux [15], one has c = 3L

2G3

.
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B. A Method to Derive NEC and NMG as an example

In order to derive the NEC, we consider the minimal coupling of a free scalar field to

gravity as3

S =

∫

d3x
√
−g

(

Lgr − 1

2
∂µφ∂

µφ

)

, (14)

where Lgr is the Lagrangian of a generic gravitational theory. Assuming φ = φ(r), with r

being the radial coordinate, the NEC becomes the statement of the positivity of the radial

kinetic energy

ℓP (−T t
t + T r

r ) =
1

2
φ′2 ≥ 0. (15)

We can find the left-hand side of this inequality directly from the action if we use the

following domain wall ansatz

ds2 = e2A(r)(−dt2 + dx2) + e2B(r)dr2, (16)

which yields our original metric (7) for the gauge choice B(r) = 0. Inserting this ansatz into

the action (14) gives an effective action for the functions (A(r), B(r), φ(r)), from which the

field equations can be found. After finding the Euler-Lagrange equations from the effective

action, we fix the gauge by B(r) = 0 and end up with three differential equations with

two unknowns (A(r), φ(r)). Note that the difference −T t
t + T r

r in the NEC (15) leads to

a cancellation of the cosmological constant if we write the left-hand side of the inequality

in terms of the gravitational field equations. Therefore, elimination of the cosmological

constant in the equations obtained from the effective action gives the NEC in the form

1

2ℓP
φ′2 = F (A′, A′′, . . .) ≥ 0, (17)

where F is a smooth function of its arguments. For an arbitrary gravity theory, one can try

to use this inequality to find a c-function as we did in the case of Einstein’s theory in part

IIA.

As an example of this method, let us study the most general quadratic theory in 3D

defined by

S =
1

ℓP

∫

d3x
√
−g

[

σR − 2Λ0 +
1

m2
(λ1R

2
µν + λ2R

2)

]

, (18)

3 This method was recently used to constrain the Ricci polynomial and the Riemann cubic gravities in [16].

For the study of the c-theorem in Horndeski gravity, see [17].
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where λ1 and λ2 are arbitrary constants at this stage. This construction will lead to the

result that NMG is the unique theory which possesses a c-function at this order, which was

first found in [6]. The explicit form of (17) for the action (18) can be computed as

1

2ℓP
φ′2 = −

(

σ +
4

m2
(λ1 + 3λ2)A

′2

)

A′′ +
4

m2
(3λ1 + 8λ2)A

′′2

+
4

m2
(3λ1 + 8λ2)(2A

′A′′′ + A′′′′) ≥ 0. (19)

In the limit m2 → ∞, one recovers the condition for Einstein’s gravity (10) as required. Our

aim is to find a monotonically increasing function, and this can be achieved by eliminating

the higher derivative terms with the choice 3λ1 + 8λ2 = 0, which leads to NMG [6]. With

the choice λ1 = 1 and λ2 = −3
8
, the NEC (19) reduces to

1

2ℓP
φ′2 = −

(

σ − 1

2m2
A′2

)

A′′ ≥ 0. (20)

By inspection, we define the function [6]

c(r) :=
1

ℓPA′

(

σ +
1

2m2
A′2

)

, (21)

which is monotonically increasing since

c′(r) = − 1

ℓPA′2

(

σ − 1

2m2
A′2

)

A′′ ≥ 0. (22)

The AdS spacetime with A(r) = r
L
is again a solution of the field equations with no matter

fields (φ(r) = 0) if the vacuum equation is satisfied as

Λ0 +
σ

L2
− 1

4m2L4
= 0, (23)

which generically has two solutions for the effective cosmological constant Λ = − 1
L2 . The

central charge of the boundary theory follows from (21) as

c =
L

ℓP

(

σ +
1

2m2L2

)

, (24)

which is first computed in [14]. One can continue this procedure to higher orders as was

done in [6] up to O(1/m8) and in [7] up to arbitrarily high orders. For all these theories,

the vacuum equation at order n, which is a polynomial of Λ of degree n, has generically

more than one real root, destroying the uniqueness of the vacuum. The non-uniqueness of

vacuum in gravity is a serious obstruction to the validity of the theory as one cannot decide

which vacuum is viable using any physical arguments such as energy considerations as all

these spaces have different asymptotics. This motivates the discussion of BINMG which has

a unique vacuum.
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C. BINMG

Let us consider the following 3D action:

S = −4m2

ℓP

∫

d3x
√

− det g

[
√

det
(

δµν +
σ

m2
Aµ

ν

)

−
(

1− Λ0

2m2

)]

, (25)

where

Aµν = Rµν + λ gµνR. (26)

and σ = ±1 is introduced to control the sign. For λ = −1
2
or λ = −1

6
, when expanded

in powers of 1/m2, this action gives NMG at the quadratic order [5]. However, at the third

and fourth orders, only for λ = −1
2
, it gives rise to the theories which were found in [6]

by requiring the existence of a holographic c-theorem. For this choice, the full theory was

also shown to admit a holographic c-function in [8] and this is the theory that we will refer

to as BINMG. By a very simple observation, one can see that these properties are deeply

connected.

Let us consider a Lagrangian given as an expansion of the form

L =
∞
∑

n=0

(

1

m2

)n

L(n), (27)

which will lead to field equations as

Φµν =
∞
∑

n=0

(

1

m2

)n

Φ(n)
µν , (28)

where Φ
(n)
µν are the field equations corresponding the order-n Lagrangian L(n). With this

form of the field equations, the NEC becomes

− T t
t + T r

r = −Φt
t + Φr

r =
∞
∑

n=0

(

1

m2

)n
(

−Φt
t + Φr

r

)(n)
=

1

2ℓP
φ′2 ≥ 0. (29)

We have seen that for the existence of a c-function, there should not be any terms with

more than a second derivative. Therefore, if the full theory has a c-function, then there

should not be any higher derivative terms at each order since there can be no cancellation

between different orders. This naturally implies that there exists a theory admitting a c-

function which is defined by the nth order Lagrangian L(n). One can also take any linear

combination of the Lagrangians L(n)’s to define theories with a c-function. As a result, since
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the BINMG theory has a c-function, it is natural for theories obtained in the (1/m2)-expansion

to have a c-function.

Indeed, one can use this argument to study the BI-type theories as follows: one fixes the

parameters in the theory by working out the first few Lagrangians in the (1/m2)-expansion.

After fixing the parameters, it is much easier to check if the full theory admits a c-function or

not. Since the full Lagrangian and the corresponding field equations are rather complicated,

this is a very powerful method especially in the study of higher dimensional theories.

Let us see how this method works for our 3D example. We insert the ansatz (16) into the

full Lagrangian (25) and study the leading terms. The NEC gives the following inequalities

at the first two orders in 1/m2:

0 ≤ −σ(1 + 3λ)A′′, (30)

0 ≤ −2(1 + 3λ)2A′2A′′ + 2(2λ+ 1)(6λ+ 1)A′A′′′ + (2λ+ 1)(6λ+ 1)(4A′′2 + A′′′′). (31)

In the last equation, the higher derivative terms drop for λ = −1
2
or λ = −1

6
. At the third

order in 1/m2, while the choice λ = −1
2
gives

σA′4A′′ ≥ 0, (32)

the other choice λ = −1
6
leads to an inequality with higher derivative terms which we do

not depict here. Therefore, from the discussion so far one can conclude that the full theory

might admit a holographic c-function for λ = −1
2
. For this choice, the NEC for the full

theory defined in (25) gives

− σA′′

√

m2 + σA′2
≥ 0, (33)

which has remarkably no higher derivative terms, and we can define the c-function4

c(r) =
σ

ℓPA′

√

1 +
σ

m2
A′2, (34)

which is monotonically increasing since

c′(r) = − σ

ℓPA′2

1
√

1 + σ
m2A′2

A′′ ≥ 0, (35)

4 As shown in [8], it is possible to find other functions which can be shown to be monotonically increasing

when subjected to the condition (33). However, our choice here leads to a central charge which gives the

central charge of NMG in the (1/m2)-expansion.
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thanks to the condition (33). The AdS metric with A(r) = r
L
is a solution for φ(r) = 0 if

the vacuum equation is satisfied as

√

1 +
σ

m2L2
= 1− Λ0

2m2
. (36)

The central charge can by read from (25) as [8, 9]

c =
σL

ℓP

√

1 +
σ

m2L2
. (37)

Note that we recover equations (23-24) by expanding equations (36-37) in powers of (1/m2).

III. D ≥ 3 BI GRAVITY

We now study the generic BI Gravity [1] theory defined by the action given in (1). In

order to see if it admits a c-function, we again study the Lagrangians in the (1/m2)-expansion

by using the D-dimensional version of our ansatz (16), which is given by

ds2 = e2A(r)ηabdx
adxb + e2B(r)dr2, (38)

where ηab is the Minkowski metric and the Latin indices run from 0 to (D − 2). For this

metric, the non-zero components of the Ricci tensor are

Rr
r = (D − 1)e−2B(−A′′ + A′B′ − A′2),

Ra
b = e−2B(−A′′ + A′B′ − (D − 1)A′2). (39)

We can use the components (39) to find the effective action for the functions

(A(r), B(r), φ(r)) in D-dimensions. Note that the Weyl tensor vanishes for the metric (38)

since it is conformally flat, and hence the terms with the Weyl tensor do not contribute

to the effective action. This also means that the parameters a1 and a2 remain free in this

context. We will not give the explicit form of the inequalities arising from the NEC since

they are very complicated for the generic choice of the parameters and therefore not very

illuminating. From the third and the fourth terms in the (1/m2)-expansion of the effective

10



action, we find the following conditions for the cancellation of the higher derivative terms

0 = 12a4(β + 1)− 4β3 − 9β2 − 6β +
D(D(7D − 18) + 12)

(D − 2)3
,

0 = 48a24(−2 +D)5 − 96β2
(

12 + 20β + 9β2
)

+ 16Dβ
(

−36 + 138β + 284β2 + 135β3
)

+D5
(

11− 18β + 3β2 + 40β3 + 24β4
)

+ 12D3
(

11− 68β + 38β2 + 164β3 + 87β4
)

−2D4
(

37− 114β + 27β2 + 224β3 + 126β4
)

− 8D2
(

9− 144β + 192β2 + 532β3 + 267β4
)

−24a24(−2 +D)3(1 + β)
(

D(4− 16β) + 16β +D2(−1 + 4β)
)

, (40)

which are satisfied by the remarkably simple choice of the parameters

a4 =
D(D − 1)

2(D − 2)2
, β =

D

D − 2
. (41)

With these choices, the reduced theory can be recast in a much simpler form with the help

of the Schouten tensor Pµν defined as

Pµν =
1

D − 2

(

Rµν −
1

2(D − 1)
gµνR

)

. (42)

Now, the Aµν tensor becomes

Aµν =2(D − 1)Pµν +
γ

m2

(

a1Wµν + (D − 2)a2CµρνσP
ρσ + (D − 1)2PµρP

ρ
ν

)

+
γ

Dm2
gµν

(

(D − 1)2

4 (D − 2) (D − 3)
− a1

)

W, (43)

which does not have any term with the trace of the Schouten tensor P = gµνPµν .

We can now check if the full theory admits a c-function. The NEC can be derived by

using the non-zero components of the Ricci tensor (39) in the full form of the action (1) and

the result is

0 ≤ −
(

2− (D − 1)
γ

m2
A′2
)D−2 (

2(D − 2) +D(D − 1)
γ

m2
A′2
)

A′′, (44)

which does not have any higher derivative terms. This condition is of the following form

D−1
∑

n=0

(

1

m2

)n

anA
′2nA′′ ≥ 0, (45)

and the function5

a(r) :=
1

(ℓPA′)(D−2)

D−1
∑

n=0

(

1

m2

)n

bnA
′2n (46)

5 ForD = 3, a(r) becomes the c-function c(r), but for D ≥ 3 we denote it as a(r) since it gives the coefficient

of the A-type Weyl anomaly at the fixed point for the case of even dimensional boundary field theories.
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is monotonically increasing when the coefficient bn is chosen as

bn =
an

2−D + 2n
. (47)

Monotonicity is clear since the derivative of the function a(r) becomes

a′(r) =
1

ℓ
(D−2)
P A′(D−1)

D−1
∑

n=0

(

1

m2

)n

anA
′2n ≥ 0, (48)

which is automatically satisfied in even dimensions thanks to the NEC (44). In odd dimen-

sions, we also need A′ > 0 to ensure (48). As explained [12], this is realized by construction.

We know that A(r) = r
L
as r → ∞, which gives A′ = 1

L
> 0. If we assume that A′ < 0 for

r < r1 and A′ > 0 for r > r1 where r1 is a certain value of the r-coordinate, then we should

have A′(r1) = 0 and A′′(r1) > 0. However, inserting A′(r1) = 0 into the NEC (44) gives

A′′(r1) < 0, which contradicts with our assumption. Therefore, the function A′(r) cannot

change its sign, and it satisfies A′ > 0 for all values of r, which makes (46) well-defined.

The vacuum equation is obtained with the AdS metric for A(r) = r
L
after setting φ(r) = 0

Λ0γ

m2
= −1 +

(

1 +
(D − 1)γ

2m2L2

)(

1− (D − 1)γ

2m2L2

)D−1

, (49)

with the condition Λ0γ

m2 6= −1, which we have already assumed. Whether this equation has a

unique viable solution for 1
L2 is certainly not obvious but this was proven to be the case in

the Appendix-C of [2]. The value of the function a(r) at the UV fixed point can be found

by setting6 A(r) = r
L
as

a =

(

L

ℓP

)(D−2) D−1
∑

n=0

an
2−D + 2n

(

1

m2L2

)n

. (50)

As suggested in [11, 12], it should match with a universal contribution to the entanglement

entropy for a particular construction, which is also proportional the coefficient associated

with the A-type Weyl anomaly for odd values of D (even-dimensional boundary field the-

ories). This and further questions regarding the detailed holographic properties of the D-

dimensional BI-type theories will be addressed elsewhere but it pays to show the 3D example

explicitly as we do in the next section.

6 Note that, unlike the case of BINMG, there are (D−1) terms contributing to the a-function and its value

at the UV fixed point.
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IV. D = 3 BI GRAVITY AS A NON-MINIMAL EXTENSION OF NMG

In D = 3, all the parameters of the theory in (43) are fixed since the terms with the Weyl

tensor vanish identically and one arrives at the 3D BI gravity action

SBI =
2m2

γ ℓP

∫

d3x
√
−g

[
√

det

(

δµν +
4γ

m2
P
µ
ν +

4γ2

m4
P
µ
ρP

ρ
ν

)

−
(

1 +
γΛ0

m2

)

]

, (51)

which describes a massive spin-2 graviton about its unique vacuum determined by

Λ0γ

m2
= −1 +

(

1 +
γ

m2L2

)(

1− γ

m2L2

)2

. (52)

The effective Planck length increases from its bare value and takes the form

1

ℓeffP
=

1

ℓP

(

1− γ2

L4m4

)

. (53)

Up to order (1/m6), the action (51) yields

S =
1

ℓP

∫

d3x
√
−g

[

R− 2Λ0 −
4γ

m2

(

R2
µν −

3

8
R2

)

+
γ2

m4

(

17

12
R3 − 6R2

µνR +
16

3
R3

µν

)]

,

(54)

which is the cubic order modification of NMG found in [6] by requiring the existence of a

c-function. Therefore, the theory defined by (51) provides a non-minimal BI-type extension

of NMG. It is non-minimal in the sense that there exists a simpler extension given by (5)

defined by only the Einstein tensor and no quadratic terms in the curvature. Black hole

solutions of this cubic theory were studied in [23]. However, the solutions for the full theory

given in (51) is an open problem.

The NEC (44) in this case yields

(

−1 − 2γ

m2
A′2 +

3γ2

m4
A′4

)

A′′ ≥ 0, (55)

which gives the coefficients in (45) as a0 = −1, a1 = − 2γ
m2 and a2 = 3γ2

m4 . Using these

coefficients in (50), one arrives at the c-function

c(r) =
1

ℓPA′

(

1− γ

m2
A′2
)2

, (56)

and setting A(r) = r
L
one obtains the central charge

c =
L

ℓP

(

1− γ

m2L2

)2

. (57)
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As our goal was somewhat different in this work, we have not discussed the bulk-boundary

unitarity issues: but let us just note that the theory is not unitary simultaneously in the

bulk and at the boundary. In fact, no massive spin-2 theory that comes from an action in

3D can be both bulk and boundary unitary as was proven in [28].

Before we end this section, using the methods described in [19, 20], we can also show that

the central charge exactly matches the one obtained via the Weyl anomaly computation.

For this purpose, consider the Euclidean metric

ds2 =
dr2

1 + r2

L2

+ r2(dθ2 + sin2 θdφ2), (58)

for which the action (51) yields7

SBI =

(

2L

ℓP

)(

3 + Λ0L
2 − 3γ

m2L2
+

γ2

m4L4

)

ln

(

2R

L

)

≡ 2 c ln

(

2R

L

)

, (59)

where we have removed a quadratic divergence in the large cut-off scale R. Upon using

the vacuum equation (52), one finds the same value for the central charge given in (57).

Therefore, the coefficient of the Weyl anomaly can be identified with the central charge c as

expected.

As a further independent check, the central charge can be computed by the formula

[21, 22]

c =
L

3ℓP

(

∂L
∂Rµν

gµν

)

R̄

, (60)

where bar means that the quantity is to be evaluated in AdS. A straightforward computation

yields the central charge given in (57).

Generic black hole solutions of the theory need to be explored, but since a Banados-

Teitelboim-Zanelli black hole [24] can be locally identified with the AdS3 spacetime, it is a

solution of the 3D BI theory for the values of the couplings given in (52). The Wald entropy

for the generic D-dimensional BI gravity was computed in [25], and it was shown to obey

the area law. For D = 3, it takes the following particularly simple form:

SW =
AH

4π

(

1− γ

m2L2

)2

. (61)

In accordance with Cardy’s formula, the entropy is proportional to the central charge (57)

as.

SW =
AH

4π

c ℓP
L

. (62)

7 With the normalization of Brown and Henneaux [15], one has S = c

3
ln
(

2R

L

)
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V. CONCLUSIONS

General relativity has two crucial properties: the existence of a unique maximally sym-

metric vacuum and the existence of a massless unitary graviton as the only excitation about

this vacuum. Following a bottom-up approach, we can impose these properties as condi-

tions for any viable low energy quantum gravity, but most modified theories of gravity have

different particle content and vacuum structure from general relativity, with or without a

cosmological constant. However, BI gravity, very non-trivially satisfies these a priori very

difficult conditions with four free parameters for D > 3. Here, in this work, we have shown

that two of those parameters are fixed by the requirement of the existence of a holographic

c-functions. In fact, D = 3 theory is much simpler, and one ends up with no free parameters

due to the vanishing of the Weyl tensor. We have studied this case and shown the matching

of the Weyl anomaly coefficient with the central charge obtained from the holographic RG

flow. In D = 4, which we shall study in more detail elsewhere, one is left with only one free

parameter a2 and the defining A-tensor takes the form

Aµν = 6Pµν +
γ

m2

(

2a2CµρνσP
ρσ + 9PµρP

ρ
ν +

9

32
gµνCρσαβC

ρσαβ

)

. (63)

The rather unexpected bonus is that the BI-type theories behave as a generating function of

infinitely many higher derivative theories that admit a c-function. From these theories, one

can construct a gravity theory with a c-function that has only a single massless graviton in its

particle spectrum, which constitutes a useful model for testing various ideas in holography.

In the final form of the theory, given in (43), the appearance of the Schouten tensor is

not unexpected. This can be heuristically seen as follows: the Riemann tensor decomposes

as

Riem = C + P ©∧ g, (64)

where C is the Weyl tensor and P ©∧ g is the Kulkarni-Nomizu product of the Schouten

tensor with the metric tensor. For deformations of a conformal metric (such as an AdS

space which appear in the UV and in the IR limits), the Weyl tensor vanishes identically

and the relevant non-trivial contribution comes from the Schouten part.

Another physical constraint for the Born-Infeld theories presented here is the “causality”

constraint whose detailed study was initiated in [26] for the Einstein-Gauss-Bonnet theories.

In the case of 3D BI gravity, it was found in [27] that causality and unitarity are compatible
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and no new condition arises from the unitarity constraint. For general BI gravities, this is

an outstanding problem on which we shall report on a separate work.

Another interesting point to understand is the relation between the quasi-topological

gravity studied in [11, 12] and the third order theory obtained from BI gravity studied here.

In [28], vacuum and particle content of the quasi-topological gravity was studied and it was

found that the theory is unitary in certain parameter regions. Analogous to the relation

between NMG and BINMG, one can expect a relation between the general BI theory for

D > 3 and the quasi-topological gravity.
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