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RATIONAL CURVES ON ELLIPTIC K3 SURFACES

SALIM TAYOU

Abstract. We prove that any non-isotrivial elliptic K3 surface
over an algebraically closed field k of arbitrary characteristic con-
tains infinitely many rational curves. In the case when char(k) 6=
2, 3, we prove this result for any elliptic K3 surface. When the char-
acteristic of k is zero, this result is due to the work of Bogomolov-
Tschinkel and Hassett.

1. Introduction

Let X be a K3 surface over an algebraically closed field k. In [BT00,
Corollary 3.28], Bogomolov and Tschinkel prove that when the charac-
teristic of k is zero and X admits a non-isotrivial elliptic fibration then
X contains infinitely many rational curves. Later, Hassett in [Has03,
Section 9] handled the general case of arbitrary elliptic complex K3
surfaces. In this note, we extend the above results to the case where k
has positive characteristic.

Theorem 1.1. Let X be an elliptic K3 surface over an algebraically

closed field k. Then X contains infinitely many rational curves in the

following cases:

(1) X admits a non-isotrivial elliptic fibration;

(2) char(k) 6= 2, 3.

In characteristic zero, this is the content of [BT00, Corollary 3.28]
and [Has03, Section 9]. When k has positive characteristic, the main
ingredients in case (1) are a result on the image of ℓ-adic monodromy
representations associated to non-isotrivial 1-dimensional families of
elliptic curves, see Proposition 2.5. The proof is inspired from [BT00],
though we simplify some arguments presented there. The proof in case
(2) follows the arguments of Hassett in [Has03, Section 9]. This note
is split into two parts. In the first section, some background on elliptic
K3 surfaces is recalled. The main result is proved in the second section.
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2. Background on elliptic K3 surfaces

Let k be an algebraically closed field of positive characteristic and
P1
k the projective line over k. We recall some facts about elliptic K3

surfaces. For a more comprehensive introduction, see [Huy16, Chapter
11].

An elliptic K3 surface is a K3 surface X which admits a surjective
morphism X

π
−→ P1

k whose generic fiber is a smooth integral curve of
genus 1. If moreover the morphism π admits a section, then X is
said to be a Jacobian elliptic K3 surface. The fibration is said to be
non-isotrivial if not all the smooth fibers are isomorphic. For Jacobian
elliptic K3 surfaces, the latter condition is equivalent to the fact that
the j-invariant of the generic fiber is not in k.

2.1. Tate-Shafarevich group. Let X
π
−→ P1

k be an elliptic K3 surface.
For every integer d ≥ 0, one can associate to X an elliptic K3 surface
Jd(X) as follows. If η denotes the generic point of P1

k, then the generic
fiber Xη over k(η) is a smooth integral curve of genus 1. Then one
can associate to it a smooth curve of genus 1, Jacd(Xη), which coarsly
represents the étale sheafification of the functor

Picd : (Sch/k(η))◦ → (Sets), S 7→ Picd(Xη × S)/ ∼ .

Then Jd(X) → P1
k is defined as the unique relatively minimal smooth

model of Jacd(Xη). For d = 0, we denote it simply J(X) and it is
a Jacobian elliptic K3 surface, see[Huy16, Chap.11, Section 4.1] or
[CD89, Thm. 5.3.1] for more details. For every smooth fiber Xt, t ∈ P1

k,
the fiber J(X)t is isomorphic to the Jacobian elliptic curve associated
to Xt. Let J(X)sm ⊂ J(X) be the open set of π-smooth points, viewed
as a smooth group scheme over P1

k. Then the open π-smooth locus
Xsm → P1

k is a J(X)sm-torsor over P1
k. Hence for an arbitrary Jacobian

elliptic K3 surface Y → P1
k, define the Tate-Shafarevich group X(Y )

as the set of isomorphism classes of Y sm-torsors over P1
k. The group

structure on X(Y ) depends on the choice of the section, however the
isomorphism class does not.

Proposition 2.1 (Chap.11, Section 5.2, 5.5(i), 5.6 [Huy16]). Let X →
P1
k be a Jacobian elliptic K3 surface. The Tate-Shafarevich group X(X)

is isomorphic to the Brauer group Br(X) of X and we have an injective

map

X(X) →֒ WC(Xη),
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where WC(Xη) is the Weil-Châtelet group of the generic fiber of X →
P1
k.

Recall that the Brauer group of X is defined as the étale cohomology
group H2(X,Gm) and recall also that for an elliptic curve E over a field
K, the Weil-Châtelet group, denoted WC(E), is defined as the set of
isomorphism classes of torsors under E over K, see [Huy16, Chapter
11, Section 5.1].

For every positive integer d and for every smooth fiber Xt, t ∈ P1
k,

Jd(X)t is isomorphic to Picd(Xt). Moreover, one has an isomorphism

X J1(X)

P
1
k

∼

π1π

and J(Jd(X)) ≃ J(X). In addition, the class [Jd(X)] of Jd(X) in
Br(J(X)) is equal to d[X ].

For every integers d, d′, we have natural rational maps of algebraic
varieties

Jd(X)×P1
k
Jd′(X) Jd+d′(X)

P1
k

For a positive integer ℓ, the diagonal embedding

J1(X) → J1(X)×P1
k
· · · ×P1

k
J1(X)

︸ ︷︷ ︸

ℓ times

composed with the rational map above defines a rational map ηℓ which
fits into the following commutative diagram

J1(X) J ℓ(X)

P1
k

ηℓ

πℓπ

The map ηℓ is defined over the smooth locus of π.



4 SALIM TAYOU

2.2. Rational curves. Let X be a K3 surface over k. A rational curve
on X is an integral closed subscheme C of dimension 1 and of geometric
genus 0. Recall the following existence result, attributed to Bogomolov
and Mumford, with a refinement of Li and Liedtke ([LL12, Theorem
2.1]).

Proposition 2.2 (Bogomolov-Mumford). Let L be a non-trivial effec-

tive line bundle on a K3 surface X over k. Then L is linearly equivalent

to a sum of effective rational curves.

2.3. Relative effective Cartier divisors.

Definition 2.3. Let X → P1
k be an elliptic K3 surface. A relative

effective Cartier divisor on X/P1
k is a closed subscheme M on X such

that M → P1
k is finite flat. If moreover M is irreducible, it is called a

multisection.

Given an elliptic K3 surface X and a multisection M on X, the map
M → P1

k is finite flat and its degree is by definition the degree of M.

Let X0 be a smooth fiber of X → P1
k over a point 0 ∈ P1

k. Then we
have a map given by the intersection product

Pic(X)
(X0, )
−−−→ Z.

It sends any multisection to its degree. The image of the above map is
a non-zero subgroup of Z, of finite index. Denote by dX its index. It
is called the degree of the elliptic fibration X → P1

k. Remark that an
elliptic fibration is Jacobian if and only if its degree is equal to one.

Lemma 2.4. Let X → P1
k be an elliptic K3 surface.

(1) The order of [X ] in Br(J(X)) is equal to dX .

(2) There exists a multisection of degree dM = dX which is a ratio-

nal curve.

(3) There exists at least one multisection M such that dM = dX
and which is moreover generically étale over P1

k.

Proof. For (2), let M be a multisection of degree dX . By Proposi-
tion 2.2, M is linearly equivalent to a sum of rational curves

∑

i Ci.
Then there exists a unique curve Ci which is horizontal and all the
others are vertical. Then Ci satisfies the desired properties.

For (1), notice that Xη is a torsor under the elliptic curve J(X)η and
that dX is the index of Xη, i.e is the greatest common divisor of the
degrees of residue fields of closed points of Xη (see [Lic68, 1]). Since
the order of Xη in WC(J(X)η) is equal to its index by [Lic68, Theorem
1], it implies that the order of [X ] is exactly dX . By [Lic68, Section
5, Theorem 4]1, it is also equal to the minimal degree of residue fields
of separable closed points. Hence there exists a closed separable point

1More precisely, see the proof given there.
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in Xη of degree dX . Taking its closure yields a separable multisection.
This proves (3). �

2.4. Monodromy. Let X
π
−→ P1

k be an elliptic K3 surface. Let U be
the largest Zariski open subset of P1

k over which the map π is smooth.
Thus XU → U is a torsor under the smooth group scheme J(X)U → U .
For b ∈ U a closed point and m prime to p := char(k), the étale
fundamental group πét

1 (U, b) of U acts on the group of m-torsion points
in J(X)b and defines a group morphism

ρ : πét

1 (U, b) → Aut

(

lim
←−

gcd(m,p)=1

J(X)b[m]

)

=
∏

gcd(ℓ,p)=1

Aut(TℓJ(X)b).

This action preserves the Weil paring and factors as follows:

ρ : πét

1 (U, b) →
∏

ℓ∧p=1

SL(TℓJ(X)b).

For every prime ℓ, we denote by ρℓ∞ the representation of πét

1 (U, b)
on the Tate module TℓJ(Xb) and denote by ρℓ its reduction modulo
ℓ. Then ρℓ∞ is simply the projection on the ℓ-factor in the previous
map. The monodromy group Γ is the image of πét

1 (U, b) under ρ. The
next result on the image of the monodromy group will be crucial in the
proof of Theorem 1.1.

Proposition 2.5 ([CH05]). If the elliptic fibration is not isotrivial,

then there exists a constant c(k) depending only on k, such that for

every ℓ > c(k) the morphism ρℓ is surjective.

This is the content of [CH05, Theorem 1.1] where the surjectivity is
proven for the reduction modulo ℓ, then one uses Lemma 2 in [Ser98,
IV-23]. Notice that in [CH05, Theorem 1.1], the base field is supposed
to be finite but one can check that the proof given there works for per-
fect fields, as mentioned in the discussion after Theorem 1.1 in loc.cit.

3. Proof of Theorem 1.1

If X has Picard rank ρ(X) at least 20, then the automorphism group
of X is infinite and hence X contains infinitely many rational curves,
see [Huy16, Chap.13, Remark 1.6] and [BT00, Theorem 4.1]. Hence we
assume that ρ(X) ≤ 19.

The elliptic surface X defines a class in the Tate-Shafarevich group
X(J(X)) of J(X), which is isomorphic to the Brauer group Br(J(X))
by Proposition 2.1. This class is a sum of two elements αp + α, where
α has torsion prime to p and αp is torsion of order pa, for some integer
a. Here p is the characteristic of k. We will construct infinitely many
multisections on X which are rational curves and whose degrees tend to
infinity. This will be enough to prove Theorem 1.1. Denote by dX the
degree of X and let ℓ be a prime number with residue 1 (mod pa) and
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such that ℓ > max(dX , c(k)), where c(k) is given by Proposition 2.5.
The prime to p torsion part of Br(J(X)) is a divisible group by [Huy16,
Chap. 18, Example 1.5]. The Kummer exact sequence and the as-
sumption on the Picard rank ensures furthermore that it is not trivial
(see formula (1.8) loc. cit). We can thus find an elliptic K3 surface
πℓ : Xℓ → P1 such that J(Xℓ) ≃ J(X), ℓ[Xℓ, πℓ] = [X, π] in Br(J(X))
and dXℓ

= ℓdX . Take for instance αp + αℓ, where αℓ is a non-trivial
element in Br(J(X)) which satisfies ℓ.αℓ = α. Hence J ℓ(Xℓ) ≃ X and
we have a rational map defined at the end of section 2.1:

XXℓ

P1
k

ηℓ

ππℓ

By Lemma 2.4, Xℓ contains a rational multisection Mℓ of degree dMℓ
=

dXℓ
= ℓdX . If the restriction of ηℓ to Mℓ is isomorphic to its images

above P1
k then ηℓ(Mℓ) is a rational curve on X of degree divisible by

ℓ which is the desired result. Otherwise, since the multiplication by ℓ
map is étale (by [Gro62, Théorème 2.5]), there exists infinitely many
closed points b in the maximal open subset U ⊂ P1

k where π is smooth,
Mℓ,U → U is smooth and two distinct points P1, P2 in Xℓ,b ∩Mℓ such
that ℓ.(P1−P2) = 0 in J(X)b. Thus, the point P1−P2 is a ℓ-primitive
torsion point in J(X)b. Let J(X)U [ℓ] → U be the relative effective
Cartier divisor of J(X)U → U of ℓ-torsion points.

Let J(X)U,prim[ℓ] be the relative effective Cartier divisor of non-zero
ℓ-torsion points. Since Xℓ,U is a J(X)U -torsor over U , there is an
induced map:

J(X)U,prim[ℓ]×Mℓ,U → Xℓ,U .(1)

The closure of the image in Xℓ is a curve of Xℓ which intersects Mℓ

infinitely many times by the non-injectivity of ηℓ. Hence Mℓ is isomor-
phic to an irreducible component of J(X)U,prim[ℓ]×U Mℓ,U .

3.1. Non-isotrivial case. For ℓ large enough, J(X)U,prim[ℓ] is irre-
ducible by Proposition 2.5. Hence via its first projection, the above
map is surjective over J(X)U,prim[ℓ]. Since there are ℓ2 − 1 torsion
points in each fiber of J(X)U,prim[ℓ] over U , this implies

dMℓ
= ℓdX ≥ ℓ2 − 1.

This is a contradiction by our assumption on ℓ.

3.2. Isotrivial case. We assume now that the elliptic fibration X →
P1
k is isotrivial. Then the elliptic fibration J(X) → P1

k is also isotrivial.
If the characteristic of k is different from 2 and 3, which will be assumed
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henceforth, then we can proceed following the lines of [Has03, Section
9]. The image of the étale fundamental group of U by ρℓ factors through
the automorphism group of the geometric generic fiber of J(X) → P1

k

which is cyclic of order 2, 4 or 6, see [Sil86, III.10]. Assume that the
fibration J(X) → P

1
k has n0 degenerate fibers of type I∗0 , n

′
1 degenerate

fibers of type Ia, a > 0, n
′′

1 degenerate fibers of type I∗a , a > 0, n2 fibers
of type II or II∗, n3 fibers of type III or III∗, and n4 fibers of type
IV or IV ∗. For the definition of the type of singularities of fibers, see
[Huy16, Chapter 11, Section 1.3].

By Equation (1), Mℓ,U is an irreducible component of a principal
homogeneous space under J(X)U,prim[ℓ]. Using Riemann-Hurwitz as in
the proof of [Has03, Theorem 9.9] and noticing that the computations of
the ramification contributions of degenerate fibers from [Has03, Table
1, page 259] hold for ℓ large enough, see [N6́4, Chapitre III, 17], there
exists C > 0 such that g(Mℓ) ≥ C.c(J) where g(Mℓ) is the geometric
genus of Mℓ and

c(J) =
1

2
n0 + n′1 + n

′′

1 +
5

6
n2 +

3

4
n3 +

2

3
n4 − 2.

Since Mℓ is a rational curve, we infer that c(J) ≤ 0. We use now the
method of [Has03, Proposition 9.6] to classify K3 surfaces that satisfy
the last condition. By Shioda-Tate formula [SS10, Theorem 6.3]), we
have :

ρ(X) = 2 +
∑

s∈P1(k)

(rs − 1) + r(X)

where rs denotes the number of irreducible components of a fiber Xs

for s a closed point in P1
k and r(X) is the rank of the Mordell-Weil

group of J(X). On the other hand, the ℓ-adic Euler formula ([Dol72,
Theorem 1.1, Corollary 1.6]2) implies that:

24 =
∑

s∈P1(k)

[χ(Xs)ℓ + αs,ℓ](2)

where, for s ∈ P
1
k(k), χ(Xs)ℓ is the ℓ-adic Euler characteristic of the

fiber Xs and αs,ℓ is its wild conductor defined in [Dol72, Section 1].
Recall that rs = χ(Xs)ℓ if the fiber Xs has reduction type Ia and
otherwise rs = χ(Xs)ℓ − 1. Since the characteristic of k is different
from 2 and 3, all the wild conductors above vanish.

Combining the two previous formulas, we get:

ρ(X) = 2 +
∑

s∈P1
k
(k)

of type Ia

(rs − 1) +
∑

s∈P1
k
(k)

not of type Ia

(rs − 2) + r(X)

= 26− n′1 − 2N + r(X)

2With the correct sign.
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where N = n0 + n′′1 + n2 + n3 + n4. The assumption that c(J) ≤ 0
implies that

18 + r(X) + 3n
′

1 + 2n
′′

1 +
4

3
n2 + n3 +

2

3
n4 ≤ ρ(X).

Hence either X has Picard rank equal to 22, or ρ(X) ≤ 20 and thus
X is an element in the list given in [Has03, Proposition 9.6]. In all
these cases, X is either a Kummer surface or its automorphism group
is infinite. In both cases, X has infinitely many rational curves, see
[BT05, Corollary 4.3] and [BT00, Lemma 4.9] for the second case.

3.3. Situation in characteristic 2 and 3. When the characteristic
of k is equal to 2 or 3 and the elliptic fibration X → P1

k is isotrivial then
the classification above must be modified to take into account the wild
ramification factors in Equation (2) which do not vanish in general,
apart from special cases, see [SS10, Section 4.6, Table 2]. For example,
we could have a K3 surface with a single cusp of conductor 24 for which
c(J) = −7

6
and ρ(X) ≥ 2. It would be interesting to investigate these

small rank situations.
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