Independence of Artin L-functions

Mircea Cimpoeas Florin Nicolae

October 18, 2018

Abstract

Let K/\mathbb{Q} be a finite Galois extension. Let χ_1, \ldots, χ_r be $r \geq 1$ distinct characters of the Galois group with the associated Artin Lfunctions $L(s, \chi_1), \ldots, L(s, \chi_r)$. Let $m \geq 0$. We prove that the derivatives $L^{(k)}(s, \chi_j)$, $1 \leq j \leq r$, $0 \leq k \leq m$, are linearly independent over the field of meromorphic functions of order $\lt 1$. From this it follows that the L-functions corresponding to the irreducible characters are algebraically independent over the field of meromorphic functions of $order < 1$.

Key words: Artin L-function; linear independence; algebraic independence; arithmetic functions; Dirichlet series

MSC2010: 11R42; 11M41

Introduction

Let K/\mathbb{Q} be a finite Galois extension. For the character χ of a representation of the Galois group $G := \text{Gal}(K/\mathbb{Q})$ on a finite dimensional complex vector space, let $L(s, \chi, K/\mathbb{Q})$ be the corresponding Artin L-function ([\[2\]](#page-8-0), P. 296). It was proved in [\[6,](#page-8-1) Theorem 1] that the derivatives of any order of Artin L-functions to finitely many distinct characters of G are linearly independent over C. A more general result concerning linear independence over C of functions in a class which contains the Artin L-functions was proved in [\[4\]](#page-8-2). In [\[5\]](#page-8-3) it was proved the independence of any family of suitable L-functions (including Artin L-functions) with respect to a ring generated by a slow varying function.

For $\varepsilon > 0$ let

$$
\mathcal{F}_{\varepsilon} = \{ f : (1 + \varepsilon, +\infty) \to \mathbb{C} \},
$$

$$
\mathcal{B}_{\varepsilon} = \{ f \in \mathcal{F}_{\varepsilon} : \forall a > 0 \lim_{\sigma \to +\infty} e^{-a\sigma} |f(\sigma)| = 0 \},\,
$$

$$
\mathcal{V}_{\varepsilon} = \{ f \in \mathcal{F}_{\varepsilon} : \exists a > 0 \lim_{\sigma \to +\infty} e^{a\sigma} |f(\sigma)| = 0 \}.
$$

The main result of this paper is

Theorem 7. Let K/\mathbb{Q} be a finite Galois extension, and let χ_1, \ldots, χ_r be *distinct characters of the Galois group with the associated Artin L-functions* $L(s, \chi_1), \ldots, L(s, \chi_r)$. Let $\varepsilon > 0$. Let $\mathcal{A}_{\varepsilon} \subset \mathcal{B}_{\varepsilon}$ be a C-vector space with

 $\mathcal{A}_{\varepsilon} \cap \mathcal{V}_{\varepsilon} = \{0\}.$

Let $m \geq 0$ *. If the functions* $G_{ik}(\sigma) \in \mathcal{A}_{\varepsilon}$ *satisfy*

$$
\sum_{j=1}^r \sum_{k=0}^m G_{jk}(\sigma) L^{(k)}(\sigma, \chi_j) = 0, \ \sigma > 1 + \varepsilon,
$$

then $G_{jk} = 0, 1 \le j \le r, 0 \le k \le m$ *.*

As a consequence we have **Corollary 8.** The functions $L^{(k)}(s, \chi_j)$, $1 \leq j \leq r$, $0 \leq k \leq m$ are linearly

independent over the field of meromorphic functions of order < 1*.* Since the Artin L-functions are meromorphic of order 1 this result is best possible when we look for linear dependence with coefficients meromorphic functions. This extends the main result of [\[6\]](#page-8-1). Let χ_1, \ldots, χ_h be the irreducible characters of the Galois group $Gal(K/\mathbb{Q})$. In [\[6,](#page-8-1) Corollary 4] it was proved that the Artin L-functions $L(s, \chi_1), \ldots, L(s, \chi_h)$ are algebraically indepen-dent over C. This extended Artin's result [\[1,](#page-8-4) Satz 5, P. 106] that $L(s, \chi_1), \ldots$, $L(s, \chi_h)$ are multiplicatively independent. In Corollary 9 we prove that $L(s, \chi_1), \ldots, L(s, \chi_h)$ are algebraically independent over the field of meromorphic functions of order < 1 .

1. Arithmetic Functions and Dirichlet Series

In this section we present some properties of Dirichlet series which are needed for the proof of the results on Artin L-functions in section 2.

Lemma 1. Let $(a_n(\sigma))_{n>1}$ be a sequence of functions in $(\mathcal{F}_{\varepsilon} \setminus \mathcal{V}_{\varepsilon}) \cup \{0\}$ such *that there exists a function* $M : (1 + \varepsilon, +\infty) \to [0, +\infty)$ *with the properties:*

- (i) $n^{-\varepsilon} |a_n(\sigma)| \leq M(\sigma)$, $\forall n \geq 1, \sigma > 1 + \varepsilon$,
- *(ii)* For all $a > 0$ *it holds that* $\lim_{\sigma \to +\infty} e^{-a\sigma} M(\sigma) = 0$.

Then

- (1) The series of functions $F(\sigma) := \sum_{n=1}^{\infty}$ $\frac{a_n(\sigma)}{n^{\sigma}}$ is absolutely convergent on $(1 + \varepsilon, +\infty)$.
- *(2)* If $F(\sigma)$ *is identically zero then* $a_n(\sigma)$ *is identically zero for any* $n \geq 1$ *.*

Proof. (1) Let $\sigma > 1 + \varepsilon$. By (*i*), it holds that

$$
\left|\frac{a_n(\sigma)}{\sigma^n}\right| \le \frac{M(\sigma)}{n^{\sigma-\varepsilon}}.
$$

Since the series $\sum_{n=1}^{\infty}$ $\frac{1}{n^{\sigma-\varepsilon}}$ is convergent, it follows that the series $\sum_{n=1}^{\infty}$ $a_n(\sigma)$ n^{σ} is absolutely convergent.

(2) We show inductively that a_n is identically zero for any $n \geq 1$. Suppose that $k = 1$ or that $k > 1$ and, for induction, a_1, \ldots, a_{k-1} are identically zero. For $\sigma > 1 + \varepsilon$ we have that

$$
|a_{k}(\sigma)| = \left| k^{\sigma} \sum_{n=k+1}^{\infty} \frac{a_{n}(\sigma)}{n^{\sigma}} \right| \leq \sum_{n=k+1}^{\infty} \frac{|a_{n}(\sigma)|k^{\sigma}}{n^{\sigma}} \leq
$$

(1)

$$
\leq M(\sigma) \sum_{n=k+1}^{\infty} \frac{k^{\sigma}}{n^{\sigma-\varepsilon}} = k^{\varepsilon} M(\sigma) \sum_{n=k+1}^{\infty} \frac{1}{(\frac{n}{k})^{\sigma-\varepsilon}}.
$$

We choose $\delta > \varepsilon$. Let $\sigma \geq 1 + \delta$. From (1) it follows that

 $n=k+1$

$$
|a_k(\sigma)| \le k^{\varepsilon} M(\sigma) \sum_{n=k+1}^{\infty} \frac{1}{(\frac{n}{k})^{\frac{\sigma+1-\varepsilon}{2}}} \frac{1}{(\frac{n}{k})^{\frac{\sigma-1-\varepsilon}{2}}} \le
$$

 $n=k+1$

 $\left(\frac{n}{k}\right)$

(2)
$$
\leq k^{\varepsilon} M(\sigma) \left(\sum_{n=k+1}^{\infty} \frac{1}{(\frac{n}{k})^{1+\frac{\delta-\varepsilon}{2}}} \right) \frac{1}{(\frac{k+1}{k})^{\frac{\sigma-1-\varepsilon}{2}}}.
$$

Let $0 < a < \frac{1}{2}(\log(k+1) - \log k)$. From (2) it follows that

$$
(3) \quad e^{a\sigma}|a_k(\sigma)| \leq k^{\frac{\varepsilon-1}{2}}(k+1)^{\frac{1+\varepsilon}{2}}\left(\sum_{n=k+1}^{\infty}\frac{1}{\left(\frac{n}{k}\right)^{1+\frac{\delta-\varepsilon}{2}}}\right)e^{(a-\frac{\log(k+1)-\log k}{2})\sigma}M(\sigma).
$$

From (3) and hypothesis (ii) it follows that

$$
\lim_{\sigma \to +\infty} e^{a\sigma} |a_k(\sigma)| = 0,
$$

so $a_k \in \mathcal{V}_{\varepsilon}$. Since, by hypothesis, $a_k \in (\mathcal{F}_{\varepsilon} \setminus \mathcal{V}_{\varepsilon}) \cup \{0\}$ it follows that $a_k = 0$. \Box

Let $\varepsilon > 0$. If $f(n)$ is an arithmetic function of order $O(n^{\varepsilon})$, i.e. there exists $C > 0$ such that $|f(n)| \leq Cn^{\varepsilon}$ for every $n \geq 1$, then the associated Dirichlet series

$$
F(s) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s}
$$

defines a holomorphic function in the half plane $\text{Re}(s) > 1 + \varepsilon$. The k-th *arithmetic derivative* of f(n) is

$$
f^{(k)}(n) = (-1)^k f(n) \log^k n.
$$

It holds that the k*-th derivative* of F(s) is the Dirichlet series

$$
F^{(k)}(s) = \sum_{n=1}^{\infty} \frac{f^{(k)}(n)}{n^s}.
$$

Theorem 2. Let $\varepsilon > 0$. Let $f_1(n), \ldots, f_r(n)$ be arithmetic functions of order $O(n^{\epsilon})$ *linearly independent over* \mathbb{C} *with the associated Dirichlet series* $F_1(s), \ldots, F_r(s)$. Let $\mathcal{A}_{\varepsilon} \subset \mathcal{B}_{\varepsilon}$ be a $\mathbb{C}\text{-vector space with }$

$$
\mathcal{A}_{\varepsilon} \cap \mathcal{V}_{\varepsilon} = \{0\}.
$$

Let $G_1(\sigma), \ldots, G_r(\sigma) \in \mathcal{A}_{\varepsilon}$ *such that*

(4)
$$
\sum_{j=1}^r G_j(\sigma) F_j(\sigma) = 0, \ \sigma > 1 + \varepsilon.
$$

Then $G_1 = \cdots = G_r = 0$ *.*

Proof. Let $\sigma > 1 + \varepsilon$. From (4) it follows that

(5)
$$
\sum_{n=1}^{\infty} \left(\sum_{j=1}^{r} G_j(\sigma) f_j(n) \right) n^{-\sigma} = 0.
$$

For $n \geq 1$ let

(6)
$$
a_n(\sigma) := \sum_{j=1}^r G_j(\sigma) f_j(n).
$$

The functions $a_n(\sigma)$ are contained in the space $\mathcal{A}_{\varepsilon}$. Since the functions $f_j(n)$ have order $O(n^{\varepsilon})$, there exists a constant $C > 0$ such that

(7)
$$
\max\{|f_j(n)| : 1 \le j \le r\} \le Cn^{\varepsilon}, \forall n \ge 1.
$$

Let

(8)
$$
M(\sigma) := C \sum_{j=1}^r |G_j(\sigma)|.
$$

From (6) , (7) and (8) it follows that

(9)
$$
|a_n(\sigma)| \le M(\sigma)n^{\varepsilon}, \ \forall n \ge 1.
$$

Also, since $G_j \in \mathcal{B}_{\varepsilon}$, from (6) and (9) it follows that

$$
\lim_{\sigma \to +\infty} e^{-a\sigma} M(\sigma) = 0, \ \forall a > 0,
$$

hence the conditions of the Lemma 1 are satisfied. From (5) and Lemma 1 it follows that

(10)
$$
a_n(\sigma) = 0, \ \forall n \ge 1.
$$

Since the functions $f_1(n), \ldots, f_r(n)$ are linearly independent over \mathbb{C} , from (6) and (10) it follows that $G_j(\sigma) = 0, 1 \le j \le r$, as required. \Box

An arithmetic function $f(n)$ is called *multiplicative*, if $f(1) = 1$ and

$$
f(nm) = f(n)f(m), n, m \in \mathbb{N} \text{ with } \gcd(n, m) = 1.
$$

Two multiplicative arithmetical functions f(n) and g(n) are called *equivalent* (see [\[3\]](#page-8-5)) if $f(p^j) = g(p^j)$ for all integers $j \ge 1$ and all but finitely many primes p. Let $e(n)$ be the identity function, defined by $e(1) = 1$ and $e(n) = 0$ for $n \geq 2$. We recall the following result of Kaczorowski, Molteni and Perelli [\[4\]](#page-8-2).

Lemma 3. *([\[4,](#page-8-2) Lemma 1]) Let* $f_1(n), \ldots, f_r(n)$ *be multiplicative functions such that* $e(n)$, $f_1(n)$, ..., $f_r(n)$ *are pairwise non-equivalent, and let* m *be a non-negative integer. Then the functions*

$$
f_1^{(0)}(n),..., f_1^{(m)}(n), f_2^{(0)}(n),..., f_2^{(m)}(n),..., f_r^{(0)}(n),..., f_r^{(m)}(n)
$$

are linearly independent over C*.*

Corollary 4. Let $\varepsilon > 0$. Let $f_1(n), \ldots, f_r(n)$ be multiplicative functions of *order* $O(n^{\epsilon})$ *such that* $e(n)$, $f_1(n)$, ..., $f_r(n)$ *are pairwise non-equivalent. Let*

$$
F_j(s) = \sum_{n=1}^{\infty} \frac{f_j(n)}{n^s}, \ j = 1, \ldots, r,
$$

be the associated Dirichlet series. Let $A_{\varepsilon} \subset \mathcal{B}_{\varepsilon}$ *be a* \mathbb{C} *-vector space with*

$$
\mathcal{A}_{\varepsilon} \cap \mathcal{V}_{\varepsilon} = \{0\}.
$$

Let $m \geq 0$ *. If the functions* $G_{jk}(\sigma) \in \mathcal{A}_{\varepsilon}$ *satisfy*

$$
\sum_{j=1}^{r} \sum_{k=0}^{m} G_{jk}(\sigma) F_j^{(k)}(\sigma) = 0, \ \sigma > 1 + \varepsilon,
$$

then $G_{ik} = 0, 1 \leq j \leq r, 0 \leq k \leq m$.

Proof. If follows from Lemma 3 and Theorem 2.

Proposition 5. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function of order $\rho < 1$ which *is not identically zero. Let* $\varepsilon > 0$ *. Then* $f|_{(1+\varepsilon,+\infty)} \in \mathcal{B}_{\varepsilon} \setminus \mathcal{V}_{\varepsilon}$ *.*

Proof. Let $\rho < \lambda < 1$. There exists a constant $C > 0$ such that

$$
|f(s)| \le Ce^{|s|^\lambda}, \ s \in \mathbb{C}.
$$

Let $a > 0$ and $\sigma > 1 + \epsilon$. We have that

$$
e^{-a\sigma}|f(\sigma)| \le Ce^{-a\sigma + \sigma^{\lambda}}
$$

so

$$
\lim_{\sigma \to +\infty} e^{-a\sigma} |f(\sigma)| = 0,
$$

hence $f|_{(1+\varepsilon,+\infty)} \in \mathcal{B}_{\varepsilon}$. If f is polynomial then

$$
\lim_{\sigma \to +\infty} e^{a\sigma} |f(\sigma)| = +\infty, \ \forall a > 0,
$$

so $f|_{(1+\varepsilon,+\infty)} \notin \mathcal{V}_{\varepsilon}$. If f is not polynomial, then by Hadamard's Theorem, there exists $A \neq 0$ such that

(11)
$$
f(s) = As^{m} \prod_{n=1}^{\infty} (1 - \frac{s}{s_n}), s \in \mathbb{C},
$$

where m is the multiplicity of $s_0 = 0$ as zero of f, and s_1, s_2, \ldots are the non-zero zeros of f . Let

$$
E(s) := \prod_{n=1}^{\infty} (1 - \frac{s}{s_n}).
$$

It is known (see [\[7,](#page-8-6) Ch. 5, Corollary 5.4]) that there exists a stricly increasing sequence $(r_k)_{k\geq 1}$ of positive numbers with $\lim_{k\to+\infty} r_k = +\infty$ and a constant $B > 0$ such that

(12)
$$
|E(r_k)| \ge e^{-Br_k^{\lambda}}, \ \forall k \ge 1.
$$

Let $a > 0$. From (11) and (12) it follows that

$$
e^{ar_k}|f(r_k)| = e^{ar_k}|A|r_k^m|E(r_k)| \ge |A|r_k^m e^{ar_k - Br_k^{\lambda}} \to +\infty,
$$

hence $f|_{(1+\varepsilon,+\infty)} \notin \mathcal{V}_{\varepsilon}$.

 \Box

 \Box

Corollary 6. *With the assumptions of Corollary* 4*, the holomorphic func* $tions F_i^{(k)}$ $j^{(k)}(s)$, $1 \leq j \leq r$, $0 \leq k \leq m$ are linearly independent over the field *of meromorphic functions of order* < 1*.*

Proof. Suppose that there exists a linear combination

$$
\sum_{j=1}^{r} \sum_{k=0}^{m} Q_{jk}(s) F_j^{(k)}(s) = 0, \text{ Re } s > 1 + \epsilon,
$$

where Q_{jk} are meromorphic functions of order $\lt 1$. It is known that a meromorphic function of order $\lt 1$ is a quotient of entire functions of order $\lt 1$. So we may suppose that Q_{jk} are entire functions of order < 1 . Let $\sigma > 1 + \epsilon$. We have that

$$
\sum_{j=1}^{r} \sum_{k=0}^{m} Q_{jk}(\sigma) F_j^{(k)}(\sigma) = 0.
$$

From Proposition 5 and Corollary 4 it follows that

$$
Q_{jk}(\sigma) = 0, \ \sigma > 1 + \epsilon,
$$

hence

$$
Q_{jk}(s) = 0, \ s \in \mathbb{C},
$$

by the identity principle for holomorphic functions.

2. Artin L-functions

Let K/\mathbb{Q} be a finite Galois extension. It was proved in [\[6,](#page-8-1) Theorem 1] that the derivatives of any order of Artin L-functions to finitely many distinct characters of the Galois group are linearly independent over C. In our main result we extend this:

Theorem 7. Let K/\mathbb{Q} be a finite Galois extension, and let χ_1, \ldots, χ_r be *distinct characters of the Galois group with the associated Artin L-functions* $L(s, \chi_1), \ldots, L(s, \chi_r)$ *.* Let $\varepsilon > 0$ *. Let* $\mathcal{A}_{\varepsilon} \subset \mathcal{B}_{\varepsilon}$ be a $\mathbb{C}\text{-}vector space with$

$$
\mathcal{A}_{\varepsilon} \cap \mathcal{V}_{\varepsilon} = \{0\}.
$$

Let $m \geq 0$ *. If the functions* $G_{jk}(\sigma) \in \mathcal{A}_{\varepsilon}$ *satisfy*

$$
\sum_{j=1}^r \sum_{k=0}^m G_{jk}(\sigma) L^{(k)}(\sigma, \chi_j) = 0, \ \sigma > 1 + \varepsilon,
$$

then $G_{jk} = 0, 1 \le j \le r, 0 \le k \le m$ *.*

 \Box

Proof. Let

$$
L(s, \chi_j) = \sum_{n=1}^{\infty} \frac{f_j(n)}{n^s}, \ j = 1, \dots, r
$$

be the Dirichlet series expansion of $L(s, \chi_i)$ in the half-plane Re $s > 1$. Since in Re $s > 1$ the function $L(s, \chi_i)$ is defined by an Euler product, the arithmetic function $f_i(n)$ is multiplicative. It is well known that for Artin Lfunctions, the function $f_j(n)$ is $O(n^{\delta})$ for any $\delta > 0$, hence $O(n^{\epsilon})$. We show that $e(n)$, $f_1(n)$, ..., $f_r(n)$ are pairwise non-equivalent. For a prime number p which is not ramified in K, the value $f_j(p)$ equals the value of the character χ_i on the Frobenius class associated to p. For distinct characters χ_i and χ_k there are, by Chebotarev's density theorem, infinitely many primes p such that $f_i(p) \neq f_k(p)$, so the arithmetic functions f_i and f_k are not equivalent in the sense of section 1. Also, $e(p) = 0$ for any prime p, while there exist infinitely many non-ramified primes p with $f_i(p) = \chi_i(1) \neq 0$, hence the arithmetic functions e and f_j are not equivalent. We apply Corollary 4. \Box

Corollary 8. Let K/\mathbb{Q} *be a finite Galois extension. Let* χ_1, \ldots, χ_r *be* $r \geq 1$ *distinct characters of the Galois group with the associated Artin L-functions* $L(s, \chi_1), \ldots, L(s, \chi_r)$. Let $m \geq 0$. The meromorphic functions $L^{(k)}(s, \chi_j)$, $1 \leq j \leq r, 0 \leq k \leq m$ are linearly independent over the field of meromorphic *functions of order* < 1 *.*

Proof. Apply Theorem 7 and Corollary 6.

Let χ_1, \ldots, χ_h be the irreducible characters of the Galois group. In [\[6,](#page-8-1) Corollary 4] it was proved that the Artin L-functions $L(s, \chi_1), \ldots, L(s, \chi_h)$ are algebraically independent over C. This extended Artin's result [\[1,](#page-8-4) Satz 5, P. 106] that $L(s, \chi_1), \ldots, L(s, \chi_h)$ are multiplicatively independent. Now we can prove more:

Corollary 9. Let K/\mathbb{Q} be a finite Galois extension, and let χ_1, \ldots, χ_h be *the irreducible characters of the Galois group. Then the Artin L-functions* $L(s, \chi_1), \ldots, L(s, \chi_h)$ are algebraically independent over the field of mero*morphic functions of order* < 1*.*

Proof. This follows from Corollary 8 and the fundamental property

$$
L(s,\chi_1)^{n_1}\cdots L(s,\chi_h)^{n_h}=L(s,n_1\chi_1+\cdots+n_h\chi_h).
$$

 \Box

Corollary 10. Let $K_1/\mathbb{Q}, \ldots, K_r/\mathbb{Q}$ be $r \geq 1$ distinct finite Galois extensions with the Dedekind zeta-functions $\zeta_{K_1}, \ldots, \zeta_{K_r}$. Let $m \geq 0$. The functions

> $\zeta_{K_1}^{(0)}$ $\zeta_{K_1}^{(0)}, \ldots, \zeta_{K_1}^{(m)}, \zeta_{K_2}^{(0)}, \ldots, \zeta_{K_2}^{(m)}, \ldots, \zeta_{K_r}^{(0)}, \ldots, \zeta_{K_r}^{(m)}$

are linearly independent over the field of meromorphic functions of order < 1*.*

Proof. As in the proof of [\[6,](#page-8-1) Corollary 5], it holds that

$$
\zeta_{K_j}(s) = L(s, \chi_j, K/\mathbb{Q}), \ j = 1, \ldots, r,
$$

where $K := K_1 \cdots K_r$ is the compositum of the fields K_1, \ldots, K_r and χ_1, \ldots, χ_r are distinct characters of the Galois group of K. We apply Corollary 8. \Box

References

- [1] E. Artin, *Über eine neue Art von L-Reihen*, Abh. Math. Sem. Hamburg 3 (1924), 89–108.
- [2] E. Artin, *Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren*, Abh. Math. Sem. Hamburg 8 (1931), 292–306.
- [3] J. Kaczorowski, G. Molteni, A. Perelli, *Linear independence in the Selberg class*, C. R. Math. Rep. Acad. Sci. Canada 21, (1999), 28–32.
- [4] J. Kaczorowski, G. Molteni, A. Perelli, *Linear independence of Lfunctions*, Forum Mathematicum 18, (2006), 1–7.
- [5] G. Molteni, *General linear independence of a class of multiplicative functions*, Arch. Math. 83 (2004), 27–40.
- [6] F. Nicolae, *On Artins's L-functions. I*, J. reine angew. Math. 539 (2001), 179–184.
- [7] E. M. Stein, R. Shakarchi, *Complex analysis*. Princeton Lectures in Analysis II, (2003).

Mircea Cimpoea¸s, Simion Stoilow Institute of Mathematics, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania, E-mail: mircea.cimpoeas@imar.ro

Florin Nicolae, Simion Stoilow Institute of Mathematics, P.O.Box 1-764, Bucharest 014700, Romania, E-mail: florin.nicolae@imar.ro