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HORIZONTAL Ga-ACTIONS ON AFFINE

T-VARIETIES OF COMPLEXITY ONE

KEVIN LANGLOIS

Abstract. We classify the Ga-actions on normal affine varieties defined over any field that are
horizontal with respect to a torus action of complexity one. This generalizes previous results that
were available for perfect ground fields (cf. [12, 17, 16]).

1. Introduction

In this paper, we are considering algebraic varieties (that is, integral separated finite type schemes)
over a field k. We are interested in some classification problems for algebraic group actions. Namely,
we study normal affine varieties endowed with an action of the additive group Ga of the base field k.
The further condition that we impose is that the Ga-action has to be normalized by a torus action
of complexity one. In the case where k is algebraically closed of characteristic 0, this classification
was obtained by Liendo in [17], generalizing the former classification by Flenner and Zaidenberg
for normal complex affine C⋆-surfaces (see [12]). A next step to solve this problem was completed
in [16] for perfect ground fields. We treat here the remaining case, where the base field is possibly
imperfect (see Theorem 2.10 for the main result).
The investigation of the Ga-actions on algebraic varieties is of highest interest in the research

field called affine geometry where most of the classical problems can be reformulated in terms of
Ga-actions satisfying some properties. The systematic method employed in this paper could serve as
well for describing the automorphism groups of certain complete varieties. This might be performed,
for instance, by using the Cox ring theory or by interpreting the Ga-action as an integrable vector
field, see [4, 9, 3] for the characteristic-zero case. These developments are still open in positive
characteristic. Special attention should be paid to the case of imperfect base fields, as one may
describe some interesting algebraic groups (that only show up in this case) as automorphism groups
of projective varieties such as the pseudo-reductive groups [5] or the pseudo-abelian varieties [22].
Let us now introduce some notation in order to state our main results. In the entire paper we fix a

split algebraic torus T ≃ Gn
m over k. We make the convention that a T-variety is a normal variety X

equipped with a faithful T-action. The complexity of X is then defined as the transcendence degree
of the field extension k(X)T/k, where the subfield k(X)T ⊆ k(X) consists of invariant functions.
Here we use the usual notation such as k[X ] = Γ(X,OX) for the k-algebra of regular global functions
and k(X) for the residue field of the generic point of X .
Assuming X to be affine, a Ga-action on X is equivalent to having a locally finite iterative higher

derivation (LFIHD) on k[X ], see [20]. This is a family of k-linear operators

∂ = {∂(i) : k[X ] → k[X ]}i≥0
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2 KEVIN LANGLOIS

respecting the following conditions. (i) ∂(0) is the identity; (ii) for all b1, b2 ∈ k[X ] and i ∈ Z≥0,

∂(i)(b1 · b2) =
∑

i=i1+i2

∂(i1)(b1) · ∂(i2)(b2);

(iii) for any b ∈ k[X ] we have ∂(j)(b) = 0 for j ≫ 0; (iv) for all u, v ∈ Z≥0,

∂(u) ◦ ∂(v) =
(

u+ v

u

)

∂(u+v).

Moreover, the datum of a T-action on X translates into anM-grading on the k-algebra k[X ], where
M denotes the character group of the torus T. Note that finite type normal M-graded algebras
admit combinatorial descriptions in terms of polyhedral divisors (notion invented by Altmann and
Hausen; see [1, 24, 15]). The idea in [17] (and this is the viewpoint of the present paper) is to
classify the Ga-actions in question using this combinatorial approach.
A Ga-action is said to be normalized by the T-action if, for the corresponding LFIHD ∂, there is

a lattice vector e ∈ M (called the degree of ∂) such that the linear maps ∂(j) are homogeneous of
degree je. In other words, this means that any homogeneous element in k[X ] of degree m ∈ M is
sent to a homogeneous element of degree m + je ∈ M by the map ∂(j) for every integer j ∈ Z≥0.
Using the Leibniz rule, that is Condition (ii) before, the LFIHD ∂ extends to a sequence of linear
operators on the function field k(X) satisfying Conditions (i), (ii), (iv) (see e.g. [16, Lemma 2.5]).
We say, in addition, that the Ga-action normalized by the torus action is vertical (or of fiber type)
if ∂(j)(k(X)T) = 0 for any j ∈ Z>0, where ∂ means the extension on the function field k(X).
Otherwise, the normalized Ga-action is called horizontal. Over any field, the vertical Ga-actions
on complexity-one affine T-varieties were described in [16, Section 4] (see also [18]). Therefore, it
remains to look at the horizontal case. Our first main result (see 2.10) can be stated as follows.
Here the combinatorial equipment for describing the horizontal Ga-actions are the coherent families,
see Definition 2.9 for more details.

Theorem 1.1. Let X be a complexity-one affine T-variety described by a polyhedral divisor D over
a regular curve C. Then the presence of a horizontal Ga-action on X implies that C = A1

k or
C = P1

k, and in this case, the map θ 7→ ∂θ induces a bijection between the set of coherent families

θ = (D̃, e, s, λ) on D and the set of horizontal LFIHDs on the k-algebra k[X ] = A[C,D].

The key observation for proving Theorem 1.1 is that the existence of such a horizontal Ga-action
automatically implies that the complexity-one affine T-variety is geometrically integral over k (see
Lemma 2.1) and therefore one may extend the scalars to an algebraic closure k̄. While the proof
of our main result (see Theorem 2.10) boils down to understanding this field extension problem,
it is worthwhile mentioning that these k-varieties are not in general geometrically normal. For
instance, one may take the ones that have a regular non-smooth affine global quotient. But, as
observed in Lemma 2.1, such examples do not fulfill the condition to have any horizontal Ga-action.
Nevertheless, we exhibit in 2.11 a non-geometrically normal example of complexity-one affine T-
variety that possesses a horizontal Ga-action.
As a further matter, the inseparable degree of the closed points of the rational quotient appears

in the description of the horizontal Ga-action as a new numerical invariant (see Definition 2.9 (v)).
Finally, we show the following intermediate result (see 2.5 and consult [10, Section 2], [12, Theorems
3.3 and 3.16], [16, Corollary 5.6] for perfect ground fields) on the geometric structure of normal affine
Gm-surfaces with horizontal Ga-action that gives rise to a positive grading.

Theorem 1.2. Any (normal) affine Gm-surface over arbitrary field that is not hyperbolic and having
a horizontal Ga-action is a toric surface.
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Remark 1.3. We will suppose that for any algebraic variety V over k, the field k is algebraically
closed in the function field k(V ). That means that all elements of k(V ) that are solutions to a one-
variable polynomial in k[t] belong to k. This assumption implies that V is geometrically irreducible
(see [19, §3.2, Corollary 2.14(d)]) and allows one to simplify the statements of the present paper. It
is not restrictive since, in the general case, one may change the base field k by its algebraic closure
in k(V ). We will also let VK = V ×Spec k SpecK for any field extension K/k. Finally, the letter p
will denote the characteristic exponent of the field k.

2. Classification of horizontal Ga-actions

2.1. Torus actions and polyhedral divisors. We fix a complexity-one affine T-variety X defined
over k. The torus action on X involves considering a combinatorial description which was, in
particular, initiated by Mumford [13], Demazure [8], Timashëv [23, 24], Flenner-Zaidenberg [11] and
Altmann-Hausen [1]. We will adopt the notation used in [1] (see [15] for a version over any field).
Especially, the letter M stands for the character lattice of the torus T, the space N := Hom(M,Z)
is the lattice of one-parameter subgroups and NQ := Q ⊗Z N,MQ := Q ⊗Z M are the associated
Q-vector spaces. We write 〈·, ·〉 for the duality bracket between MQ and NQ. TheM-graded algebra
A := k[X ] admits a decomposition (cf. [1, Theorem 3.4], [15, Theorem 0.2])

A = A[C,D] :=
⊕

m∈σ∨∩M

H0(C,OC(⌊D(m)⌋))χm,

where C is a regular curve over k and the subset σ ⊆ NQ is a polyhedral cone with the property
that the dual σ∨ ⊆MQ is full-dimensional. The letter D denotes a formal sum

D =
∑

y∈C

Dy · [y]

on the closed points of C which defines a σ-polyhedral divisor, that is, we ask that each subset
Dy ⊆ NQ is a Minkowski sum of a polytope with σ and Dy = σ for almost all closed point y ∈ C.
One can evaluate the polyhedral divisor at the vector m ∈ σ∨ via the equality

D(m) =
∑

y∈C

min
v∈Dy

〈m, v〉 · [y],

which actually gives a Q-divisor on C. Finally, in each graded piece, a Laurent monomial χm is
attached for keeping track of the degree of every homogeneous element. Note that some positivity
assumptions are required on the evaluations D(m) in order to have a perfect dictionary between
complexity-one affine T-varieties and polyhedral divisors over regular curves (see [15, Definition 0.1]
for the details). In the case where the base curve C is affine, no condition is required, whereas
for C = P1

k (which is a case of main interest in this article), the positivity is equivalent to ask the
inclusion of polyhedra

degD :=
∑

y∈C

[κy : k] ·Dy ( σ,

where κy is the residue field of the closed point y ∈ C.
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2.2. Preliminary results on Ga-actions. We start by generalizing some results over any field
which are originally derived from the fundamental work of Liendo in [17, Section 3.2]. As usual, the
letter A = A[C,D] will stand for the algebra of regular functions of our complexity-one T-variety
X . For every homogeneous LFIHD ∂ on A = k[X ], recall that the subset ker(∂) :=

⋂∞
i=1 ker(∂

(i))
denotes the kernel of ∂; this an M-graded subring of A.

Lemma 2.1. Assume that the homogeneous LFIHD ∂ on A = A[C,D] is horizontal. Then the
following assertions hold.

(i) The kernel of ∂ is a semigroup algebra, that is

ker(∂) =
⊕

m∈ω∩L

kϕmχ
m,

where ϕm ∈ k(C)⋆. The set ω ⊆ MQ is a full-dimensional polyhedral cone and L ⊆ M is a
sublattice such that the quotient M/L is a finite abelian group.

(ii) If C is projective, then C ≃ P1
k.

(iii) The variety X is geometrically integral over k.
(iv) If C is affine, then C ≃ A1

k and in this case, the equality div(ϕm)+D(m) = 0 holds true for
any m ∈ ω ∩ L.

Proof. Assertions (i), (ii) have been proven in [16, Lemma 5.2].
(iii) Using the existence of a local slice for the Ga-action (see [21, Lemma 1.5, p20]) and Assertion

(i), we may find a transcendent element xn+1 over ker(∂) such that

k(X) = k(x1 = ϕe1, . . . , xn = ϕen , xn+1),

where (e1, . . . , en) is a basis of the lattice L. Note that x1, . . . , xn+1 are algebraically independent
over k. Hence for any field extension K/k we have that

A⊗k K ⊆ k(x1, . . . , xn+1)⊗k K ≃ K(x1, . . . , xn+1),

proving that X = SpecA is geometrically integral over k.
(iv) Since finite fields are perfect, using [16, Lemma 5.2 (iii)], we may assume that the cardinality

of k is infinite. By virtue of [21, Lemma 1.5, p20], one can find a homogeneous element f in
ker(∂) and a transcendent homogeneous element x over ker(∂) such that Af = ker(∂)f [x]. From the
inclusion k[C] = AT ⊆ A, we get a dominant morphism γ : V ×A1

k → C, where V = Spec ker(∂)f is
a k-variety with a T-action and having a dense open orbit. Assume (toward a contradiction) that
for every v ∈ V (k), there exists a closed schematic point yv ∈ C such that {v} × A1

k ⊆ γ−1(yv)red.
Since k is infinite, one observes that if v ∈ V (k) belongs to the open orbit, then T(k) · v is dense in
V . Using that γ is T-invariant,

V × A1
k = T(k) · ({v} × A1

k) ⊆ γ−1(yv)red,

which contradicts the dominance of γ. We conclude that there exists v ∈ V (k) such that the map

γ|{v}×A1

k
: {v} × A1

k → C

is dominant.
As k(C) = k(P1

k), the regular affine curve C is an open subscheme of P1
k. By the argument

before we have a dominant morphism C1 := A1
k → C which extends to the completions into a

proper morphism γ̄ : P1
k → P1

k. Let y∞ be the k-rational point such that P1
k \ {y∞} = C1. Then

the surjectivity of γ̄ implies that {γ̄(y∞)} is the complement of C in its regular completion. We
conclude that C ≃ A1

k. The last claim of (iv) is done in [16, Lemma 5.4 (i)]. �
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According to the previous result, we have that C = A1
k or C = P1

k. Let t be a variable over k
such that A1

k = Spec k[t] and k(P1
k) = k(t). We write ∞ for the k-rational point of P1

k satisfying
P1
k \ {∞} = A1

k. In particular, the principal divisor div(t) on P1
k is equal to [0]− [∞]. For a closed

point y ∈ A1
k we denote by qy(t) ∈ k[t] the associated monic irreducible polynomial. We may

write qy(t) = q̃y(t
pℓ), where q̃y(t) ∈ k[t] is a polynomial with nonzero derivative with respect to the

variable t. We call the number εy := pℓ the inseparable degree of y. In the ring k̄[t], we have the
decomposition

qy(t) =

sy
∏

i=1

(t− αi,y)
εy ,

where the αi,y ∈ k̄ are pairwise distinct. Note that if sy = 1, then we say that y is purely inseparable.
We also set

Dk̄ =
∑

y∈C

sy
∑

i=1

εyDy · [αi,y],

where here (Dk̄)∞ = D∞ if C = P1
k; this defines a σ-polyhedral divisor over Ck̄. We introduce

similar notations for polyhedral divisors over a non-empty open subscheme of P1
k.

Lemma 2.2. Assume that the complexity-one T-variety X0 comes from a polyhedral divisor D0

over a non-empty open subscheme C0 ⊆ P1
k. The normalization of X0,k̄ = SpecA[C0,D0] ⊗k k̄

is described by the polyhedral divisor D0,k̄. Moreover, via this description, we have the equality
k(X0) ∩ A[C0,k̄,D0,k̄] = k[X0].

Proof. The first part of the lemma is obtained by choosing a finite system of homogeneous generators
a1, . . . , as and by determining the normalization of the ring k̄[a1, . . . , as] via [14, Théorème 2.4] (see
[15, Theorems 2.5, 3.5] for the version over any field). For the second part, we obviously have that
k[X0] ⊆ k(X0) ∩ A[C0,k̄,D0,k̄]. Let now β ∈ k(X0) ∩ A[C0,k̄,D0,k̄]. Then there exists a finite field
extension K/k such that β ∈ RK , where RK is the normalization of k[X0]⊗k K. As RK is a finite
type module over k[X0], the element β is integral over k[X0]. Using that k[X0] is a normal ring, we
conclude that β ∈ k[X0], proving the lemma. �

Lemma 2.3. Assume that our algebra A = k[X ] has a horizontal LFIHD ∂ and that C = P1
k.

Then there exists a k-rational point y∞ ∈ C(k) such that for any m ∈ ω ∩ L the effective Q-divisor
D(m)+div(ϕm) has at most y∞ in its support. Here ϕm is the regular function from Lemma 2.1(i).

Proof. Changing ∂ by {ξi · ∂(i)}i≥0, where ξ is a homogeneous element of ker(∂), we may assume
that the degree of ∂ belongs to ω. Since from [16, Lemma 5.4 (v)] the effective Q-divisor Dk̄(m) +
divCk̄

(ϕm) over Ck̄ is supported in at most one point, one concludes that D(m)+divC(ϕm) = α · [y∞]
for some α ∈ Z≥0 and some purely inseparable closed point y∞ ∈ C. Let us prove that y∞ is a
k-rational point. Let B := A[C ′,D|C′], where C ′ = C \ {y∞}. Consider moreover the normalization
B′ of the ring B ⊗k k̄. Then, with respect to a local parameter s over k̄ (such that k̄(Ck̄) = k̄(s)),
the ring B′ is indeed the normalization of the ring A[Ck̄,Dk̄][s]. According to [16, Lemma 5.5 (ii)],
the LFIHD ∂ on A extends to one on B′. As k(X) ∩ B′ = B (use Lemma 2.2), we remark that ∂
extends to a horizontal LFIHD on B. This forces C ′ to be isomorphic to A1

k (see Lemma 2.1(iv))
and therefore y∞ to be a k-rational point. �

Until now we may assume that the k-rational point y∞ in Lemma 2.3 is the point ∞ ∈ P1
k

corresponding to the local parameter t considered before. With this in hand, we obtain the following
corollary, which is a generalization of [16, Lemma 5.5 (ii)] over any field.
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Corollary 2.4. Assume that C = P1
k and that A = k[X ] has a horizontal LFIHD ∂ with degree

belonging to ω. Then the normalization of A[t], that is, the algebra consisting of elements of the
function field of A[t] that are integral over A[t], identifies with A[A1

k,D|A1

k
]. Moreover, under this

identification, ∂ extends to a horizontal LFIHD on the algebra A[A1
k,D|A1

k
].

Proof. This litteraly follows from the proof of [16, Lemma 5.5 (ii)]. In the argument of the proof of
loc. cit., we only need to replace [16, Lemma 5.2(i)] by Lemma 2.1(iv) and [16, Lemma 5.2(ii)] by
Lemma 2.3. �

An affine Gm-surface is hyperbolic if its Z-graded algebra is not positively graded. The following
theorem is a generalization of [12, Theorems 3.3 and 3.16] and [16, Corollary 5.6].

Theorem 2.5. Any (normal) affine Gm-surface X over a field k which is not hyperbolic and ad-
mitting a horizontal Ga-action is toric. More precisely, assume that X is described by a polyhedral
divisor D over a regular curve C. Then C = A1

k or C = P1
k, and the fractional part {D(1)} of the

Q-divisor D(1) is supported in at most one k-rational point if C = A1
k and in at most two k-rational

points if C = P1
k.

Proof. It suffices to show the second statement, as the toridicity of our surface is a consequence
of this (see e.g. the end of the proof of [16, Corollary 5.6]). The case p = 1 is treated in [16,
Corollary 5.6]. So we assume in the entire proof that p > 1. We first look at the case where C = A1

k.
Let d ∈ Z>0 such that D(d) is an integral divisor and consider a rational function f ∈ k(t)⋆

that generates the k[t]-module H0(C,OC(D(d))). Without loss of generality, we may assume that
f ∈ k[t] \ {0} is a monic polynomial. Let B be the normalization of A[ d

√
fχ], where A = k[X ].

Taking d large enough if necessary, we may assume fχd ∈ ker(∂) (see Lemma 2.1(iv)) and hence
according to [16, Corollary 2.6] the LFIHD ∂ extends to a horizontal one on B. Now B0 = BGm is
the normalization of k[t, d

√
f ] and also a polynomial algebra of one variable over k (compare with

Lemma 2.1(iv)). Moreover, if S is the normalization of B ⊗k k̄, then S has a horizontal Ga,k̄-action

and S0 = SGm (which is the normalization of k̄[t, d
√
f ]) is a polynomial ring too. Using that S is

factorial and that S⋆ = k⋆, we must have f = (t− µ)r for some µ ∈ k̄ and r ∈ Z>0. In addition, f
belongs to k[x] and so we write f = (tp

u−λ)v for some v ∈ Z≥0\pZ, u ∈ Z≥0 and some λ = µpu ∈ k.
This implies that

k
[

t, d
√

f
]

≃ k[x1, x2]/
(

xd1 − (xp
u

2 − λ)v
)

.

Assume that

λ 6∈ kp
u

:=
{

xp
u | x ∈ k

}

.

If p divides d, then any geometric point of C0 := Spec k
[

t, d
√
f
]

is singular and this contradicts that

C̃ := SpecB0 is an affine line over k. So p does not divides d. SummingD(1) with a principal divisor,
we may assume that d ≥ 2 and v < d. Let us write v/d as an irreducible fraction e/d′. Then we claim

that the normalization C̃ of C0 has algebra of regular functions equal to R := k[x, y = (xp
u −λ)1/d′ ],

i.e., C̃ is the plane curve defined by the equation yd
′
= xp

u −λ. Indeed, this is clear that R ⊆ k(C0)
is integral over k[C0]. So we only need to check that R is a normal ring. Using the Jacobian criterion
over k̄, this amounts to show that R is regular at the prime ideal p = (y). Let s = (x− µ)1/d

′
and

consider the field extension k(C0) ⊆ k̄(s) where we get the parametrization x = sd
′
+µ and y = sp

u

.
Let ν0 be the discrete valuation on k̄(s), trivial on k̄ and satisfying ν0(s) = 1. Denote by ν the
restriction of the valuation 1

pu
v0 to the subfield k(C0). Remarking that

Iν := {f ∈ R \ {0} | ν(f) > 0} ∪ {0}
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is a proper ideal that contains p, we have Iν = p. Therefore the local ring Rp coincides with the

valuation ring associated with ν and we conclude that C̃ = SpecR is regular. Note that C̃ is not
smooth (according to the Jacobian criterion for C̃k̄). This contradicts the fact that C̃ is the affine
line over k. Finally, λ ∈ kp

u

and {D(1)} is supported in at most one k-rational point (by observing
that div(f) +D(d) = 0).
We pass to the case where C = P1

k. Changing ∂ by {ξi · ∂(i)}i≥0, where ξ is a homogeneous
element of ker(∂), we may assume that the degree e of ∂ is positive. Using Corollary 2.4, the
LFIHD ∂ extends on the normalization A[D|A1

k
,A1

k] of A[t] into a horizontal one. Thus, we end the
proof of the theorem by using the previous case where C was assumed to be affine. �

As a consequence of Theorem 2.5 we get the following result. We will here assume that C is equal
to A1

k or P1
k.

Corollary 2.6. Let us suppose that A = k[X ] = A[C,D] has a horizontal LFIHD ∂. Then the
following statements hold.

(i) The cone ω ⊆ MQ introduced in Lemma 2.1 is a maximal subcone of σ∨ in which the
restriction of the map m 7→ D(m) when C is affine, or of the map m 7→ D(m)|A1

k
when C is

projective, to it is linear.
(ii) Set

Aω =
⊕

m∈ω∩M

H0(C,OC(⌊D(m)⌋))χm

and let τ = ω∨ ⊆ NQ be the dual cone. Then Aω is isomorphic to A[C,Dω] as M-graded
algebras, where Dω is the τ -polyhedral divisor over the curve C satisfying the following
conditions.
(a) Dω = (v + τ) · [0] for some v ∈ NQ, whenever C is affine.
(b) Dω = (v + τ) · [0] +Dω,∞ · [∞] for some v ∈ NQ such that v +Dω,∞ ( τ , whenever C

is projective.

Proof. The proof is similar to that of [17, Lemmata 3.18, 3.23]. We include the argument here for
the convenience of the reader.
(i) According to Lemma 2.1(iv) and Lemma 2.3, we only need to prove the required maximality

property. Since the case C = P1
k is similar, we may assume that C = A1

k. Let ω0 be a subcone
containing ω where the evaluation map m 7→ D(m) restricted to it is linear. Let us show that
ω = ω0. Pick m ∈ ω0 ∩ L such that D(m) is an integral divisor and let fm be a generator of
the k[t]-module H0(C,OC(⌊D(m)⌋)). For an element m′ ∈ ω ∩ L such that m + m′ ∈ ω ∩ L we
have fm · ϕm′χm+m′ ∈ ker(∂). As ker(∂) is factorially closed (cf. [6, Lemma 2.1 (a)]), we see that
fmχ

m ∈ ker(∂) and therefore m ∈ ω ∩ L. This shows (i).
(ii) Using Corollary 2.4, we may assume that C = A1

k and e ∈ ω. Letting ℓ ∈ ω ∩ L we observe
that the subalgebra

⊕

r≥0

H0(C,OC(⌊D(r(ℓ+ e))⌋))χr(ℓ+e)

is stable by the Ga-action coming from the LFIHD {ϕi
ℓ ·∂(i)}i≥0. Therefore from Theorem 2.5, the Q-

divisor {D(ℓ+ e)} is supported in at most one k-rational point. Now we remark that {D(ℓ+ e)} =
{D(ℓ′ + e)} for all ℓ, ℓ′ ∈ ω ∩ L since the difference between D(ℓ + e) and D(ℓ′ + e) is equal to
div(ϕℓ′/ϕℓ). As the subset {e} ∪ L generates M , we conclude that assertion (a) of the lemma
holds. �
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2.3. Coherent families and Demazure roots. In this section, we again suppose that C = A1
k or

C = P1
k. We want to give a combinatorial description of the horizontal Ga-actions as in [2, Section

1.4]. We start with the following definition.

Definition 2.7. A collection
D̃ = (D, (vy)y∈C′ , y0),

which in particular encompasses the polyhedral divisor D over C describing our complexity-one
affine T-variety X and a vertex vy of Dy for each schematic closed point y belonging to a subset C ′

of C, is called a coloring if the following conditions are fulfilled.

(i) There is y∞ ∈ C(k) if C = P1
k which allows to define the curve C ′ as C \ {y∞}. Otherwise,

we let C ′ = A1
k.

(ii) We have y0 ∈ C ′(k) and vy ∈ N for any y ∈ C ′ \ {y0}.
(iii) The element vdeg :=

∑

y∈C′ [κy : k] · vy is a vertex of the polyhedron

degD|C′ :=
∑

y∈C′

[κy : k] ·Dy,

where κy stands for the residue field of y.

The vectors vy are called the colored vertices of D.

We now recall the notion of Demazure roots which was initially introduced in [7, Section 4.5] for
studying Cremona groups. It was then extended by Liendo in [17, Section 2] for singular affine toric
varieties.

Definition 2.8. Let σ0 ⊆ NQ be a polyhedral cone with 0 as vertex. An element e ∈ M is called a
Demazure root of the cone σ0 with distinguished one-dimensional face ρe if

(i) 〈e, v〉 ≥ 0 for any v ∈ σ0 \ ρe belonging to a one-dimensional face of σ0, and
(ii) 〈e, µe〉 = −1, where µe is the generator of the semigroup (ρe ∩N,+).

Considering the semigroup algebra

k[σ∨
0 ∩M ] =

⊕

m∈σ∨
0
∩M

kχm,

it has been proved in [16, Theorem 3.5] (see [7, Section 4.5], [17, Theorem 2.7] for the characteristic
zero case) that any homogeneous LFIHD on this algebra (up to a constant) is described by a
Demazure root of σ0 and vice-versa. If e ∈ M is such a Demazure root, then the corresponding
LFIHD ∂e is defined via the formula

∂(i)e (χm) =

(〈m,µe〉
i

)

· χm+ie for all i ∈ Z≥0 and m ∈ σ∨
0 ∩M.

For a coloring D̃ (see Definition 2.7), the associated cone ω (which will play the role of the weight
cone of the kernel of the corresponding horizontal LFIHD) is the polyhedral cone whose dual τ ⊆ NQ

is spanned by degD|C′ − vdeg. Also, we denote by ω̃ ⊆MQ ×Q the polyhedral cone whose the dual
τ̃ is spanned by (τ, 0), (vy0, 1) if C = A1

k and by (τ, 0), (vy0, 1), (Dy∞ + vdeg − vy0 + τ,−1) if C = P1
k.

We then introduce the main tool for describing horizontal Ga-actions on complexity-one affine
T-varieties (see [2, Definition 1.9] for the classical case). Recall that p is the characteristic exponent
of the base field k.

Definition 2.9. A family θ = (D̃, e, s, λ) is said to be coherent if first
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(i) D̃ = (D, (vy)y∈C′ , y0) is a coloring of D,
(ii) e is a lattice vector of M ,
(iii) s is a family of positive integers (s1, . . . , sr) such that s1 < . . . < sr and with the condition

that r = 1 = s1 whenever p = 1. Moreover, we ask that

ẽi :=

(

psie,−1

d
− 〈psie, vy0〉

)

for i = 1, . . . , r,

is a Demazure root of the cone τ̃ ⊆ NQ × Q with distinguished ray Q≥0 · (vy0 , 1), where
d ∈ Z>0 is the smallest element such that dvy0 ∈ N ,

(iv) and finally, λ is a sequence (λ1, . . . , λr) of elements of k⋆.

Together, they satisfy the following constraints.

(v) We have that

εy · pu〈ps1e, v〉 ≥ 1 + εy · pu〈ps1e, vy〉
for any y ∈ C ′ \ {y0} and any uncolored vertex v of Dy, where d = ℓpu with gcd(ℓ, p) = 1
and εy is the inseparable degree of y.

(vi) We have that

d〈ps1e, v〉 ≥ 1 + d〈ps1e, vy0〉
for any uncolored vertex v of Dy0.

(vii) If C = P1
k, then

d〈ps1e, v〉 ≥ −1− d〈ps1e, vdeg〉
for any vertex v of Dy∞ .

From a coherent family θ = (D̃, e, s, λ) as in 2.9, we define a sequence of k-linear operators
{

∂
(i)
θ : k(ζ)[M ] → k(ζ)[M ]

}

i≥0
, where k(ζ)[M ] =

⊕

m∈M

k(ζ)χm and ζ = (t− y0)
1

d .

It satisfies the axioms (i), (ii), (iv) of an LFIHD of Section 1 (but does not satisfies the axiom (iii)
of an LFIHD). For all i, r ∈ Z≥0 and m ∈M we let

∂
(i)
θ ((t− y0)

rξmχ
m) := ζ−dvz0 (m+ie)∂

(i)
ζ,s,λ(ζ

−dvz0(m)(t− y0)
r)ξm+eχ

m+e,

where ξm is an element of k(t)⋆ such that div(ξm) +
∑

y∈C〈m, ṽy〉 · [y] = 0 (here ṽy = vy for all

y ∈ C ′ \ {y0} and ṽy = 0 otherwise) and ∂ζ,s,λ is the LFIHD on k[ζ ] given by the formula

∞
∑

j=0

∂
(j)
ζ,s,λ(ζ)T

j = ζ +
r

∑

i=0

λiT
psi

for a variable T over k[ζ ].

The main result of this paper is the following (see [12, Theorem 3.22], [17, Theorem 3.28] , [16,
Theorem 5.11] for the case of perfect ground fields).

Theorem 2.10. Let X be a complexity-one affine T-variety described by a polyhedral divisor D

over a regular curve C. Then the presence of a horizontal Ga-action on X implies that C = A1
k or

C = P1
k, and in this case, the map θ 7→ ∂θ induces a bijection between the set of coherent families

θ = (D̃, e, s, λ) on D and the set of horizontal LFIHDs on the k-algebra k[X ] = A[C,D].
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Proof. We first show how to a horizontal Ga-action on X we may associate a coherent family. By
Lemma 2.2, we have the equality k(X)∩A[Ck̄,Dk̄] = k[X ], where Dk̄ is the polyhedral divisor corre-
sponding to the normalization of Xk̄. Therefore, having a horizontal LFIHD on k[X ] is equivalent to
considering a horizontal LFIHD ∂ on A[Ck̄,Dk̄] in which the extension ∂̄ on the function field k̄(Xk̄)
(defining a family of k-linear operators and satisfying (i), (ii), (iv) of the definition of an LFIHD; see
e.g. [25, Section 3] for the existence of such an extension) stabilizes k(X), i.e., ∂̄(i)(k(X)) ⊆ k(X)
for any i ≥ 0. For such an LFIHD ∂ let us denote by e its degree.
According to Corollary 2.6, there exists a k-rational point y∞ ∈ C and a maximal subcone ω ⊆ σ∨

in which the evaluation map m 7→ D(m)|C′ restricted to it is linear, where C ′ = C \{y∞}. Moreover,
there exists a family (vy)y∈C′ of NQ such that

D(m)|C′ =
∑

y∈C′

〈m, vy〉 · [y] for any m ∈ ω.

This family also satisfies Condition (ii) of Definition 2.7 of a coloring for some k-rational point
y0 ∈ C ′. The set of maximal cones in which the evaluation map m 7→ D(m)|C′ restricted to it is
linear coincides with the one for the piecewise linear map m 7→ minv∈degD|C′ 〈m, v〉 (see e.g. the

discussion in [17, Definition 1.3]). Therefore, vdeg :=
∑

y∈C′ vy is a vertex of degD|C′ and the dual of

ω is generated by degD|C′ − vdeg (compare [1, Lemma 1.4]). This shows that D̃ = (D, (vy)y∈C′ , y0)
is a coloring.
As the field k̄ is perfect, by [16, Theorem 5.11] applied to the LFIHD ∂ on A[Ck̄,Dk̄], there exists

a family θk̄ = (D̃k̄, e, s, λ) which verifies Conditions (i), (ii), (iii) of Definition 2.9 (here the coloring

D̃k comes from the coloring D̃ above by scalar extension) and ∂ = ∂θk̄ .
Multiplying by a kernel element in A if necessary, the resulting LFIHD would stabilize Aω (see

Corollary 2.6 for the definition of Aω). This forces to have that λj ∈ k⋆ for any j ∈ {1, . . . r} (use

[16, Theorem 5.8] that holds over any field). So in order to show that θ = (D̃, e, s, λ) is a coherent
family, we have to check that it satisfies Conditions (v), (vi), (vii) of Definition 2.9.
Let us write hy, when y ∈ C \ {y0, y∞} (respectively, hk̄,y, when y ∈ Ck̄ \ {y0, y∞}), for the

piecewise linear map given by

hy(m) = min
v∈Dy

〈m, v − vy〉 respectively, hk̄,y(m) = min
v∈Dk̄,y

〈m, v − vk̄,y〉

for any m ∈ σ∨. Here we let (vk̄,y)y∈C′
k̄
be the family of colored vertices of D̃k̄. Denote by h the linear

extension of (hy0)|ω on the whole cone σ∨ and by hy∞ (respectively, hk̄,y∞) the support function

m 7→ min
v∈Dy∞

〈m, v − vdeg〉 respectively, m 7→ min
v∈Dy∞

〈m, v − vk̄,deg〉, where vk̄,deg =
∑

y∈C′
k̄

vk̄,y.

Moreover, we let hy0(m) = hk̄,y0(m) = minv∈Dy0
〈m, v〉 for any m ∈ σ∨. Then, assuming that

m+ ps1e ∈ σ∨ ∩M with m ∈ σ∨ ∩M , [16, Theorem 5.11] gives the following conditions.

(1) If hk̄,y(m+ps1e) 6= 0, then ⌊puhk̄,y(m+ps1e)⌋−⌊puhk̄,y(m)⌋ ≥ 1 whenever y ∈ Ck̄ \{y0, y∞}.
(2) If hk̄,y0(m+ ps1e) 6= h(m+ ps1e), then ⌊dhk̄,y0(m+ ps1e)⌋ − ⌊dhk̄,y0(m)⌋ ≥ 1 + dh(ps1e).
(3) If C = P1

k̄
, then ⌊dhk̄,y∞(m+ ps1e)⌋ − ⌊dhk̄,y∞(m)⌋− ≥ 1− dh(ps1e).

With the same condition on m, the definition of Dk̄ implies that the three last conditions are
respectively equivalent to:

(4) If hy(m+ps1e) 6= 0, then ⌊puεy ·hy(m+ps1e)⌋−⌊puεy ·hy(m)⌋ ≥ 1 whenever y ∈ C \{y0, y∞}.
(5) If hy0(m+ ps1e) 6= h(m+ ps1e), then ⌊dhy0(m+ ps1e)⌋ − ⌊dhy0(m)⌋ ≥ 1 + dh(ps1e).
(6) If C = P1

k, then ⌊dhy∞(m+ ps1e)⌋ − ⌊dhy∞(m)⌋− ≥ 1− dh(ps1e).



HORIZONTAL Ga-ACTIONS 11

Therefore for showing that θ = (D̃, e, s, λ) is a coherent family, it suffices to prove that Conditions
(v), (vi), (vii) of Definition 2.9 are respectively equivalent to Conditions (4), (5), (6). Let us prove
the equivalence (4) ⇔ (v). The others equivalences, namely (5) ⇔ (vi) and (6) ⇔ (vii), are shown
in the same way and are left to the reader. Assume that (4) holds. Take y ∈ C ′ and let ω0 6= ω be
a maximal cone in which m ∈ ω0 7→ hy(m) is linear (note that if such an ω0 does not exist, then
hy is identically zero and (4) ⇔ (v) is true). We also denote by hy,ω0

the linear extension on σ∨ of
(hy)|ω0

. Then for m ∈ ω0 ∩M such that hy(m) ∈ Z and m+ ps1e ∈ ω0 we have that

⌊puεy · hy(m+ ps1e)⌋ = puεy · hy(m) + ⌊puεy · hy,ω0
(ps1e)⌋.

Therefore using (4), we get that puεy · hy,ω0
(ps1e) ≥ ⌊puεy · hy,ω0

(ps1e)⌋ ≥ 1. Now remarking that
such maximal cones ω0 6= ω as previously are in bijection with vertices v of Dy different from vy via
hy,ω0

(m) = 〈m, v − vy〉, we conclude that (v) is satisfied.
Let us now assume (v). Let m ∈ σ∨∩M such that m+ ps1e ∈ σ∨∩N and with hy(m+ ps1e) 6= 0.

Then there exists a maximal cone ω0 6= ω where (hy)|ω0
is linear such that m+ ps1e ∈ ω0. Thus,

⌊puεy · hy(m+ ps1e)⌋ ≥ ⌊puεy · hy(m)⌋ + ⌊puεy · hy,ω0
(ps1e)⌋ ≥ ⌊puεy · hy(m)⌋ + 1,

where the last inequality comes from (v). This establishes (4) ⇔ (v).
Our analysis implies that we get an injective map from the set of horizontal LFIHDs on k[X ]

to the set of coherent families of D (the verification of the injectivity being formal). It remains to
check that for a given coherent family θ on D, there is a horizontal Ga-action on X corresponding
to it. The sequence of operators ∂θ of k(X) extends to one on k̄(Xk̄). As the previous conditions
(1), (2), (3) are satisfied, by [16, Theorem 5.11], it defines a horizontal LFIHD ∂ on A[Ck̄,Dk]. We
conclude using Lemma 2.2 that ∂ stabilizes k[X ]. This gives the required Ga-action and finishes
the proof of the theorem. �

2.4. Some examples. We start by bringing an example that involves the inseparable degree of
Definition 2.9 (v).

Example 2.11. Here the base field k is of characteristic 2. We assume that NQ = Q and that
σ = {0}. We consider the σ-polyhedral divisor D over A1

k = Spec k[t] supported in two points, and
given by the formula

D =

{

1

5

}

· [0] +
[

0,
1

5

]

· [y],

with y 6= 0. Note that for the coloring D̃ = (D, (v0 =
1
5
, vy′ = 0 for y′ ∈ A1

k \ {0}), 0), we have that

τ̃ = Q≥0(1, 0) +Q≥0(1, 5).

If we take e = 1 and s1 = 2, then (2s1e,−1
5
− 2s1e

5
) = (4,−1) is a Demazure root of τ̃ with

distinguished ray Q≥0 · (1, 5). It was observed in [16, Example 5.13] that if k is algebraically closed,
then X = SpecA[A1

k,D] is isomorphic to the affine surface

W2,5 = {(x, w, z) ∈ A3
k | x2w = x+ z5}

and that the family θ = (D̃, e, (2), (1)) is not coherent (as Condition (v) of Definition 2.9 fails to be
satisfied).
We claim that if k is imperfect, then θ defines a horizontal Ga-action for a well-chosen y. Indeed,

let us pick a non-square element λ in k and assume that y is given by the polynomial py(t) = t2−λ.
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Then εy = 2 and θ is coherent (as now Condition (v) of Definition 2.9 is satisfied). One can explicitly
check this on the graded pieces of A[A1

k,D]. Let us denote

Am = H0(A1
k,OA1

k
(⌊D(m)⌋))χm so that k[X ] =

⊕

m∈Z

Am.

If trχm ∈ A≥0 :=
⊕

m≥0Am is a homogeneous element, then −5r ≤ m,

∂
(4j)
θ (trχm) =

(

5r +m

j

)

tr−jχm+4j ∈ A≥0 and ∂
(i)
θ (trχm) = 0 for i 6∈ 4Z≥0.

Moreover, ∂
(j)
θ ((t2 − λ)tχ−5) ∈ A≥0 for any j ∈ Z≥0. Since A≥0 ∪ {(t2 − λ)tχ−5} generates the

k-algebra k[X ], we conclude that ∂θ gives rise to a horizontal Ga-action on X . Finally, remark that
X is not geometrically normal (as SpecA≥0 is isomorphic to Spec k[x1, x2, x3]/((x

2
1 − λ)x3 − x22)).

Beside the inseparability condition on each point involving in Definition 2.9, one may ask why
we need the factor pu in Condition (v). Originally, it appears in the proof of [16, Lemma 5.10]
because we lift a Ga-action from a cyclic covering (whose the degree might be divisible by the
characteristic of the base field). Therefore, the factor pu comes from a ramification phenomenon.
The next example aims to illustrate this technical point.

Example 2.12. We assume that the base field k is algebraically closed. We consider the polyhedral
divisor D over the affine line A1

k = Spec k[t] defined by

D0 =

(

1

2
, 0

)

+ σ, D1 =

[(

1

2
, 0

)

, (0, 1)

]

+ σ and Dy = σ for all y ∈ A1
k,

where the lattice N is Z2 and the tail cone σ is Q2
≥0. Note that, regarding the notations of Definitions

2.7 and 2.9, we have d = 2, C ′ = A1
k, and

degD|C′ − vdeg =

[(

1

2
,−1

)

, (0, 0)

]

+ σ,

where we take the coloring (v0 = (1
2
, 0), v1 = (0, 1)). This implies that

ω = Q≥0(0, 1) +Q≥0(2, 1) ⊆MQ and τ̃ = Q≥0(1,−2, 0) +Q≥0(0, 1, 0) +Q≥0(1, 0, 2).

Now for defining a coherent family we choose a Demazure root ẽ of the cone τ̃ with distinguished
ray Q≥0(1, 0, 2). For example, we take ẽ = (1, 0,−1) and set e = (1, 0). One sees that if the
characteristic of k is unequal to 2, then Condition (v) of Definition 2.9 is not satisfied. However,
if the characteristic is equal to 2, due to the ramification phenomenon (presence of the factor pu),
Condition (v) of Definition 2.9 is indeed satisfied. So this means that, from the combinatorial data
discussed before, the Ga-action only shows up in characteristic 2. Let us check this in example.
The graded pieces Am1,m2

of the algebra A = A[A1
k,D] can be cut into two regions according to

the cones

ω = ω1 = Q≥0(1, 0) +Q≥0(2, 1) and ω2 = Q≥0(0, 1) +Q≥0(2, 1).

In those cones the evaluation map (m1, m2) 7→ D(m1, m2) is linear, that is,

Am1,m2
= k[t]t−⌊

m1

2
⌋(t− 1)−m2χ(m1,m2) if (m1, m2) ∈ ω1, and

Am1,m2
= k[t]t−⌊

m1

2
⌋(t− 1)−⌊

m1

2
⌋χ(m1,m2) if (m1, m2) ∈ ω2.
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From this, we note that there is an isomorphism of graded rings

ψ : Aω =
⊕

(m1,m2)∈ω∩Z2

Am1,m2
→ k[ω̃ ∩ Z3] =

⊕

(r,m1,m3)∈ω̃∩Z3

ktrχ(m1,m2),

t 7→ t, ξm1,m2
χ(m1,m2) 7→ χ(m1,m2),

where ξm1,m2
= (t− 1)−m2 . Lifting the homogeneous LFIHD of k[ω̃ ∩Z3] attached to the Demazure

root ẽ via ψ gives the LFIHD ∂ on Aω defined as

∂(i)(trξm1,m2
χ(m1,m2)) =

(

2r +m1

i

)

tr−iξm1+i,m2
χ(m1+i,m2) for i = 0, 1, 2, . . .

Condition (v) in Definition 2.9 precisely means that ∂ extends to an LFIHD on the whole algebra
A. Denote by the same letter ∂ the extension of ∂ in the fraction field of A. When the characteristic
is unequal to 2, we see that ∂(1)(A0,1) 6⊆ A since

∂(1)(χ(0,1)) = ∂(1)(tξ0,1χ
(0,1) − ξ0,1χ

(0,1)) = 2t−1χ(1,1) 6∈ A.

Now suppose that the characteristic is equal to 2 and observe that

Aω2
=

⊕

(m1,m2)∈ω2∩Z2

Am1,m2
= k[t, χ(0,1), χ(1,1), z := t−1(t− 1)−1χ(2,1)].

We obviously have ∂(i)(t) ∈ A for any i ∈ Z≥0 and z ∈ ker(∂). From a direct computation, we get

∂(0)(χ(0,1)) = χ(0,1), ∂(1)(χ(0,1)) = 0, ∂(2)(χ(0,1)) = z, ∂(j)(χ(0,1)) = 0 for all i ≥ 3, and

∂(0)(χ(1,1)) = χ(1,1), ∂(1)(χ(1,1)) = tz, ∂(2)(χ(1,1)) = t−1χ(3,1) ∈ A,

∂(3)(χ(1,1)) = t−2(t− 1)−1χ(4,1) ∈ A, ∂(j)(χ(1,1)) = 0 for all j ≥ 4.

That shows that, in characteristic 2, the sequence ∂ is an LFIHD on A.
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Texts in Mathematics, 6. Oxford Science Publications. Oxford University Press, Oxford, 2002. xvi+576 pp.
[20] M. Miyanishi. A remark on an iterative infinite higher derivation. J. Math. Kyoto Univ. 8 1968 411–415.
[21] M. Miyanishi. Curves on rational and unirational surfaces. Tata Institute of Fundamental Research Lectures on
Mathematics and Physics, 60. Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House,
New Delhi, 1978.
[22] B. Totaro. Pseudo-abelian varieties. Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 5, 693–721.
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