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CYCLE INTEGRALS OF MODULAR FUNCTIONS, MARKOV

GEODESICS AND A CONJECTURE OF KANEKO

P. BENGOECHEA AND Ö. IMAMOGLU

Abstract. In this paper we study the values of modular functions at the
Markov quadratics which are defined in terms of their cycle integrals along the
associated closed geodesics. These numbers are shown to satisfy two properties
that were conjectured by Kaneko. More precisely we show that the values of a
modular function f , along any branch B of the Markov tree, converge to the
value of f at the Markov number which is the predecessor of the tip of B. We
also prove an interlacing property for these values.

1. Introduction

A well known theorem of Dirichlet asserts that for any irrational number x,
there are infinitely many rational numbers p/q satisfying |x − p

q
| < 1

q2
. For

irrational numbers that are algebraic, thanks to a theorem of Roth ( [13]), the
exponent 2 is optimal. The constant factor, on the other hand, can be improved
and a classical theorem of Hurwitz asserts that for every irrational number x
there exist infinitely many rational numbers p/q satisfying

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
<

1√
5q2

.

The constant 1/
√
5 is best possible but if we exclude as x the numbers that are

PGL(2,Z)-equivalent to the golden ratio (1+
√
5)/2, the constant 1/

√
5 improves

to 1/
√
8. If we also exclude the numbers that are PGL(2,Z)-equivalent to

√
2,

then the constant improves to 5/
√
221. By proceeding in this way, one obtains

the Lagrange spectrum defined by

L := {ν(x)}x∈R ⊆
[

0, 1/
√
5
]

with ν(x) = lim inf
q→∞

q‖qx‖,

where ‖x‖ denotes the distance from a real number x to a closest integer. The
quantity ν(x) provides a measure of approximation of x by the rationals. For
almost all x ∈ R we have ν(x) = 0 and when ν(x) > 0 we call x badly approx-
imable. Real quadratic irrationals are badly approximable, the worst ones being
the golden ratio and its PGL(2,Z)-equivalents, followed by

√
2 and its PGL(2,Z)-

equivalents, etc. The Lagrange spectrum is not discrete (cf [6]) but the part of
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the spectrum in the subinterval (1/3, 1/
√
5] corresponding to classes of worst ir-

rational numbers is, with 1/3 as its only accumulation point. L ∩ (1/3, 1/
√
5] is

well understood thanks to the work of Markov (cf [11], [12]) which connects this
question of Diophantine approximation to the Diophantine equation

(1) x2 + y2 + z2 = 3xyz.

The set of Markov triples comprising the positive integer solutions (x, y, z) of
(1) can be obtained starting with (1, 1, 1), (1, 1, 2), (2, 1, 5) and then proceeding
recursively going from (x, y, z) to the new triples obtained by Vieta involutions
(z, y, 3yz − x) and (x, z, 3xz − y). The Markov numbers are the greatest coordi-
nates of Markov triples. They form the Markov sequence

{mi}∞i=1 = {1, 2, 5, 13, 29, 34, 89, 169, 194, . . .} .
The Markov number mi is associated to a quadratic irrationality

θi =
3mi − 2ki +

√

9m2
i − 4

2mi
,

where ki is an integer that satisfies aiki ≡ bi (mod mi) and (ai, bi, mi) is a solution
to (1) with mi maximal. Since ki is uniquely defined modulo mi, θi is uniquely de-

fined modulo 1. Markov showed that ν(θi) =
√

9− 4/m2
i , and L∩ (1/3, 1/

√
5] =

{ν(θi)}i≥1 . Moreover, any x ∈ R for which ν(x) ∈ L ∩ (1/3, 1/
√
5] is PGL(2,Z)-

equivalent to a Markov quadratic θi.
Markov numbers come with a tree structure, inherited from Vieta involutions,

that arranges them as below:

1
(1, 1, 1)

2
(1, 1, 2)

5
(2, 1, 5)

13
(5, 1, 13)

34
(13, 1, 34)

. . . . . .

194
(5, 13, 194)

. . . . . .

29
(2, 5, 29)

433
(29, 5, 433)

. . . . . .

169
(2, 29, 169)

. . . . . .

Here (a, b, c) is a solution to (1). The Markov quadratics inherit the same tree
structure which can be given in terms of their continued fractions as
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[12] [22]

[22, 12]

[22, 14]

[22, 16]

. . . . . .

[22, 12, 22, 14]

. . . . . .

[24, 12]

[24, 12, 22, 12]

. . . . . .

[26, 12]

. . . . . .

where bn means that b is repeated n times. We note that it is more convenient
to write [12] instead of [1] in connection with the conjunction operator in (5).
The fact that all of the partial quotients of Markov quadratics are 1 or 2 and
many other of their properties can be found in [1], [2], [10] and references therein.
(See for example Corollary 1.27 in [1].)

Markov numbers arise in many different contexts: see [3], [4], [5] for some recent
developments regarding the Markov surfaces.

The main goal of this paper is to study the values of modular functions along
the tree associated to the Markov quadratics.

Let Γ = PSL(2,Z). For a general quadratic irrationality w ∈ Q(
√
D) and a

modular function f for Γ, the “value" of f at w is defined in terms of the integral
of f along the geodesic cycle Cw ⊂ Γ\H associated to w. More precisely

f(w) :=

∫

Cw

f(z)ds

where ds is the hyperbolic arc length. We can normalize the number f(w) by
the length of the geodesic Cw and define

fnor(w) :=
f(w)

2 log εD

where εD is the fundamental unit.(cf. section 2.1.)
The values of modular functions at real quadratic irrationalities were intro-

duced in [8] and independently in [9]. In [8] their averages over ideal classes
were shown to be coefficients of mock modular forms whereas in [9] Kaneko stud-
ied their individual values fnor(w) (in the case that the modular function is the
Klein’s j invariant), and based on numerical calculations he made several inter-
esting observations and conjectures.

In this paper we prove two of Kaneko’s conjectures which involve the values of
modular functions at the Markov quadratics. Let B be any branch of the Markov
tree where with a branch we mean a path on the tree without any zigzags. Our
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first theorem shows that if wB
n is the n-th Markov quadratic on a branch B and

wB
0 is the predecessor of the tip of B then the normalized values fnor(wB

n ), for any
modular function f, converge to the value fnor(wB

0 ). (For more precise definitions
of the tip of a branch and its predecessor see section 3.1.) More precisely

Theorem 1.1. Let f be a modular function defined on H. For any branch B of
the Markov tree we have

lim
n→∞

fnor(wB
n ) = fnor(wB

0 ).

Our second theorem proves an eventual monotonicity result which also partially
proves the interlacing property of the values for the Markov quadratics that was
conjectured by Kaneko;

Theorem 1.2. Let f be a modular function on H, let B be any branch of the
Markov tree. Then there exists a constant Nf,B such that, for all n ≥ Nf,B,
the real and imaginary parts of fnor(wB

n+1) lie between the real and respectively
imaginary parts of fnor(wB

0 ) and fnor(wB
n ).

The rest of the paper is organized as follows. In the next section we give the
preliminaries about cycle integrals and continued fractions. In section 3, we give
the basic properties of the Markov quadratics and the Markov tree. In section
4 and 5 we study the values of modular functions on the Markov tree and prove
Theorem 1.1 and Theorem 1.2 respectively.
Acknowledgements: We thank M. Kaneko and the referee for numerous and
very helpful comments that improved our exposition.

2. Preliminaries

2.1. Cycle integrals. Let w be a real quadratic irrationality and w̃ be its con-
jugate. w and w̃ are the roots of a quadratic equation

ax2 + bx+ c = 0 (a, b, c ∈ Z, (a, b, c) = 1)

with discriminant D = b2 − 4ac > 0. We change [a, b, c] to −[a, b, c] if necessary

and write w = −b+
√
D

2a
, w̃ = −b−

√
D

2a
. The geodesic Sw in H joining w and w̃ is

given by the equation

a|z|2 + bRe(z) + c = 0 (z ∈ H).

The stabilizer Γw of w in Γ preserves the quadratic form Qw = [a, b, c], and hence
Sw. The group Γw is infinite cyclic; it corresponds to the group U2

D of units of

norm one of Q(
√
D) via the isomorphism:

(2)
Γw −→ U2

D(
a b
c d

)

7→ (a− cw)2.
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We denote by Aw the generator of Γw

Aw =

(
1
2
(t− bu) −cu
au 1

2
(t+ bu)

)

,

where (t, u) is the smallest positive solution to Pell’s equation t2 − Du2 = 4,
and we denote by ε the generator of the infinite cyclic part of UD whose square
corresponds to Aw by the isomorphism (2).

For any modular function f , since the group Γw preserves the expression
f(z)Qw(z, 1)

−1dz, one can define the cycle integral of f along Cw = Sw/Γw,
also viewed as the “value" of f at w, by the complex number

(3) f(w) :=

∫

Cw

√
Df(z)

Qw(z, 1)
dz.

The factor
√
D is introduced here for convenience but is also natural since the

constant function f ≡ 1, (3) gives the length of the geodesic Cw. The integral
defining f(w) is Γ-invariant and can in fact be taken along any path in H from
z0 to A−1

w z0, where z0 is any point in H. Note that this gives an orientation on
Sw from w to w̃, which is counterclockwise if a > 0 and clockwise if a < 0. We
normalize the number f(w) by the length of the geodesic Cw which is given by

∫

Cw

√
D

Qw(z, 1)
dz = 2 log ε

and we define the normalized value as

fnor(w) :=
f(w)

2 log ε
.

2.2. The ‘+’ and ‘–’ continued fractions. Let (b0, b1, b2, . . .) denote the ‘–’
continued fraction

(b0, b1, b2, . . .) = b0 −
1

b1 −
1

b2 −
1
. . .

and [a0, a1, a2, . . .] be the ‘+’ continued fraction

[a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
1

. . .

.

Every real number w has a ‘–’ continued fraction expansion w = (b0, b1, b2, . . .)
with bi ∈ Z and bi ≥ 2 for i ≥ 1 and a unique ‘+’ continued fraction expansion
w = [a0, a1, a2, . . .] with ai ∈ Z and ai ≥ 1 for i ≥ 1. The ‘–’ continued fraction
expansion of w is obtained by setting w0 = w and inductively bi = ⌈wi⌉, wi+1 =
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1
bi−wi

= ST−bi(wi) , where S(x) = −1/x and T (x) = x + 1. The ‘+’ continued

fraction expansion is obtained by setting ai = ⌊wi⌋, wi+1 = 1
wi−ai

= εT−ai(wi),

where ε(x) = 1/x. Hence the ‘–’ continued fraction is given by transformations
of Γ on the real line, whereas the ‘+’ continued fraction corresponds to transfor-
mations of GL(2,Z). To go from the ‘+’ to the ‘–’ continued fraction expansions,
the general rule is

(4) [a0, a1, a2, . . .] −→ (a0 + 1, 2, . . . , 2
︸ ︷︷ ︸

a1−1

, a2 + 2, 2, . . . , 2
︸ ︷︷ ︸

a3−1

, a4 + 2, . . .).

It is well known that a real number w is a quadratic irrationality if and only
if its ‘–’ continued fraction expansion (or equivalently, its ‘+’ continued frac-
tion) is eventually periodic: w = (b0, b1, . . . , bk, bk+1, . . . , bk+r) where the line over
bk+1, . . . , bk+r denotes the period. We say that w is purely periodic when all the
partial quotients repeat. It will be useful for the rest of the paper to remember
the following statements:

(I) two quadratic irrationalities have the same ‘–’ period if and only if they
are Γ-equivalent;

(II) w has a purely periodic ‘–’ continued fraction expansion if and only if
0 < w̃ < 1 < w, where w̃ is the conjugate of w;

(III) if w = (b0, . . . , br), then 1
w̃
= (br, . . . , b0).

These statements and more information about negative continued fractions can
be found in [14, p. 126 ff].

The following lemma gives an upper bound for the distance between two real
numbers in terms of the number of first partial quotients for which they coincide.

Lemma 2.1. If the ‘–’ continued fraction expansions of u and v coincide in the
first r+1 partial quotients and their ‘+’ continued fraction expansions have only
1’s and 2’s, then

|u− v| ≤ 10

(
2

1 +
√
5

)2r

.

Proof. Let u and v be as in the statement of the lemma. Then one can see, by
applying the rule (4), that also the ‘+’ continued fraction expansions of u and v
coincide in the first r+1 partial quotients. Hence, if we set a0, . . . , ar to be those
partial quotients, the rational number p

q
= [a0, . . . , ar] is a convergent of both u

and v. Then it is well known that
∣
∣
∣
∣
u− p

q

∣
∣
∣
∣
≤ 1

q2
,

∣
∣
∣
∣
v − p

q

∣
∣
∣
∣
≤ 1

q2
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and

q ≥ 1√
5

(

1 +
√
5

2

)r

.

Therefore,

|u− v| ≤
∣
∣
∣
∣
u− p

q

∣
∣
∣
∣
+

∣
∣
∣
∣
v − p

q

∣
∣
∣
∣
≤ 10

(
2

1 +
√
5

)2r

.

�

3. Markov Tree

3.1. Markov’s quadratics. Let {mi}∞i=1 = {1, 2, 5, 13, 29, 34, 89, 169, 194, . . .}
be the set of Markov numbers. As in the introduction, for each Markov number

mi, we let θi =
3mi − 2ki +

√

9m2
i − 4

2mi
be the Markov quadratic where ki is

an integer that satisfies aiki ≡ bi (mod mi) and (ai, bi, mi) is a solution to (1)
with mi maximal. Changing the representative for ki mod mi does not chnage
the Γ orbit of θi. In Markov’s theory, only PGL(2,Z)-equivalence classes are
relevant, which implies that the order of (ai, bi) does not matter. Since we need
Γ-equivalence, which distinguishes non-real f(θi) and its conjugate, here the order
of (ai, bi) becomes relevant. We fix it so that Im(f(w)) > 0.

The Markov tree T associated to the Markov quadratics given in the introduc-
tion is in terms of the ‘+’ continued fractions. Since the cycle integrals are Γ and
not PGL(2,Z) invariant, we will rather work with the ‘–’ continued fraction. By
following the rule (4), the Markov tree T becomes in the ‘–’ continued fraction:

(2, 3) (3, 2, 4)

(3, 2, 3, 4)

(3, 2, 32, 4)

(3, 2, 33, 4)

. . . . . .

(3, 2, 3, 4, 2, 32, 4)

. . . . . .

(3, 2, 4, 2, 3, 4)

(3, 2, 4, (2, 3, 4)2)

. . . . . .

(3, (2, 4)2, 2, 3, 4)

. . . . . .

Note that each branch (a path with no zigzags) in the tree T comes with a
left or right orientation. We call a branch a left (right) branch if starting from
its first vertex on the top and going downwards the branch leans towards left
(right). Since no zigzag paths are allowed, each branch has a unique orientation.
For example, the branch with the quadratics (3, 2, 3, 4), (3, 2, 32, 4), (3, 2, 33, 4) is
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a left branch, whereas the branch with (3, 2, 3, 4), (3, 2, 4, 2, 3, 4), (3, (2, 4)2, 2, 3, 4)
is a right branch. We call the first vertex at the top of any branch its tip. Except
for the two singular cases of (2, 3) and (3, 2, 4), each Markov number lies both on
a right and a left branch but it is the tip of only a left or a right branch, except
for (3, 2, 3, 4) which is the tip of both the leftmost and the rightmost branches.

In the case of ‘+’ continued fractions we consider a conjunction operation of
two periods as

(5) [s0, . . . , sn]⊙ [t0, . . . , tm] = [s0, . . . , sn, t0, . . . , tm].

All Markov quadratics can be constructed by using this operation, starting with
[12] and [22]. Indeed, each Markov quadratic is the result of the conjunction
operation of its predecessor on the same branch and the predecessor of the tip of
the branch.

For the ‘–’ continued fraction, the rule is also the conjunction of periods except
for the most left branch, where the n-th Markov quadratic is (3, 2, 3n, 4). Indeed,
let x = [s0, . . . , sn] = (b0, b1, . . . , bk) and y = [t0, . . . , tm] = (c0, c1, . . . , cℓ). For
any branch different from the right most branch, by applying (4) together with
the observation that sn = tm = 1 are in odd positions, so they do not contribute
in the ‘–’ expansion, we obtain

x⊙ y = (b0, b1, . . . , bk−1, t0 + 2, c1, . . . , cℓ−1, s0 + 2).

But t0 is equal to 1 on the left most branch and 2 on any other branch, and
s0 = 2. For the right most branch, (4) also gives

x⊙ y = (b0, b1, . . . , bk−1, 4, c1, . . . , cℓ−1, s0 + 2)

and s0 = 2.
Throughout the paper, we denote by wB

n (n ≥ 1) the n-th Markov quadratic
on a branch B of the tree and wB

0 the left (right) predecessor of the tip wB
1 of B

if B is a left (right) branch. For example, if B = L is the left most branch, then
wL

0 = (2, 3), wL
1 = (3, 2, 3, 4), wL

2 = (3, 2, 32, 4), w
L
3 = (3, 2, 33, 4), etc. If B = R is

the right most branch, then wR
0 = (3, 2, 4), wR

1 = (3, 2, 3, 4), wR
2 = (3, 2, 4, 2, 3, 4),

wR
3 = (3, (2, 4)2, 2, 3, 4), etc.
The n-th Markov quadratic on a left branch B 6= L can be written as:

(6) wB
n = (3, a1, . . . , as, (b1, . . . , br)n),

where wB
0 = (3, b1, . . . , br) and a1, ..., as depend only on B. On a right branch B,

we have

(7) wB
n = (3, (b1, . . . , br)n−1, a1, . . . , as),

and on the leftmost branch L we have

(8) wL
n = (3, 2, 3n, 4).
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Remark 3.1. The left most branch in the Markov tree is also called the Fibonacci
branch since the associated Markov numbers on this branch are the odd indexed
Fibonacci numbers. Similarly the right most branch is associated with the odd
indexed Pell numbers which are defined by the recurrence P0 = 0, P1 = 1 and
Pn+1 = 2Pn + Pn−1. (cf. [1] p. 49)

3.2. The cycle of quadratics of a Markov number. For any quadratic irra-
tionality w, it is known that the hyperbolic element Aw is conjugate to a word
in T and V , where

T =

(
1 1
0 1

)

, V =

(
1 0
1 1

)

.

If in particular w = wB
n is a quadratic on T (n ≥ 0), then the associated hy-

perbolic element AwB
n

can be written as a word in T and V . More specifically,

AwB
n
= A−1

0 . . . A−1
ℓn

, where A0 = I and Ai ∈ {T−1, V −1} for 1 ≤ i ≤ ℓn are given
by the algorithm:

wB
n,0 = wB

n , wB
n,i+1 = Ai+1(w

B
n,i) (i ≥ 0),

where

Ai+1 =

{
T−1 if ⌊wB

n,i⌋ ≥ 1,
V −1 otherwise.

Hence

(9) wB
n,i = Ai . . . A0w

B
n , i = 0, . . . , ℓn,

and ℓn is the length of the word AwB
n
, or equivalently, the length of the cycle of

quadratics {wB
n,i}i of wB

n . As the following example demonstrates this procedure
applied to a Markov quadratic in fact cycles back and hence terminates.

Example 3.2. For example, the cycle of wL
1 = (3, 2, 3, 4) on the leftmost branch

is:
wL

1,0 = (3, 2, 3, 4)

wL
1,1 = T−1(wL

1,0) = (2, 2, 3, 4)

wL
1,2 = T−1(wL

1,1) = (1, 2, 3, 4)

wL
1,3 = V −1(wL

1,2) = (1, 3, 4, 2)

wL
1,4 = V −1(wL

1,3) = (2, 4, 2, 3)

wL
1,5 = T−1(wL

1,4) = (1, 4, 2, 3)

wL
1,6 = V −1(wL

1,5) = (3, 2, 3, 4) = wL
1,0.

The length is ℓ1 = 6 and AwL
1
= ITTV V TV.
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From now on we restrict to a left branch but not the leftmost branch. All the
following arguments apply in the same way if B is a right branch or B = L, the
leftmost branch. The small difference in the arguments arise due to the different
conjunction operations necessary, which are given in (7) for the right and in (8)
for the leftmost branches.

We now consider wB
n , in a left branch B 6= L, written as in (6). Then

(10) ℓn = nℓ0 +

s∑

i=1

(ai − 1),

where

ℓ0 =

r∑

i=1

(bi − 1)

is the length of the cycle of wB
0 . The number of partial quotients in the period of

wB
1 is s+ r and the conjunction operation ensures that this is ≤ 2r. Hence s ≤ r

and since ai ≤ 4, we have

(11) ℓn ≤ 3r(n+ 1).

It is convenient to set

a =
s∑

i=1

(ai − 1)

and

p = (b1, . . . , br), pk = (b1, . . . , br)k, qk = (br, . . . , b1)k,

where the subindex k means that the continued fraction is repeated k times.
With these notations, the cycle of wB

n is of the form:

wB
n,0 = (3, a1, . . . , as,pn),

wB
n,1 = (2, a1, . . . , as,pn),

wB
n,2 = (1, a1, . . . , as,pn),

wB
n,3 = (a1 − 1, a2, . . . , as,pn, a1),

...
wB

n,a = (3,pn, a1, . . . , as),
...

wB
n,a+ℓ0

= (3,pn−1, a1, . . . , as,p),
...

wB
n,a+nℓ0

= (3, a1, . . . , as,pn) = wB
n,0.
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Remark 3.3. One can easily write the continued fraction expansion for the Ga-
lois conjugate −w̃B

n,i of −wB
n,i in terms of that of wB

n,i. Indeed, let (d0, d1, . . . , dm)

be the continued fraction expansion of wB
n,i. The quadratic ST−d0(wB

n,i) is purely

periodic with continued fraction (d1, . . . , dm) so, by the property (III), its Galois
conjugate is 1/(dm, . . . , d1). Therefore,

w̃B
n,i = T d0S(1/(dm, . . . , d1)) = −(dm − d0, dm−1, . . . , d1, dm).

4. Convergence property

In this section we study the values of a modular function on the Markov tree.
Let B be any branch of the tree and wB

n be the n-th Markov quadratic on B.
Let AwB

n
= A−1

0 . . . A−1
ℓn

, where A0 = I and Ai ∈ {T−1, V −1} for 1 ≤ i ≤ ℓn. Let

ρ = eπi/3 and zi = A−1
0 . . . A−1

i ρ2. Then using the modularity of f we have

f(wB
n ) = −

√
D

ℓn−1∑

i=0

∫ zi+1

zi

f(z)

QwB
n
(z, 1)

dz

= −
√
D

ℓn−1∑

i=0

∫ A−1

i+1
ρ2

ρ2

f(z)

(QwB
n
|A−1

0 . . . A−1
i )(z, 1)

dz,

= −
ℓn−1∑

i=0

∫ A−1

i+1
ρ2

ρ2
f(z)

(
1

z − wB
n,i

− 1

z − w̃B
n,i

)

dz.

Since V (ρ2) = T (ρ2) = ρ, we obtain:

Lemma 4.1. For n ≥ 0 we have

(12) f(wB
n ) =

∫ ρ2

ρ

ℓn−1∑

i=0

f(z)

(
1

z − wB
n,i

− 1

z − w̃B
n,i

)

dz.

Lemma 4.1 is the main tool we use to estimate the values of modular functions
at real quadratic irrationalities.

Throughout the paper, we denote by C the arc of circle joining ρ2 and ρ. We
denote by εBn the image of AB

wn
under the isomorphism (2), so the length of CwB

n

equals 2 log εBn .
Our first goal is to show that the normalized values fnor(wB

n ) for any modular
function f along any branch B converge to the value fnor(wB

0 ). We call this
property ‘convergence property’ and prove it in this section. The main idea of
the proofs is to divide the sum in Lemma 4.1 into several ranges and bound
each piece making repeated use of Lemma 2.1. For simplicity of the notation,
as mentioned before, we restrict to a left but not the leftmost branch. However,
the argument in the proof of Theorem 4.2 applies in the same way if B is a right
branch or B = L. Only the bound δ1(r,N) will be slightly modified but will still
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be of the form O(rNλrN) where λ =
(

2
1+

√
5

)2

. Hence Corollary 4.4 also remains

true for any branch.

Theorem 4.2. Let f be a modular function, B be any left branch 6= L of the
Markov tree T and N ≥ 1. There exists a complex number K = Kf,B,N such that
for all n ≥ N ,

(13) |f(wB
n )− nf(wB

0 )−K| ≤ δ1(r,N)max
z∈C

|f(z)|,

where

(14) δ1(r,N) =
80π

3
(2 + r(N + 1))

(
2

1 +
√
5

)2(rN−1)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. By applying Lemma 4.1 for f(wB
n ) and f(wB

0 ) we have:

(15) f(wB
n )− nf(wB

0 ) =

∫ ρ2

ρ

f(z)(S1(n,N, z) + S2(n,N, z) + S3(n,N, z)) dz,

where

S1(n,N, z) =
a−1∑

i=0

1

z − wB
n,i

+
ℓn−1∑

i=a+(n−N)ℓ0

1

z − wB
n,i

−
a+Nℓ0−1∑

i=0

1

z − w̃B
n,i

−N
ℓ0−1∑

i=0

(
1

z − wB
0,i

− 1

z − w̃B
0,i

)

,

S2(n,N, z) =

a+(n−N)ℓ0−1
∑

i=a

1

z − wB
n,i

− (n−N)

ℓ0−1∑

i=0

1

z − wB
0,i

,

S3(n,N, z) = −
a+nℓ0−1∑

i=a+Nℓ0

1

z − w̃B
n,i

+ (n−N)

ℓ0−1∑

i=0

1

z − w̃B
0,i

.

Moreover, we can also write

(16) S1(n,N, z) = S1(N,N, z) + (S1(n,N, z)− S1(N,N, z)).

Define

K :=

∫ ρ2

ρ

f(z)S1(N,N, z)dz

and

c(n, z) := |S1(n,N, z)− S1(N,N, z)|+ |S2(n,N, z)|+ |S3(n,N, z)|.
Then

(17) |f(wB
n )− nf(wB

0 )−K| ≤
∫ ρ2

ρ

c(n, z)|f(z)||dz|.
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These divisions are guided by the continued fraction expansions of all the terms
in the cycle of wB

n and wB
0 and their conjugates. As we will see shortly the

repeated use of Lemma 2.1 will allow us to bound all the other sums after we
separate the main term K.

Let λ =
(

2
1+

√
5

)2

. If we can show that

(18) c(n, z) ≤ 80(2 + r(N + 1))λrN−1

for z ∈ C, then the theorem is proved. Next we show (18).

Bound for |S2(n,N, z)|. We have that

|S2(n,N, z)| ≤
n−N−2∑

k=0

ℓ0∑

i=1

|wB
n,2+a+kℓ0+i − wB

0,2+i|
|z − wB

n,2+a+kℓ0+i||z − wB
0,2+i|

+
2∑

i=0

|wB
n,a+i − wB

0,i|
|z − wB

n,a+i||z − wB
0,i|

+

ℓ0−3∑

i=1

|wB
n,2+a+(n−N−1)ℓ0+i − wB

0,2+i|
|z − wB

n,2+a+(n−N−1)ℓ0+i||z − wB
0,2+i|

.

Clearly for any z ∈ C and x ∈ R, we have that |z − x| ≥ Im(e2πi/3) =
√

3/2.
Hence the denominators are bounded below by 3

4
when z ∈ C since the points w

are real. The numerators can be bounded by using Lemma 2.1. For i = 0, 1, 2,

wB
n,a+i = (3− i,pn, a1, . . . , as)

and

wB
0,i = (3− i,p)

coincide at least in the first rn+1 partial quotients. For each 0 ≤ k ≤ n−N −2,
we have:

for 1 ≤ i ≤ b1 − 1,

(19) wB
n,2+a+kℓ0+i = (b1 − i, b2, . . . , br,pn−1−k, a1, . . . , as,pk, b1);

for the next b2 − 1 values of i (b1 ≤ i ≤ b1 + b2 − 2),

(20) wB
n,2+a+kℓ0+i = (b2 − j, b3, . . . , br,pn−1−k, a1, . . . , as,pk, b1, b2)

with 1 ≤ j ≤ b2 − 1; this process goes on until the last br − 1 values of i, where

wB
n,2+a+kℓ0+i = (br − j,pn−1−k, a1, . . . , as,pk+1)

with 1 ≤ j ≤ br − 1. For k = n − N − 1, we have the same pattern as before
except for the last block of values of i, where we only have br − 3 of them.

Now, for each 0 ≤ k ≤ n−N − 1, for 1 ≤ i ≤ b1 − 1, (19) and

wB
0,2+i = (b1 − i, b2, . . . , br, b1)
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coincide in the first rn − rk partial quotients. The next b2 − 1 values of i (20)
and

wB
0,2+i = (b2 − j, b3, . . . , br, b1, b2) (1 ≤ j ≤ b2 − 1)

coincide in the first rn−rk−1 partial quotients, similarly for the next b3−1 values
of i, wB

n,2+a+kℓ0+i and wB
0,2+i coincide in the first rn−rk−2 partial quotients, etc.

Therefore, using Lemma 2.1, for z ∈ C, we have

|S2(n,N, z)| ≤ 40

3

(

3λrn +
r∑

i=1

(bi − 1)
n−N−1∑

k=0

λr(n−k)−i

)

≤ 40

3

(

3λrn + 3

(
r∑

i=1

λ−i

)(
n∑

k=N+1

λrk

))

≤ 40

3

(

3λrn + 3

(
r∑

i=1

λr−i

)(
n−1∑

k=N

λrk

))

≤ 40

3

(

3λrn + 3

(
r−1∑

i=0

λi

)(
n−1∑

k=N

λrk

))

≤ 40λrN

(

1 +
1

(1− λ)(1− λr)

)

≤ 120λrN .(21)

In the second inequality we used that bi ≤ 4, whereas the last inequality follows
from the numerical value 1/1− λ = 1.618...

Bound for |S3(n,N, z)|. In a similar way we bound |S3(n,N, z)|. We have
that

|S3(n,N, z)| ≤
n−2∑

k=N

ℓ0∑

i=1

|w̃B
n,2+a+kℓ0+i − w̃B

0,2+i|
|z − w̃B

n,2+a+kℓ0+i||z − w̃B
0,2+i|

+

2∑

i=0

|w̃B
n,a+Nℓ0+i − w̃B

0,i|
|z − w̃B

n,a+Nℓ0+i||z − w̃B
0,i|

+

ℓ0−3∑

i=1

|w̃B
n,2+a+(n−1)ℓ0+i − w̃B

0,2+i|
|z − w̃B

n,2+a+(n−1)ℓ0+i||z − w̃B
0,2+i|

.

For i = 0, 1, 2, using Remark 3.3, we have that

−w̃B
n,a+Nℓ0+i = (1 + i, br−1, . . . , b1, qN−1, as, . . . , a1, qn−N , br)

and

−w̃B
0,i = (1 + i, br−1, . . . , b1, br)

coincide in the first rN partial quotients. For each N ≤ k ≤ n− 2, we have:
for 1 ≤ i ≤ b1 − 1,

(22) − w̃B
n,2+a+kℓ0+i = (i, qk, as . . . , a1, qn−k);
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for the next b2 − 1 values of i (b1 ≤ i ≤ b1 + b2 − 2),

(23) − w̃B
n,2+a+kℓ0+i = (j, b1, qk, as . . . , a1, qn−1−k, br, . . . , b3, b2)

with 1 ≤ j ≤ b2 − 1; this process goes on until the last br − 1 values of i, where

−w̃B
n,2+a+kℓ0+i = (j, br−1, . . . , b1, qk, as, . . . , a1, qn−1−k, br)

with 1 ≤ j ≤ br − 1.
For k = n− 1, we have the same pattern as before except for the last block of

values of i, where we only have br − 3 of them. Now, for each N ≤ k ≤ n− 1, for
the first b1 − 1 values of i (22) coincide with

−w̃B
0,2+i = (i, q)

in the first rk + 1 partial quotients. For the next b2 − 1 values of i (23) coincide
with

−w̃B
0,2+i = (j, b1, br, . . . , b2) (1 ≤ j ≤ b2 − 1)

in the first rk + 2 partial quotients, for the next b3 − 1 i-values −w̃B
n,2+a+kℓ0+i

and −w̃B
0,2+i coincide in the first rk + 3 partial quotients, etc. Once again using

Lemma2.1, and the fact that bi ≤ 4 together with the numerical value of λ, we
have, for z ∈ C,

|S3(n,N, z)| ≤ 40

3

(

3λrN−1 +
r∑

i=1

(bi − 1)
n−1∑

k=N

λrk+i−1

)

≤ 40

3

(

3λrN−1 + 3

(
r∑

i=1

λi−1

)(
n−1∑

k=N

λrk

))

≤ 40λrN−1

(

1 +
λ

(1− λ)(1− λr)

)

≤ 80λrN−1.(24)

Bound for |S1(n,N, z)− S1(N,N, z)|. We have

|S1(n,N, z)− S1(N,N, z)| ≤
a−1∑

i=0

|wB
n,i − wB

N,i|
|z − wB

n,i||z − wB
N,i|

+

ℓN−1∑

i=a

|wB
n,i+(n−N)ℓ0

− wB
N,i|

|z − wB
n,i+(n−N)ℓ0

||z − wB
N,i|

+

a+Nℓ0−1∑

i=0

|w̃B
n,i − w̃B

N,i|
|z − w̃B

n,i||z − w̃B
N,i|

.

Again the denominators are bounded below by 3
4

for z ∈ C and we use Lemma
2.1 to bound the numerators. For the first term in the first sum, using

(25) wB
n,0 = (3, a1, . . . , as,pn)

and

(26) wB
N,0 = (3, a1, . . . , as,pN),
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one can see that the successive terms wB
n,i and wB

N,i (up to i = a − 1) coincide
at least in the first rN partial quotients. This is also true for the second sum,
where we have

wB
n,a+(n−N)ℓ0

= (3,pn−N , a1, . . . , as,pN)

and

wB
N,a = (3,pN , a1, . . . , as),

as well as for the third and fourth sums, where we can use Remark 3.3 and the
continued fractions of (25) and (26), and

wB
n,a+nℓ0 = (3, a1, . . . , as,pn),

and

wB
n,a+Nℓ0

= (3, a1, . . . , as,pN).

respectively. Hence, using (11), we have

(27) |S1(n,N, z)− S1(N,N, z)| ≤ 80

3
ℓNλ

rN−1
(11)

≤ 80r(N + 1)λrN−1.

Finally, since λ < 2/3, the bounds (21), (24) and (27) give

c(n, z) ≤ 80(2 + r(N + 1))λrN−1.

�

In particular, Theorem 4.2 applied to the function f = 1 gives:

Corollary 4.3. Let B be any left branch 6= L of T and N ≥ 1. For all n ≥ N ,
there exists K = KB,N ∈ R such that

(28) | log εBn − n log εB0 −K| ≤ δ1(r,N)

with δ1(r,N) and r as in (14).

The next corollary proves Theorem 1.1 from the introduction.

Corollary 4.4. Let f be a modular function. For any left branch B 6= L of T ,

lim
n→∞

fnor(wB
n ) = fnor(wB

0 ).

Proof. It follows from Theorem 4.2 and Corollary 4.3 that |f(wB
n ) − nf(wB

0 )|
and | log εBn − n log εB0 | are bounded above and below by absolute constants (not
depending on n). Then

0 = lim
n→∞

|f(wB
n )− nf(wB

0 )|
log εBn

= lim
n→∞

∣
∣
∣
∣

f(wB
n )

log εBn
− f(wB

0 )

log εB0

∣
∣
∣
∣
.

�
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5. Interlacing property

In this section we prove Theorem 1.2. As in the proof of the convergence
property we restrict again to a left but not the leftmost branch in what follows.The
argument applies in the same way to any branch, with the bound δ2(n, r) slightly
modified. It will still be of the form O(rnλrn). Hence Theorem 1.2 applies in fact
to any branch of the Markov tree and it is a consequence of the next theorem
whose proof is similar to the proof of Theorem 4.2.

Theorem 5.1. Let f be a modular function. For every left branch B 6= L of the
Markov tree T and for all n ≥ 1,

(29) |f(wB
n+1)− f(wB

n )− f(wB
0 )| ≤ δ2(n, r)max

z∈C
|f(z)|

where

(30) δ2(n, r) =
80π

3
(n+ 2)r

(
2

1 +
√
5

)2(rn−1)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. Once again, applying Lemma 4.1 and (10) gives

f(wB
n+1)− f(wB

n ) = f(wB
0 ) +

∫ ρ2

ρ

f(z)R1(n, z) dz +

∫ ρ2

ρ

f(z)R2(n, z) dz,(31)

where

R1(n, z) =
a−1∑

i=0

(
1

z − wB
n+1,i

− 1

z − wB
n,i

)

+
ℓn−1∑

i=a

(

1

z − wB
n+1,ℓ0+i

− 1

z − wB
n,i

)

−
ℓn−1∑

i=0

(
1

z − w̃B
n+1,i

− 1

z − w̃B
n,i

)

,

R2(n, z) =

ℓ0−1∑

i=0

(

1

z − wB
n+1,a+i

− 1

z − wB
0,i

− 1

z − w̃B
n+1,ℓn+i

+
1

z − w̃B
0,i

)

.

Next we give upper bounds for the norms of the two sums above when z ∈ C.

We set again λ =
(

2
1+

√
5

)2

.

Bound for |R1(n, z)|. For z ∈ C, we have

|R1(n, z)| ≤
a−1∑

i=0

|wB
n+1,i − wB

n,i|
|z − wB

n+1,i||z − wB
n,i|

+
ℓn−1∑

i=a

|wB
n+1,i+ℓ0

− wB
n,i|

|z − wB
n+1,i+ℓ0

||z − wB
n,i|

+

a+nℓ0−1∑

i=0

|w̃B
n+1,i − w̃B

n,i|
|z − w̃B

n+1,i||z − w̃B
n,i|

+

ℓn−1∑

i=a+nℓ0

|w̃B
n+1,i − w̃B

n,i|
|z − w̃B

n+1,i||z − w̃B
n,i|

.
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As before we use the bound of 3
4

for the denominators and Lemma 2.1 for the
numerators. In the first sum using

(32) wB
n+1,0 = (3, a1, . . . , as,pn+1)

and

(33) wB
n,0 = (3, a1, . . . , as,pn),

one can see that the successive terms wB
n+1,i and wB

n,i (up to i = a − 1) coincide
at least in the first rn partial quotients. The same is true for the second sum,
where

wB
n+1,a+ℓ0 = (3,pn, a1, . . . , as,p)

and

wB
n,a = (3,pn, a1, . . . , as).

For the third and fourth sums, we use once again Remark 3.3 together with (32)
and (33), and

wB
n+1,a+nℓ0

= (3, a1, . . . , as,pn+1)

and

wB
n,a+nℓ0

= (3, a1, . . . , as,pn)

respectively.
Hence

|R1(n, z)| ≤
80

3
ℓnλ

rn−1
(11)

≤ 80r(n+ 1)λrn−1.

Bound for |R2(n, z)|. In a similar way we bound this second sum when z ∈ C:

|R2(n, z)| ≤
ℓ0−1∑

i=0

|wB
n+1,a+i − wB

0,i|
|z − wB

n+1,a+i||z − wB
0,i|

+
|w̃B

n+1,ℓn+i − w̃B
0,i|

|z − w̃B
n+1,ℓn+i||z − w̃B

0,i|
.

Again using

wB
n+1,a = (3,pn+1)

and

(34) wB
0,0 = (3,p),

one can see that all the successive terms wB
n+1,a+i and wB

0,i in the sum coincide at
least in the first rn partial quotients. For the conjugate terms, one can see from
(34) and

wB
n+1,ℓn = (3,p, a1, . . . , as,pn)

that −w̃B
n+1,ℓn+i and −w̃B

0,i coincide as well in the first rn partial quotients. Hence

|R2(n, z)| ≤
80

3
ℓ0λ

rn−1
(11)

≤ 80rλrn−1.
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Therefore,

|f(wn+1)− f(wn)− f(w0)| ≤
∫ ρ2

ρ

|f(z)|(|R1(n, z)|+ |R2(n, z)|) |dz|

≤ δ2(n, r)max
z∈C

|f(z)|

with

δ2(n, r) =
80π

3
r(n+ 2)λrn−1.

�

Theorem (5.1) applied to the function f = 1 gives:

Corollary 5.2. For every left branch B 6= L of T and for all n ≥ 1,

| log εBn+1 − log εBn − log εB0 | ≤ δ2(n, r)

with δ2(n, r) and r as in (30).

We finish this section by giving the proof of Theorem 1.2 in the case that the
branch B is any left branch 6= L. The proof of the general case goes along the
same lines.

Theorem 5.3. Let f be a modular function, B be any left branch 6= L of the
Markov tree T . There exists a constant Nf,B such that, for all n ≥ Nf,B, the
real and imaginary parts of fnor(wB

n+1) lie between the real and imaginary parts
respectively of fnor(wB

0 ) and fnor(wB
n ).

Proof. By definition, the inequality

Re(fnor(wB
n )) < Re(fnor(wB

0 ))

holds if and only if

(35) Re(f(wB
n )) log ε

B
0 < Re(f(wB

0 )) log ε
B
n .

Let N,M be positive constants. For all n ≥ max(N,M), we can write

(36) Re(f(wB
n )) = nRe(f(wB

0 )) +Kf,B,N + ε1(n,N),

(37) log εBn = n log εB0 +K1,B,M + ε2(n,M)

where Kf,B,N , K1,B,M are the real parts of the constants in Theorem 4.2 and
Corollary 4.3 respectively, |ε1(n,N)| ≤ δ1(N)maxz∈C |f(z)| and |ε2(n,M)| ≤
δ1(M). Therefore (35) is equivalent to

(38) Re(fnor(wB
0 )) >

Kf,B,N

K1,B,M

+
ε1(n,N)− ε2(n,M)Re(fnor(wB

0 ))

K1,B,M

.
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There exists a constant C1(f, B) depending on f and B such that, for max(N,M) ≥
C1(f, B), (38) is equivalent to either

(39) Re(fnor(wB
0 )) >

Kf,B,N

K1,B,M

or (39) with the strict inequality replaced by ≥, according to whether the error
term in (38) is positive or negative. If we can choose N,M ≥ C1(f, B) satisfying

Re(fnor(wB
0 )) 6= Kf,B,N

K1,B,M
, then (38) is equivalent to (39) for those N,M . If we

cannot choose such N,M , then Kf,B,N , K1,B,M would be constants that do not
depend on N,M , and in particular ε1(n,N) = ε2(n,M) = 0. Hence, also in this
case (38) is equivalent to (39) for all N,M ≥ C1(f, B).

In a similar way, the inequality

Re(fnor(wB
n )) > Re(fnor(wB

0 ))

is equivalent to

(40) Re(fnor(wB
0 )) <

Kf,B,N

K1,B,M

for N,M chosen as before. Since (39) and (40) do not depend on n, we have
either

Re(fnor(wB
n )) < Re(fnor(wB

0 ))

simultaneously for all n ≥ max(N,M) with N,M chosen as before, or

Re(fnor(wB
n )) > Re(fnor(wB

0 )).

Similarly, the inequality

Re(fnor(wB
n+1)) < Re(fnor(wB

n ))

holds if and only if

(41) Re(f(wB
n+1)) log ε

B
n < Re(f(wB

n )) log ε
B
n+1.

Theorem 5.1 and Corollary 5.2 respectively imply that

Re(f(wB
n+1)) = Re(f(wB

n )) + Re(f(wB
0 )) + µ(n)

with |µ(n)| ≤ δ2(n)maxz∈C |f(z)| and

log εBn+1 = log εBn + log εB0 + ν(n)

with |ν(n)| ≤ δ2(n). Hence (41) is equivalent to

(42) (Re(f(wB
0 )) + µ(n)) log εBn < Re(f(wB

n ))(log ε
B
0 + ν(n)).

Now, there exists a constant C2(f, B) ≥ C1(f, B) such that, for n ≥ C2(f, B), we
have that Re(fnor(wB

n )) 6= Re(fnor(wB
0 )) and that (42) is equivalent to

(43) Re(f(wB
0 )) log ε

B
n < Re(f(wB

n )) log ε
B
0 .
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Using (36) and (37) again, we obtain that (43) is equivalent to

(44) Re(fnor(wB
0 )) <

Kf,B,N

K1,B,M

where N,M are chosen as before.
Therefore, we finally have that either

Re(fnor(wB
0 )) < Re(fnor(wB

n+1)) < Re(fnor(wB
n ))

for all n ≥ max(C2(f, B), N,M) or

Re(fnor(wB
n )) < Re(fnor(wB

n+1)) < Re(fnor(wB
0 )).

The same argument applies to the imaginary parts of fnor(wB
n+1), fnor(wB

n )
and fnor(wB

0 ).
�
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