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GREENBERG ALGEBRAS AND RAMIFIED WITT VECTORS

ALESSANDRA BERTAPELLE AND MAURIZIO CANDILERA

Abstract. Let O be a complete discrete valuation ring of mixed characteristic and
with finite residue field κ. We study a natural morphism r : RO → WO,κ between the
Greenberg algebra of O and the special fiber of the scheme of ramified Witt vectors over
O. It is a universal homeomorphism with pro-infinitesimal kernel that can be explicitly
described in some cases.

Let O be a complete discrete valuation ring with field of fractions K of characteristic

0 and perfect residue field κ of positive characteristic p. We fix a uniformizing parameter

π ∈ O. It is known from [Gre, Lip, BGA] that for any n ∈ N one can associate a Greenberg

algebra Rn to the artinian local ring O/πnO, i.e., the algebraic κ-scheme that represents

the fpqc sheaf associated to the presheaf

{affine κ-schemes} → {O/πnO-algebras}, Spec(A) 7→W (A)⊗W (κ) O/π
nO,

whereW (A) is the ring of p-typical Witt vectors with coefficients in A. There are canonical

morphisms Rn → Rm for n ≥ m, and passing to the limit one gets an affine ring scheme

RO over κ such that W (A) ⊗W (κ) O = RO(A) := Homκ(Spec(A),RO) for any κ-algebra

A; see (1.1). The Greenberg algebra Rn is the fundamental stone for the construction of

the Greenberg realization Grn(X) of a O/πnO-scheme X; this is a κ-scheme whose set of

κ-rational sections coincides with X(O/πnO) [Gre],[BGA, Lemma 7.1], and it plays a role

in many results in Arithmetic Geometry.

Assume that κ is finite. One can define for any O-algebra A the algebra WO(A) of

ramified Witt vectors with coefficients in A [Haz, Dri, FF, ACZ, Sch]. These algebras are

important objects in p-adic Hodge theory. It is well-known that if A is a perfect κ-algebra,

there is a natural isomorphism

W (A)⊗W (κ) O ≃WO(A)

(see [FF, I.1.2], [ACZ, §1.2], [Sch, Prop. 1.1.26]). Hence RO(A) ≃ WO(A) if A is a

perfect κ-algebra. For a general κ-algebra A, Drinfeld’s map u : W (A)→WO(A) induces

a unique homomorphism of O-algebras RO(A)→WO(A), functorial in A. Hence there is
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a morphism of ring schemes over κ

r : RO →WO ×O Spec(κ),

where WO is the ring scheme of ramified Witt vectors over Spec(O), that is, WO(A) =

HomO(Spec(A),WO) for any O-algebra A. It is not difficult to check that the morphism r

is surjective with pro-infinitesimal kernel; hence, up to taking inverse perfection, one can

identify Greenberg algebra RO with the special fiber of the scheme of ramified Witt vectors

WO (Theorem 5.3). The morphism r is deeply related to the scheme theoretic version u of

Drinfeld’s functor (Proposition 4.14) and a great part of the paper is devoted to the study

of WO and u. In the unramified case the special fiber of u is a universal homeomorphism

and we can explicitly describe its kernel (Proposition 4.23). The ramified case requires

ad hoc constructions (Proposition 4.29). All these results allow a better understanding of

the kernel of r (Lemma 5.4).

Notation. For any morphism of O-schemes f : X → Y and any O-algebra A (i.e., any ho-

momorphism of commutative rings with unitO → A) we writeX(A) for HomO(Spec(A),X)

and fA for the map X(A)→ Y (A) induced by f . For any O-scheme X, we write Xκ for its

special fiber. If f : Spec(B)→ Spec(A), f∗ : A→ B denotes the corresponding morphism

on global sections. We use bold math symbols for (ramified) Witt vectors and important

morphisms.

Acknowledgements. We thank an anonymous referee for suggesting new references that

inspired shorter proofs of the main results.

1. Greenberg algebras

Let O be a complete discrete valuation ring with field of fractions K of characteristic 0

and perfect residue field κ of positive characteristic p. Let π ∈ O denote a fixed uniformiz-

ing parameter and let e be the absolute ramification index so that O ≃ ⊕e−1
i=0W (κ)πi as

W (κ)-modules. Let W (respectively, Wm) denote the ring scheme of p-typical Witt vectors

of infinite length (respectively, length m) over Spec(Z) and let Wκ (respectively, Wm,κ)

be its base change to Spec(κ).

The Greenberg algebra associated to the artinian local ring O/πnO, n ≥ 1, is the κ-ring

scheme Rn that represents the fpqc sheaf associated to the presheaf

{affine κ-schemes} → {O/πnO-algebras}, Spec(A) 7→W (A)⊗W (κ) O/π
nO;

it is unique up to unique isomorphism [Lip, Proposition A.1]. The explicit description

of Rn requires some work in general (we refer the interested reader to [Gre, Lip, BGA])
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but is easy when considering indices that are multiple of e. Indeed Rme ≃
∏e−1
i=0 Wm,κ as

κ-group schemes and for any κ-algebra A it is

Rme(A) ≃ ⊕Wm(A)π
i ≃Wm(A)[T ]/(fπ(T )) ≃Wm(A)⊗Wm(κ) O/π

meO,

where fπ(T ) ∈ W (κ)[T ] is the Eisenstein polynomial of π; see [BGA, (3.6) and Remark

3.7(a)], where O is denoted by R, and [BGA, Lemma 4.4] with R′ = O, R =W (κ), m = n

and Rn denoted by Rn. Hence the addition law on the κ-ring scheme Rme is defined

component wise (via the group structure of Wm,κ) while the multiplication depends on

fπ(T ) and mixes indices.

The canonical homomorphisms O/πneO → O/πmeO, n ≥ m, induce morphisms of ring

schemes Rne → Rme [Lip, Proposition A.1 (iii)] and the Greenberg algebra associated to

O is then defined as the affine κ-ring scheme

RO = lim
←−

Rme

(see [BGA, §5] where RO is denoted by R̃). By construction RO ≃
∏e−1
i=0 Wκ as κ-group

schemes and

(1.1) RO(A) =W (A)[T ]/(fπ(T )) =W (A)⊗W (κ) O

for any κ-algebra A [BGA, (5.4)]; note that by [BGA, Lemma 4.4] the hypothesis A = Ap

in [BGA, (5.4)] is superfluous since lim
←−m∈N

Rme = lim
←−n∈N

Rn. We will say that RO is an

O-algebra scheme over Spec(κ) since, as a functor on affine κ-schemes, it takes values on

O-algebras.

Note that if O =W (κ), then RO ≃Wκ, the κ-scheme of p-typical Witt vectors.

2. Ramified Witt vectors

Let O be a complete discrete valuation ring with field of fractions K and finite residue

field κ of cardinality q = ph.

For any O-algebra B one defines the O-algebra of ramified Witt vectors WO(B) as the

set BN0 endowed with a structure of O-algebra in such a way that the map

(2.1) ΦB : WO(B)→ BN0 , b = (bn)n∈N0 7→ (Φ0(b),Φ1(b),Φ2(b), . . . ) ,

is a homomorphism of O-algebras, where Φn(b) = bq
n

0 +πbq
n−1

1 + · · ·+πnbn and the target

O-algebra BN0 is the product ring on which O acts via multiplication in each component.

Proving the existence of WO(B) with the indicated property requires some work; we refer

to [Sch] for detailed proofs.

Note that if π is not a zero divisor in B then ΦB is injective and indeed bijective if π is

invertible in B.
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The above construction provides a ring scheme (and in fact an O-algebra scheme) WO

such that WO(A) = HomO(Spec(A),WO) =: WO(A) for any O-algebra A, together with

a morphism of O-algebra schemes Φ : WO → AN0
O induced by the Witt polynomials

Φn = Φn(X0, . . . ,Xn) = Xqn

0 + πXqn−1

1 + · · · + πnXn;

more precisely, if AN0
O = Spec(O[Z0, Z1, . . . ]), andWO = Spec(O[X0,X1, . . . ]) thenΦ∗(Zn) =

Φn. Let Φi : WO → A1
O denote the composition of Φ with the projection onto the ith

factor.

It is WZp = W×Spec(Z)Spec(Zp), the base change of the scheme of p-typical Witt vectors

over Z, but, despite the notation, WO differs from W×Spec(Z) Spec(O) in general.

Let K ′ be a finite extension of K with residue field κ′ = Fqr and ring of integers O′

and let ̟ ∈ O′ be a fixed uniformizing parameter. We can repeat the above constructions

with ̟, qr in place of π, q and then get a morphism of O′-algebra schemes Φ′ : WO′ → AN0
O′

defined by the Witt polynomials

(2.2) Φ′
n(X0, . . . ,Xn) = Xqrn

0 +̟Xqr(n−1)

1 + · · ·+̟nXn.

By [Dri] there is a natural morphism of functors from the category of O′-algebras to the

category of O-algebras

u = u(O,O′) : WO →WO′ (Drinfeld’s functor)

such that for any O′-algebra B the following diagram

WO(B)

ΦB

��

u
// WO′(B)

Φ′

B
��

BN0
Π′

// BN0

commutes, where the upper arrow is induced by u on B-sections and Π′ maps (b0, b1, . . . )

to (b0, br, b2r, . . . ). Further

u([b]) = [b], u(F rb) = F (u(b)), u(V b) =
π

̟
V (u(F r−1

b)),

where [ ], F, V denote, respectively, the Teichmüller map, the Frobenius and the Ver-

schiebung both in WO(B) and in WO′(B), and F r is the r-fold composition of F with

itself. By construction Drinfeld’s functor behave well with respect to base change, i.e. if

O′′/O′ is another extension, then

(2.3) u(O,O′′) = u(O′,O′′) ◦ u(O,O′)

as functors from the category of O′′-algebras to the one of O-algebras. More details on u

and its scheme theoretic interpretation will be given in Section 4.
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3. Perfection

A κ-scheme X is called perfect if the absolute Frobenius endomorphism FX is an iso-

morphism. For any κ-scheme X one constructs its (inverse) perfection Xpf as the inverse

limit of copies of X with FX as transition maps. It is known that the functor (−)pf is right

adjoint of the forgetful functor from the category of perfect κ-schemes to the category of

κ-schemes, i.e., if ρ : Xpf → X denotes the canonical projection, there is a bjection

(3.1) Homκ(Z,X
pf ) ≃ Homκ(Z,X), f 7→ ρ ◦ f

for any perfect κ-scheme Z; see [BGA2, Lemma 5.15 and (5.5)] for more details on this.

In the next sections we will need the following result.

Lemma 3.2. Let ψ : X → Y be a morphism of κ-schemes such that ψA : X(A) → Y (A)

is a bijection for any perfect κ-algebra A. Then ψpf : Xpf → Y pf is an isomorphism and

ψ is a universal homeomorphism.

Proof. By hypothesis

(3.3) Homκ(Z,X) ≃ Homκ(Z, Y ), f 7→ ψ ◦ f,

for any perfect κ-scheme Z. In particular,

Homκ(Y
pf ,Xpf) ≃ Homκ(Y

pf ,X) ≃ Homκ(Y
pf , Y ) ≃ Homκ(Y

pf , Y pf),

where the first and third bijections follow from (3.1) and the second from (3.3). By

standard arguments the inverse of ψpf is then the morphism associated with the identity

on Y pf via the above bijections. Consider further the following commutative square

Xpf

ψpf

∼
//

ρ

��

Y pf

ρ

��

X
ψ

// Y

Since the canonical morphisms ρ are universal homeomorphisms [BGA2, Rem. 5.4], the

same is ψ. �

4. Results on ramified Witt vectors

In this section we study more closely ramified Witt vectors. When possible we use a

scheme theoretic approach that makes evident functorial properties and shortens proofs.

Let notation be as in Section 2.
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4.1. Frobenius, Verschiebung, Teichmüller maps. In this subsection we present clas-

sical constructions in the scheme-theoretic language. Their properties naturally descend

from (4.1) and Remark 4.5.

Let B be an O-algebra. If B admits an endomorphism of O-algebras σ such that

σ(b) ≡ bq mod πB for any b ∈ B, then the image of the homomorphism ΦB in (2.1) can

be characterized as follows

(4.1) (an)n∈N0 ∈ ImΦB ⇔ σ(an) ≡ an+1 mod πn+1B ∀n ∈ N0;

see [Sch, Prop. 1.1.5]. We will apply this fact to polynomial rings O[Ti, i ∈ I] with σ the

endomorphism of O-algebras mapping Ti to T
q
i .

Lemma 4.2. Let σ : B → B be an endomorphism of O-algebras, ̟ ∈ B an element such

that π ∈ ̟B and f ∈ N. If σ(b) ≡ bq
f

mod ̟B for any b ∈ B, then

σ(Φfn(b)) ≡ Φf(n+1)(b) mod ̟fn+1B

for all b = (b0, b1, . . . ) ∈WO(B) and n ≥ 0.

Proof. Let b = (b0, b1, . . . ). Since Φf(n+1)(b) ≡ Φfn(b
qf

0 , b
qf

1 , . . . ) mod πnf+1B, we are left

to prove that

σ(Φfn(b)) ≡ Φfn(b
qf

0 , b
qf

1 , . . . ) mod ̟fn+1B.

We first note that σ(b) ≡ bq
f
mod ̟B implies that

(4.3) σ(bq
s

) ≡ bq
f+s

mod ̟s+1, ∀s ≥ 0,

(cf. [Sch, Lemma 1.1.1]). Hence by (4.3)

σ(Φfn(b)) = σ
(
bq

fn

0 + πbq
fn−1

1 + . . . πfnbfn

)
=

σ(b0)
qfn + πσ(b1)

qfn−1
+ . . . πfnσ(bfn) ≡

bq
(n+1)f

0 + πbq
f(n+1)−1

1 + · · ·+ πfnbq
f

fn = Φfn(b
qf ),

where the equivalence holds modulo ̟fn+1B. �

Let B be an O-algebra, σ : B → B an endomorphism of O-algebras such that σ(b) ≡ bq

modulo πB, and let h : Spec(B) → AN0
O = Spec(O[Z0, Z1, . . . ]) be a morphism of O-

schemes; the latter is uniquely determined by (h0, . . . ) ∈ BN0 with hi = h∗(Zi). The

morphism h factors through Φ : WO → AN0
O if and only if (h0, h1, . . . ) ∈ ImΦB. Hence we

can rephrase (4.1) as follows:

(4.4) h factors through Φ⇔ σ(h∗(Zn)) ≡ h
∗(Zn+1) mod πn+1B ∀n ∈ N0.

Remarks 4.5. a) Note that if π is not a zero divisor in B and h factors through Φ,

then it factors uniquely. Indeed, let g, g′ : Spec(B) → WO be such that Φ ◦ g =

h = Φ ◦ g′ and let b, b′ ∈ WO(B) = WO(B) be the corresponding sections. Then



GREENBERG ALGEBRAS AND RAMIFIED WITT VECTORS 7

ΦB(b) = ΦB(b
′) and one concludes that g = g′ by the injectivity of ΦB [Sch,

Lemma 1.1.3].

b) Since the above constructions depend on π, it seems that one should write Φπ

and WO,π above. However, if ̟ is another uniformizing parameter of O, let σ

be the O-algebra endomorphism on B = O[X0,X1, . . . ] mapping Xi to X
q
i . Then

σ(Φ̟,n(X.)) ≡ Φ̟,n+1(X.)) modulo ̟n+1B = πn+1B; hence by (4.4) and a)

one deduces the existence of a unique morphism hπ,̟ : WO,π → WO,̟ such that

Φπ = Φ̟ ◦ hπ,̟. Similarly one constructs h̟,π : WO,̟ → WO,π and a) implies

that h̟,π ◦ hπ,̟ and hπ,̟ ◦ h̟,π are the identity morphisms.

c) Note that if h : GO → AN0
O is a morphism of group (respectively, ring) schemes

with GO ≃ AN0
O or GO ≃ AmO as schemes, and there exists a morphism g : GO →

WO, unique by point a), such that h = Φ ◦ g, then g is a morphism of group

(respectively, ring) schemes. Indeed let µG, µW, µA be the group law on GO, WO

and AN0
O respectively. Since GO ×O GO = Spec(C) with C reduced, in order to

prove that g ◦ µG = µW ◦ (g × g) : GO ×O GO → WO, it suffices to prove that

Φ ◦ g ◦ µG = Φ ◦ µW ◦ (g × g). Now Φ ◦ g ◦ µG = h ◦ µG = µA ◦ (h × h) =

µA ◦ (Φ × Φ) ◦ (g × g) = Φ ◦ µW ◦ (g × g). Similar arguments work for the

multiplication law when considering morphisms of ring schemes.

As applications of (4.1) and (4.4) one proves the existence of the Frobenius, Ver-

schiebung and Teichmüller morphisms as well as of endomorphisms λ : WO → WO for

any λ ∈ O.

We now see how to deduce the existence of classical group/ring endomorphisms of WO

from endomorphisms of AN0
O .

Proposition 4.6. i) Let f be the endomorphism of AN0 = Spec(O[Z0, Z1, . . . ]) such

that f∗(Zn) = Zn+1. There exists a unique morphism of ring schemes F : WO →

WO such that Φ ◦ F = f ◦Φ.

ii) Let v be the endomorphism of AN0 = Spec(O[Z0, Z1, . . . ]) such that v∗(Z0) = 0

and v∗(Zn+1) = πZn for n ≥ 0. Then there exists a unique morphism of O-group

schemes V : WO →WO such that Φ ◦ V = v ◦Φ.

iii) For λ ∈ O let fλ be the group endomorphism of AN0
O = Spec(O[Z0, . . . ]) such

that f∗λ(Zn) = λZn. Then there exists a unique morphism of O-group schemes

λ : WO →WO such that Φ ◦ λ = fλ ◦Φ.

iv) Let σ : A1
O → A1

O = Spec(O[T ]) be the morphism of O-schemes such that σ∗(T ) =

T q and let σ = (id, σ, σ2, . . . ) : A1
O → AN0

O . Then there exists a unique morphism

of O-schemes τ : A1
O →WO such that Φ ◦ τ = σ. It is a multiplicative section of

the projection onto the first component Φ0 : WO → A1
O.
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Proof. For proving i)-iii) we use (4.4) with B = O[X0,X1, . . . ], the ring of global sections of

WO, endowed with its unique lifting of Frobenius, more precisely with the morphism of O-

algebras σ mappingXi toX
q
i . LetX denote the vector (X0,X1, . . . ) ∈WO(O[X0,X1, . . . ])

and and set Xσ = (Xq
0 ,X

q
1 , . . . ).

The morphism F exists as soon as the condition in (4.4) is satisfied for h = f ◦ Φ ,

i.e., if Φn+1(X
σ) ≡ Φn+2(X) modulo πn+1 for any n. This is evident since Φn+2(X) =

Φn+1(X
σ) + πn+2Xn+2.

The morphism V exists as soon as the condition in (4.4) is satisfies for h = v ◦Φ, i.e.,

if 0 ≡ πX0 modulo πB and πΦn−1(X
σ) ≡ πΦn(X) modulo πn+1B for any n ≥ 1. The

first fact is trivial while the second is evident since Φn(X
σ) = Φn−1(X

q) + πnXn.

The morphism λ exists as soon as the condition in (4.4) is satisfies for h = fλ ◦Φ, i.e., if

λΦn(X
σ) ≡ λΦn+1(X) modulo πn+1 for any n. This is evident since Φn(X

σ) ≡ Φn+1(X)

modulo πn+1 by Lemma 4.2 with f = 1,̟ = π.

Uniqueness of F ,V ,λ follows by Remark 4.5 a). The fact that they are group/ring

scheme morphisms follows by Remark 4.5 c).

For iv), we consider condition (4.4) for B = O[T ] and h = σ. It is satisfied since

h∗(Zn) = T q
n

; whence τ exists. Uniqueness follows again by Remark 4.5 a) and mul-

tiplicativity of τ follows from multiplicativity of σ as in Remark 4.5 c). Finally, by

construction, τ is a section of Φ0. �

The ring scheme endomorphism F is called Frobenius and the O-scheme endomorphism

V is called Verschiebung. By a direct computation one checks that for any O-algebra A,

the induced homomorphism FA : WO(A)→WO(A) satisfies

(4.7) FA(a0, a1, . . . ) ≡ (a0, a1, . . . )
q (mod πWO(A)),

and, if A is a κ-algebra,

(4.8) FA(a0, a1, . . . ) = (aq0, a
q
1, . . . )

holds. Further, both FA and VA are O-linear [Sch, Sect. 1] and

FAVA = π · idWO(A),(4.9)

VAFA = π · idWO(A), if πA = 0,(4.10)

a · VA(c) = VA(FA(a) · c), for all a, c ∈WO(A).

Finally V n
A WO(A) is an ideal of WO(A) for any n > 0 where V n

A denotes the n-fold

composition of VA. Note thatWO(A) = lim
←−n∈N

WO(A)/V
n
A WO(A) and if A is a semiperfect

κ-algebra, i.e., the Frobenius is surjective on A, then V n
A WO(A) = πnWO(A).

The morphism τ is called Teichmüller map. For any O-algebra B, we have τB : B →

WO(B), b 7→ [b] := (b, 0, 0, . . . ), since ΦB([b]) = (b, bq, bq
2
, . . . ). Note that σ is not a
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morphism of O-group schemes and hence we can not expect that τ is a morphism of

group schemes.

Remark 4.11. For any subset I ⊂ N0 and any O-algebra A, let WO,I(A) denote the

subset of WO(A) consisting of vectors b = (b0, . . . ) such that bi = 0 if i /∈ I. If J ⊂ N0

satisfies I ∩ J = ∅, then the sum in WO(A) of a vector b = (b0, . . . ) ∈ WO,I(A) and

a vector c = (c0, . . . ) ∈ WO,J(A) is simply obtained by ”gluing” the two vectors, i.e.,

b + c = d = (d0, . . . ) ∈ WO,I∪J(A) with di = bi if i ∈ I and di = ci if i ∈ J . For

proving this fact, since A can be written as quotient of a polynomial algebra over O

with possibly infinitely many indeterminates, we may assume that A is π-torsion free.

In this case d is uniquely determined by the condition
∑n

i=0 π
idq

n−i

i = Φn(d0, . . . , ) =

Φn(b0, . . . ) + Φn(c0, . . . ) =
∑n

i=0 π
ibq

n−i

i +
∑n

i=0 π
icq

n−i

i ; since for any index i either bi or

ci (or both) is zero, the above choice of di works. More generally, if I0, . . . , Ir, are disjoint

subsets of N0, and bj are vectors in WO,Ij(A), then the sum b0 + · · · + br is obtained by

”gluing” the vectors bj. As immediate consequence, any element inWO(A) can be written

as

(4.12) (a0, a1, . . . ) =
∞∑

i=0

V i
A[ai],

since V i[b] = (0, . . . , 0, b, 0, . . . ) ∈WO,{i}.

Lemma 4.13. Let B be a κ-algebra and consider the map

Bn →WO,n(B) :=WO(B)/V n
BWO(B), (b0, . . . , bn−1) 7→

n−1∑

j=0

[bj ]π
j .

If B is reduced (respectively, semiperfect, perfect) the above map is injective (respec-

tively, surjective, bijective). Hence if B is semiperfect (respectively, perfect), any ele-

ment of WO(B) = lim
←−

WO,n(B) can be written (respectively, uniquely written) in the form∑∞
j=0[bj ]π

j .

Proof. By (4.9), (4.10), (4.7) and Remark 4.11 it is

n−1∑

j=0

[bj ]π
j =

n−1∑

j=0

πj [bj] =

n−1∑

j=0

V jF j[bj ] =

n−1∑

j=0

V j[bq
j

j ] = (b0, . . . , b
qn−1

n−1 , 0, . . . ),

where we have omitted the subscript B on F and V . Injectivity is clear when B is reduced.

Assume now B semiperfect and let b = (b0, b1, . . . ) ∈WO(B). Then by Remark 4.11

b = (b0, . . . , bn−1, 0, 0, . . . ) + (0, . . . , 0, bn, . . . ) ∈ (b0, . . . , bn−1, 0, 0, . . . ) + V nWO(B),

and by (4.12) & (4.8)

(b0, . . . , bn−1, 0, . . . ) =

n−1∑

j=0

V i[bi] =

n−1∑

j=0

V iF i[b
1/qi

i ] =

n−1∑

j=0

πi[b
1/qi

i ]
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where b
1/qi

i denotes any qith root of bi, which exists since B is semiperfect. Hence surjec-

tivity is clear too. �

4.2. The Drinfeld morphism. Let K ′ denote a finite extension of K with residue field

κ′ = Fqr , ring of integers O′ and ramification degree e; since we don’t work with absolute

ramification indices in this section, there is no risk of confusion with notation of Section

1. Let ̟ ∈ O′ be a uniformizing parameter and write π = α̟e with α a unit in O′. Let

Φ′
n(X0, . . . ,Xn) = Xqrn

0 + ̟Xqr(n−1)

1 + · · · + ̟nXn be the polynomials as in (2.2) that

define the morphism Φ′ : WO′ → AN0
O′ .

Proposition 4.14. There exists a unique morphism of O′-ring schemes u = u(O,O′) such

that the following diagram

(4.15) WO ×O SpecO′

Φ×id
O′

��

u
// WO′

Φ
′

��

AN0
O′

Π′

// AN0
O′

commutes, where Φ × idO′ is the base change of Φ to Spec(O′) and Π′ is the morphism

mapping (x0, x1, . . . ) to (x0, xr, x2r, . . . ). For any λ ∈ O it is λ ◦ u = u ◦ (λ× idO′), i.e.,

u induces homomorphisms of O-algebras uB : WO(B)→WO′(B) for any O′-algebra B.

Proof. (Cf. [Dri, Prop. 1.2].) Let B = O′[X0, . . . ] be the ring of global sections of

WO ×O SpecO′ and let σ be the endomorphism the O′-algebra B mapping Xi to X
qr

i .

Let h = Π′ ◦ (Φ × idO′) : Spec(B) → AN0
O′ . Then by (4.4) the morphism of O′-schemes u

exists as soon as σ(h∗(Zn)) ≡ h
∗(Zn+1) modulo ̟n+1B. By definition of h, this condition

is equivalent to σ(Φnr) ≡ Φ(n+1)r modulo ̟n+1B, and the latter holds by Lemma 4.2

with f = r and b = (X0,X1, . . . ) ∈ WO′(B). Hence u exists as morphism of schemes.

Uniqueness follows by Remark 4.5 a). Since Φ×idO′ and Π′ are morphism of ring schemes,

the same is u by the commutativity of (4.15) and Remark 4.5 c).

Finally, since both λ ◦ u and u ◦ (λ × idO′) correspond to the endomorphism of AN0
O′

mapping Zn to λZrn on algebras, the result is clear. �

The morphism u is called the Drinfeld morphism. Note that the commutativity of

(4.15) says that for any O′-algebra B and any b ∈WO(B) it is

Φ′
n(uB(b)) = Φnr(b).

Lemma 4.16. Let τ , τ ′ be the Teichmüller maps of WO,WO′ respectively. Then τ
′ =

u ◦ (τ × idO′).

Proof. Let A1
O = Spec O[T ] and AN0

O = Spec O[Z0, Z1, . . . ]. Let σ : A1
O → AN0

O be the

morphism in Proposition 4.6 mapping Zn to T q
n

on algebras, and let σ′ : A1
O′ → AN0

O′ be the
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analogous morphism O′ mapping Zn to T q
rn

on algebras. Then τ
′ is uniquely determined

by the property Φ′ ◦ τ ′ = σ
′. Since Φ′ ◦ u ◦ (τ × idO′) = Π′ ◦ (Φ × idO′) ◦ (τ × idO′) =

Π′ ◦ (σ × idO′) = σ
′, the conclusion follows. �

Let B be an O′-algebra B. As a consequence of the above lemma and O-linearity of

the Drinfeld map uB , it is uB(
∑n

i=0[bi]π
i) =

∑n
i=0[bi]π

i and hence

(4.17) uB
( ∞∑

i=0

[bi]π
i
)
=

∞∑

i=0

[bi]π
i,

where [bi] in the left-hand side (respectively, in the right-hand side) is the Teichmüller

representative of bi in WO(B) (respectively, in WO′(B)) and π in the right-hand side is

viewed as element of O′.

Lemma 4.18. Let F ,F ′ be the Frobenius maps on WO and WO′ respectively. Then

u ◦ (F r × idO′) = F
′ ◦ u, where F

r is the r-fold composition of F .

Proof. Let f also denote the endomorphism of AN0
O′ = Spec(O′[Z0, Z1, . . . ]) associated to

F
′ as in Proposition 4.6 i), which maps Zn to Zn+1 on algebras, and let f r denote the r-fold

composition of f . Since Φ′ ◦F ′ ◦u = f ◦Φ′ ◦u = f ◦Π′ ◦(Φ× idO′) = Π′ ◦f r ◦(Φ× idO′) =

Π′ ◦ (Φ× idO′) ◦ (F r × idO′) = Φ′ ◦u ◦ (F r × idO′), the conclusion follows by Remark 4.5

a). �

Lemma 4.19. Let π

̟
denote the group homomorphism of WO′ associated with π

̟ ∈ O
′ as

in Proposition 4.6 iv). Then u ◦ (V × idO′) = π

̟
◦ V ′ ◦ u ◦ (F r−1 × idO′).

Proof. We keep notation as in Proposition 4.6: v is the endomorphism of the affine space

AN0
O associated with V , similarly for v′,V ′ over O′; f is the endomorphism associated

with F and f π
̟

the one associated with π

̟
.

Note that Π′ ◦ (v × idO′) maps Z0 to 0 and Zn to πZrn−1 if n > 0. Now

Φ′ ◦ u ◦ (V × idO′) = Π′ ◦ (Φ× idO′) ◦ (V × idO′) = Π′ ◦ (v × idO′) ◦ (Φ× idO′).

On the other hand,

Φ′ ◦
π

̟
◦ V ′ ◦ u = f π

̟
◦Φ′ ◦ V ′ ◦ u = f π

̟
◦ v′ ◦Φ′ ◦ u = f π

̟
◦ v′ ◦Π′ ◦ (Φ× idO′).

Hence

Φ′ ◦
π

̟
◦ V ′ ◦ u ◦ (F r−1 × idO′) = f π

̟
◦ v′ ◦ Π′ ◦ (f r−1 × idO′) ◦ (Φ × idO′).

Since both Π′ ◦ (v × idO′) and f π
̟
◦ v′ ◦ Π′ ◦ (f r−1 × idO′) induce the endomorphism

of O′[Z0, Z1, . . . ] mapping Z0 to 0 and Zn to πZrn−1 for n > 0, they coincide and the

conclusion follows by Remark 4.5 a). �

We now discuss properties of the Drinfeld morphism.
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Lemma 4.20. Let B be a reduced κ′-algebra. Then Drinfeld morphism induces an injective

map uB : WO(B)→WO′(B) on B-sections.

Proof. Let Bpf denote the perfect closure of B, i.e., Bpf = lim
−→i∈N0

Bi with Bi = B and

Frobenius b 7→ bp as transition maps. Since B is reduced, the canonical map φ : B = B0 →

Bpf is injective and thus the same is WO(φ). Hence, it suffice to consider the case where

B is perfect. By Lemma 4.13, any element b of WO(B) is of the form
∑∞

i=0[bi]π
i, bi ∈

B, and hence uB(b) =
∑∞

i=0[bi]π
i by (4.17). Injectivity of uB is then clear since πi ∈

(V ′
B)

eiWO′(B) and WO′(B) has no π-torsion. �

Note that if O′ 6= O and B is a non-reduced κ′-algebra, then uB is not injective. Indeed

let 0 6= b ∈ B such that bp = 0. Then by (4.9) & (4.10) with O′ in place of O and Lemmas

4.16 and 4.19 we have

uB(VB [b]) = α̟e−1V ′
B([b]) = α(V ′

B)
e(F ′

B)
e−1([b]) = α(V ′

B)
e(0) = 0

if r = 1 and e > 1, and uB(VB [b]) = α̟e−1V ′
B(uB(0)) = 0 if r > 1.

More precise statements can be given in the unramified or totally ramified cases.

4.2.1. The unramified case.

Lemma 4.21. Let O′/O be an unramified extension and let B be a κ′-algebra. Then

uB : WO(B) → WO′(B) is injective (respectively, surjective, bijective) if B is reduced

(respectively, semiperfect, perfect).

Proof. Let WO = Spec O[X0,X1, . . . ], WO′ = Spec O′[Y0, Y1, . . . ] and set ui = u∗(Yi) ∈

O′[X0, . . . , ], so that Φ′
m(u0, u1, . . . ) = Φmr(X0,X1, . . . ) by commutativity of (4.15). We

claim that

u0 = X0, um ≡ X
qm(r−1)

m mod (π) for m > 0.

Since u0 = X0 is clear by construction, only the second equivalence has to be proved. We

proceed by induction on m. First note that for any m ≥ 0

Φ(m+1)r(X0, . . . ) ≡ X
q(m+1)r

0 + · · ·+ πmXq(m+1)r−m

m + πm+1Xq(m+1)r−m−1

m+1 mod (πm+2)

and

Φ′
m+1(Y0, . . . ) = Y q(m+1)r

0 + · · · + πmY qr
m + πm+1Ym+1.

Assume that ui ≡ X
qi(r−1)

i mod (π) for 0 ≤ i ≤ m, then

πiuq
(m+1−i)r

i ≡ πiXq(m+1)r−i

i mod (πi+1+(m+1−i)r),

where i+ 1 + (m+ 1− i)r > i+ 1 +m+ 1 ≥ m+ 2. Hence

0 = Φ′
m+1(u0, . . . )− Φ(m+1)r(X0, . . . ) ≡ π

m+1um+1 − π
m+1Xq(m+1)r−m−1

m+1 mod (πm+2),

thus the claim.
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Now, if B is any O-algebra, b = (b0, . . . ) ∈ WO(B) and uB(b) = c = (c0, c1, . . . ) it is

c0 = b0 and cm ≡ b
qm(r−1)

m mod πB. In particular, if B is a κ′-algebra, it is

(4.22) cm = bq
m(r−1)

m , ∀m ≥ 0.

This implies that uB is injective if B is reduced (as already seen in Lemma 4.20), surjective

if B is semiperfect and bijective if B is perfect. �

The above lemma has the following geometric interpretation.

Proposition 4.23. Assume that the extension O′/O is unramified. Then Drinfeld’s mor-

phism u restricted to special fibers is a universal homeomorphism with pro-infinitesimal

kernel isomorphic to Spec(κ′[X0,X1, . . . ]/(X0, . . . ,X
qi(r−1)

i , . . . ) where qr is the cardinality

of κ′.

Proof. The first assertion follows from Lemmas 3.2 and 4.21. By the very explicit descrip-

tion of uκ in (4.22) one gets the assertion on the kernel. �

4.2.2. The totally ramified case. Let O′/O be a totally ramified extension of degree e > 1.

Then κ′ = κ, O′ = ⊕e−1
i=0O̟

i as O-module, and π = α̟e with α a unit in O′. Let B be

a O′-algebra. We can not expect uB : WO(B) → WO′(B) to be surjective, even if B is a

perfect κ-algebra; indeed (4.17) shows that ̟ is not in the image of uB . Note that uB is

a morphism of O-algebras and hence we can extend it to a morphism of O′-algebras

(4.24) uraB = uB ⊗ id : WO(B)⊗O O
′ → WO′(B),

e−1∑

i=0

bi ⊗̟
i 7→

e−1∑

i=0

uB(bi)̟
i,

with bi ∈WO(B). Since for any O-algebra A it is

(4.25) WO(A)⊗O O
′ =WO(A)⊗O ⊕

e−1
i=0O̟

i = ⊕e−1
i=0WO(A)̟

i,

forgetting about the multiplication on WO(B) ⊗O O
′, uraB is the group homomorphism

making the following diagram commute

(4.26)
∏e−1

i=0
WO(B)

∏
ΦB

��

u
ra

B
// WO′(B)

Φ
′

B

��

(bi)i
❴

��

✤ //
∑

i
uB(bi)̟

i

❴

��

(ΦB(bi))
✤ //

∑
i
ΦB(bi)̟

i =
∑

i
Φ′

B
(uB(bi))̟

i

∏
e−1

i=0
BN0 // BN0
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We deduce from (4.25) that the product group scheme
∏e−1
i=0 WO, whose group of A-

sections is ⊕e−1
i=0WO(A), for any O-algebra A, can be endowed with a ring scheme structure

that depends on the Eisenstein polynomial of ̟ and mixes components. We denote by∏̟WO the resulting ring scheme over O. In particular the functoriality of the maps uraB
say the existence of a morphism of ring schemes over O′

u
ra :

∏̟
WO ×O Spec(O′)→WO′

which induces uraB on B-sections. More precisely, ura is a morphism of schemes of O′-

algebras. Let

(4.27) u
ra
κ :

∏̟
WO,κ →WO′,κ.

be the restriction of ura to special fibers.

We can not expect that results in Lemma 4.21 and Proposition 4.23 hold in the totally

ramified case, but they hold for ura in place of u.

Lemma 4.28. Let O′/O be a totally ramified extension of degree e and let B be a κ-algebra.

If B is reduced (respectively, semiperfect, perfect) then the homomorphism uraB = uB ⊗ id

in (4.24) is injective (respectively, surjective, bijective).

Proof. For the injectivity, as in the proof of Lemma 4.20, we may assume that B is perfect.

Let x =
∑e−1

i=0 bi⊗ω
i with bi =

∑∞
j=0[bi,j]π

j ∈WO(B) by Lemma 4.13. Then by (4.17) it

is uraB (x) =
∑e−1

i=0

∑∞
j=0[bi,j]π

j̟i =
∑e−1

i=0

∑∞
j=0 αj(V

′
B)

ej+i[b̃i,j] with α = π/̟e a unit in

O′, b̃i,j the qej+ith power of bi,j and V ′
B the Verschiebung on WO′(B). Hence injectivity

follows.

Now we prove surjectivity in the case where B is semiperfect. By Lemma 4.13 any

element of WO′(B) can be written in the form

∞∑

j=0

[aj ]̟
j =

e−1∑

i=0

∞∑

h=0

[ahe+i]π
h̟i/αh

It suffices to check that
∑∞

h=0[ahe+i]π
hα−h is in the image of uraB for all i. Note that the

series
∑∞

h=0[ahe+i]⊗ π
hα−h is in WO(B)⊗O O

′ since

WO(B)⊗O O
′ ≃

(
lim
←−
m

WO(B)/πmWO(B)
)
⊗O O

′ ≃

lim
←−
m

(
(WO(B)/πmWO(B))⊗O O

′
)
= lim
←−
m

WO(B)⊗O O
′/πm

(
WO(B)⊗O O

′
)
,
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where the first isomorphism follows by Lemma 4.13 and the second by the fact that O′ is

a finite free O-module. Now by O′-linearity of uraB and Lemma 4.16

uraB
( ∞∑

h=0

[ahe+i]⊗ π
hα−h

)
=

∞∑

h=0

[ahe+i]π
hα−h,

and we are done. �

We now study morphisms u and u
ra.

Proposition 4.29. Let O′/O be a totally ramified extension of degree e. Then the mor-

phism u
ra
κ in (4.27) is a universal homeomorphism with pro-infinitesimal kernel isomorphic

to

Spec(κ[Xn,i;n ∈ N0, 0 ≤ i < e]/(Xqn(e−1)+i

n,i ).

Proof. The first assertion follows from Lemmas 3.2 and 4.28.

We now describe the kernel of the morphism of O′-group schemes

u
ra :

∏̟
WO′ = Spec O′[Xn,i, n ∈ N0, 0 ≤ i < e, ] −→WO′ = Spec O′[Y0, Y1, . . . ].

Set uram = ura∗(Ym) ∈ O
′[Xn,i, n ∈ N0, 0 ≤ i < e, ] where ura∗ is the homomorphism induced

by u
ra on global sections. The kernel of ura is the closed subscheme of

∏̟WO whose

ideal I is generated by the polynomials uram,m ≥ 0. Let J be the ideal generated by the

monomials Xqn(e−1)+i

n,i . We want to prove that I coincides with J modulo ̟. Both ideals

admit a filtration by subideals Is ⊂ I, Js ⊂ J where Is is generated by those uram with

m ≤ s and Js is generated by monomials Xqm(e−1)+j

m,j such that me+ j ≤ s. It is sufficient

to check that Is coincides with Js modulo ̟ for any s. We prove it by induction on s.

Clearly I0 = (ura0 ) = (X0,0) = J0. Assume s > 0, write it as s = ne + i with 0 ≤

i < e and assume (̟, Im) = (̟,Jm) for all m < s. Note that Is = (Is−1, u
ra
s ) and

Js = (Js−1,X
qn(e−1)+i

n,i ). Hence it is sufficient to prove that

(4.30) urane+i = uras ≡ α
nXqn(e−1)+i

n,i mod (̟s, Js−1)

since α := π/̟e is a unit in O′.

Note that

(4.31)

e−1∑

j=0

̟jΦs(X·,j) = Φ′
s(u

ra
0 , . . . ) = Φ′

s−1((u
ra
0 )q, . . . ) +̟suras ,

where the first equality follows by the commutativity of diagram (4.26) and the second

one by definition of the polynomials Φ′
m. The left hand side of (4.31) is sum of monomials

of the form

̟jπmXqs−m

m,j = ̟me+jαmXqs−m

m,j
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with m ≤ s = ne+ i and 0 ≤ j < e.

If m > n, the ̟-order of the coefficient is bigger than s; similarly if m = n and j > i.

Hence
e−1∑

j=0

̟jΦs,j ≡ ̟
sαnXqs−n

n,i +
∑

me+j<s

̟me+jαmXqs−m

m,j mod (̟s+1),

and one concludes that

(4.32)

e−1∑

j=0

̟jΦs,j ≡ ̟
sαnXqs−n

n,i mod (̟s+1, Js−1).

since Xqs−m

m,j = Xqne+i−m

m,j is a power of X
m(e−1)+j
m,j ∈ Js−1 when me+ j < ne+ i = s.

We now discuss the right hand side in (4.31).

(4.33) Φ′
s−1((u

ra
0 )q, . . . )+̟suras =

s−1∑

l=0

̟l(ural )
qs−l

+̟suras ≡ ̟
suras mod (̟s+1, Js−1),

where the last equivalence follows from the fact that ural ≡ 0 modulo (̟,Js−1) by inductive

hypothesis. We conclude then by (4.31), (4.32) and (4.33) that

̟suras ≡ ̟
sαnXqs−n

n,i mod (̟s+1, Js−1),

whence claim (4.30) is true and the proof is finished. �

4.2.3. The general case. Let Oun be the maximal unramified extension of O in O′. Then

by (2.3) uB = u(O,O′),B is the composition

(4.34) WO(B)
u(O,Oun),B
−→ WOun(B)

u(Oun,O′),B
−→ WO′(B)

and results on uB are usually deduced by a dévissage argument. We see here below an

example.

Lemma 4.35. Set O0 = W (κ) and let B be a reduced (respectively semiperfect, perfect)

κ-algebra. Then the homomorphism

rB : W (B)⊗O0 O →WO(B)

induced by the Drinfeld functor is an injective (respectively, surjective, bijective). In par-

ticular the natural map O →WO(κ) is an isomorphism.

Proof. Recall that O0/Zp is unramified, W (B) = WZp(B) and the extension O/O0 is

totally ramified. The homomorphism in the lemma is then the composition

(4.36) W (B)⊗O0 O
uun⊗idO−→ WO0(B)⊗O0 O

ura
−→WO(B),

where uun : u(Zp,O0),B : W (B) → WO0(B) and ura = u(O0,O),B ⊗ idO. Since O is a free

O0-module, it suffices to check the indicated properties for uun and ura. These follow by

Lemmas 4.21 and 4.28. �
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4.2.4. The case π = ̟e. The description of uB is particularly nice under the assumption

that π = ̟e. Note that if O′/O is tamely ramified the hypothesis is satisfied up to

enlarging O′.

Lemma 4.37. Let B be a κ′-algebra and assume π = ̟e. Then uB : WO(B) → WO′(B)

factors through the subset WO′,eN0(B) consisting of vectors b = (b0, . . . ) such that bj = 0

if e ∤ j. If B is semiperfect its image is WO′,eN0
(B), thus in this hypothesis, WO′,eN0

(B)

is a subring of WO′(B). If B is perfect then WO(B) is isomorphic to WO′,eN0(B).

Proof. By Lemma 4.21 the case e = 1 is clear. Since uB = u(O,O′),B is the composi-

tion of the maps in (4.34) we may assume that O′/O is totally ramified. Let WO =

Spec O[X0, . . . ], WO′ = Spec O′[Y0, . . . ] and set ui = u∗(Yi). It is

Φn(X0,X1, . . . ) = Φn−1(X
q
0 , . . . ) + πnXn for n ≥ 1,

Φ′
n(Y0, Y1, . . . ) = Φ′

n−1(Y
q
0 , . . . ) +̟nYn for n ≥ 1,

Φ′
m(u0, u1, . . . ) = Φm(X0,X1, . . . ) for m ≥ 0.

One checks recursively that u0 = X0, ui ≡ 0 mod (̟) if e ∤ i and une ≡ X
qn(e−1)

n mod (̟).

Hence, if B is any O′-algebra and b = (b0, . . . ) ∈ WO(B), then uB(b) = c = (c0, c1, . . . )

with c0 = b0, cne ≡ bq
e(n−1)

n mod ̟B and cj ∈ ̟B otherwise. In particular, if B is

a κ′-algebra, it is cne = bq
e(n−1)

n for any n ≥ 0 and zero otherwise. This implies that

uB(WO(B)) ⊆WO′,eN0(B) with equality if B is semiperfect. �

If κ = κ′ we have a better understanding of ura.

Lemma 4.38. Let O′/O be a totally ramified extension of degree e. Assume π = ̟e and

let B be a κ′-algebra. Then the homomorphism

uraB : WO(B)⊗O O
′ = ⊕e−1

i=0WO(B)̟i →WO′(B),

e−1∑

i=0

bi̟
i 7→

e−1∑

i=0

uB(bi)̟
i,

bi ∈ WO(B), maps the module WO(B)̟i into WO′,i+eN0(B) and it is injective (respec-

tively, surjective, bijective) if B is reduced (respectively, semiperfect, perfect).

Proof. We have seen in Lemma 4.37 that for any b ∈ WO(B) it is uB(b) ∈ WO′,eN0
(B);

hence by (4.9) and (4.8) uB(b)̟ = V FuB(b) ∈ VWO′,eN0(B) = WO′,1+eN0(B) and recur-

sively uB(b)̟
i ∈WO′,i+eN0

(B). Note further that the subsets eN0, 1+eN0, . . . , e−1+eN0

form a partition of N0 so that the sum
∑e−1

i=0 uB(bi)̟
i is simply obtained by “glueing” the

components of each vector uB(bi)̟
i = V iF iuB(bi) (see Remark 4.11). As a consequence

the injectivity (respectively, surjectivity) statement follows from Lemma 4.20. �
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5. The comparison result

Let O be a complete discrete valuation ring with residue field κ of cardinality q = ph,

and absolute ramification e. Set O0 = W (κ). As seen in Lemma 4.35 we may consider

the Drinfeld map u : W (A) → WO(A) for any κ-algebra A and hence we extend it to a

natural homomorphism of O-algebras

rA := u⊗ idO : W (A)⊗W (κ) O →WO(A).

In other word, due to the description of A-sections of RO in (1.1), there exists a morphism

of κ-ring schemes

(5.1) r : RO →WO,κ := WO ×O Spec(κ)

that coincides with rA on A-sections. Then Lemma 4.35 can be rewritten as follows.

Lemma 5.2. If A is a reduced (respectively, semiperfect, perfect) κ-algebra then rA : RO(A)→

WO(A) is injective (respectively, surjective, bijective).

We can now prove the comparison result announced in the introduction.

Theorem 5.3. The morphism r : RO → WO,κ defined in (5.1) induces an isomorphism

r
pf : Rpf

O →Wpf
O,κ on perfections. Hence r is a universal homeomorphism, thus surjective,

and it has pro-infinitesimal kernel.

Proof. By Lemma 5.2 and 3.2 the morphism r
pf is invertible and r is a universal homeo-

morphism. Further, r is a morphism of affine κ-group schemes and

ker(r)(κ̄) = ker (RO(κ̄)→WO(κ̄)) ≃ ker
(
Rpf
O (κ̄)→Wpf

O (κ̄)
)
= ker(rpf)(κ̄) = {0},

where k̄ denotes an algebraic closure of κ and the bijection in the middle follows by (3.1).

Hence ker(r) is proinfinitesimal by [DG, V §3 Lemme 1.4]. �

We can say something more on the kernel of r.

Lemma 5.4. a) If O =W (κ) then r = u(Zp,W (κ)),κ and

ker r ≃ Spec(κ[X0,X1, . . . ]/(X0, . . . ,X
pi(h−1)

i , . . . ).

b) If κ = Fp, then r = u
ra
κ and

ker r ≃ Spec(Fp[Xn,i;n ∈ N0, 0 ≤ i < e]/(Xpn(e−1)+i

n,i ;n ∈ N0, 0 ≤ i < e)).

c) In general, ker(r) is extension of a proinfinitesimal group scheme as in Proposition

4.29 by the product of e proinfinitesimal group schemes as in a).
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Proof. Consider the extension O/Zp. Statements a) and b) follow from Propositions 4.23

and 4.29. For the general case, note that (4.36) implies that r, as morphism of κ-group

schemes, is the composition

e−1∏

i=0

Wκ

∏
i uκ
−→

e−1∏

i=0

WO0,κ
u
ra
κ−→WO,κ

where uk on the first arrow stays for u(Zp,O0),κ, whose kernel was described in a), and u
ra
κ is

the morphism in Proposition 4.29 for the ramified extension O/O0. Hence the conclusion

follows. �
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