arXiv:1805.08049v2 [math.AG] 3 Mar 2020

GREENBERG ALGEBRAS AND RAMIFIED WITT VECTORS

ALESSANDRA BERTAPELLE AND MAURIZIO CANDILERA

ABSTRACT. Let O be a complete discrete valuation ring of mixed characteristic and
with finite residue field k. We study a natural morphism r: Ro — Wp .. between the
Greenberg algebra of O and the special fiber of the scheme of ramified Witt vectors over
O. It is a universal homeomorphism with pro-infinitesimal kernel that can be explicitly
described in some cases.

Let O be a complete discrete valuation ring with field of fractions K of characteristic
0 and perfect residue field k of positive characteristic p. We fix a uniformizing parameter
m € O. It is known from [Gre, Lip, BGA] that for any n € N one can associate a Greenberg
algebra R,, to the artinian local ring O/7"O, i.e., the algebraic k-scheme that represents
the fpqc sheaf associated to the presheaf

{affine k-schemes} — {O/n" O-algebras}, Spec(A) = W(A) ®w () O/7"O,

where W (A) is the ring of p-typical Witt vectors with coefficients in A. There are canonical
morphisms R,, = R,,, for n > m, and passing to the limit one gets an affine ring scheme
Ro over x such that W(A) @y () O = Ro(A) := Hom,(Spec(A),Rp) for any x-algebra
A; see (1.1). The Greenberg algebra R,, is the fundamental stone for the construction of
the Greenberg realization Gr,(X) of a O/n™"O-scheme X; this is a x-scheme whose set of
k-rational sections coincides with X (O/n"O) [Gre],[BGA, Lemma 7.1], and it plays a role
in many results in Arithmetic Geometry.

Assume that  is finite. One can define for any O-algebra A the algebra Wp(A) of
ramified Witt vectors with coefficients in A [Haz, Dri, FF, ACZ, Sch]. These algebras are
important objects in p-adic Hodge theory. It is well-known that if A is a perfect k-algebra,
there is a natural isomorphism

W(A) @w () O ~ Wo(A)

(see [FF, 1.1.2], [ACZ, §1.2], [Sch, Prop. 1.1.26]). Hence Rp(A) ~ Wp(A) if A is a
perfect k-algebra. For a general k-algebra A, Drinfeld’s map u: W(A) — Wp(A) induces
a unique homomorphism of O-algebras Ro(A) — Wo(A), functorial in A. Hence there is
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a morphism of ring schemes over k
r: Ro — Wp X Spec(k),

where Wp is the ring scheme of ramified Witt vectors over Spec(O), that is, Wp(A4) =
Homp (Spec(A), Wp) for any O-algebra A. It is not difficult to check that the morphism r
is surjective with pro-infinitesimal kernel; hence, up to taking inverse perfection, one can
identify Greenberg algebra Ry with the special fiber of the scheme of ramified Witt vectors
Weo (Theorem 5.3). The morphism 7 is deeply related to the scheme theoretic version u of
Drinfeld’s functor (Proposition 4.14) and a great part of the paper is devoted to the study
of Wy and u. In the unramified case the special fiber of w is a universal homeomorphism
and we can explicitly describe its kernel (Proposition 4.23). The ramified case requires
ad hoc constructions (Proposition 4.29). All these results allow a better understanding of
the kernel of » (Lemma 5.4).

Notation. For any morphism of O-schemes f: X — Y and any O-algebra A (i.e., any ho-
momorphism of commutative rings with unit O — A) we write X (A) for Homp(Spec(A4), X)
and f4 for the map X(A) — Y (A) induced by f. For any O-scheme X, we write X, for its
special fiber. If f: Spec(B) — Spec(A), f*: A — B denotes the corresponding morphism
on global sections. We use bold math symbols for (ramified) Witt vectors and important
morphisms.

Acknowledgements. We thank an anonymous referee for suggesting new references that
inspired shorter proofs of the main results.

1. GREENBERG ALGEBRAS

Let O be a complete discrete valuation ring with field of fractions K of characteristic 0
and perfect residue field x of positive characteristic p. Let m € O denote a fixed uniformiz-
ing parameter and let e be the absolute ramification index so that O ~ @f;é W (k)r® as
W (k)-modules. Let W (respectively, W,,) denote the ring scheme of p-typical Witt vectors
of infinite length (respectively, length m) over Spec(Z) and let W, (respectively, W,, )
be its base change to Spec(k).

The Greenberg algebra associated to the artinian local ring O/7"O, n > 1, is the k-ring
scheme R,, that represents the fpqc sheaf associated to the presheaf

{affine k-schemes} — {O/n" O-algebras}, Spec(A) = W (A) @y, O/7"O;

it is unique up to unique isomorphism [Lip, Proposition A.1]. The explicit description
of R,, requires some work in general (we refer the interested reader to [Gre, Lip, BGA])



GREENBERG ALGEBRAS AND RAMIFIED WITT VECTORS 3

but is easy when considering indices that are multiple of e. Indeed R,,,c =~ Hf:_é Wik as
k-group schemes and for any k-algebra A it is

Ripe(A) =~ @Wm(A)ﬂ'i >~ Wi (A) [T/ (fx(T)) = Win(A) QW (k) O/n"0,
where f(T) € W(k)[T] is the Eisenstein polynomial of 7; see [BGA, (3.6) and Remark
3.7(a)], where O is denoted by R, and [BGA, Lemma 4.4] with R = O, R =W (k), m=n
and R, denoted by %,. Hence the addition law on the k-ring scheme R,,. is defined

component wise (via the group structure of W,, ,.) while the multiplication depends on
fr(T) and mixes indices.

The canonical homomorphisms O /7¢O — O/7™¢O,n > m, induce morphisms of ring
schemes R, — R, [Lip, Proposition A.1 (iii)] and the Greenberg algebra associated to
O is then defined as the affine x-ring scheme

Rp = l.gflIRme
(see [BGA, §5] where R is denoted by #). By construction Ry ~ Hf:_é W, as k-group
schemes and
(L.1) Ro(A) = W(A)T]/(f+(T)) = W(A) @w (s O

for any k-algebra A [BGA, (5.4)]; note that by [BGA, Lemma 4.4] the hypothesis A = AP
in [BGA, (5.4)] is superfluous since l'&lmeN Ripe = l'&lneN R,. We will say that Rp is an
O-algebra scheme over Spec(k) since, as a functor on affine k-schemes, it takes values on
O-algebras.

Note that if O = W (k), then Rp ~ W,,, the k-scheme of p-typical Witt vectors.

2. RAMIFIED WITT VECTORS

Let O be a complete discrete valuation ring with field of fractions K and finite residue
field k of cardinality ¢ = p”.

For any O-algebra B one defines the O-algebra of ramified Witt vectors Wp(B) as the
set BNo endowed with a structure of O-algebra in such a way that the map

(21) Qp: WO(B) - BNO? b= (bn)nGNo = ((I)O(b)7q)l(b)7q)2(b)7)7

is a homomorphism of O-algebras, where ®,(b) = bgn + ﬂbijnil +---+7"b, and the target
O-algebra BMNo is the product ring on which @ acts via multiplication in each component.
Proving the existence of Wy (B) with the indicated property requires some work; we refer
to [Sch] for detailed proofs.

Note that if 7 is not a zero divisor in B then ® g is injective and indeed bijective if 7 is
invertible in B.
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The above construction provides a ring scheme (and in fact an O-algebra scheme) Wo
such that Wp(A) = Homp(Spec(A),Wp) =: Wp(A) for any O-algebra A, together with
a morphism of O-algebra schemes ®: Wy — Ago induced by the Witt polynomials

B, = p(Xo,..., Xn) = X +7X7" 4o 1" Xy

more precisely, ingO = Spec(O|Zy, Z1, . ..]), and Wy = Spec(O[Xp, X1, ...]) then ®*(Z,,) =
®,. Let ®;: Wp — A}Q denote the composition of ® with the projection onto the ith
factor.

It is Wy, = W Xgpec(z) Spec(Zy), the base change of the scheme of p-typical Witt vectors
over Z, but, despite the notation, Wo differs from W Xgpec(z) Spec(O) in general.

Let K’ be a finite extension of K with residue field s’ = Fg and ring of integers O’
and let @ € O’ be a fixed uniformizing parameter. We can repeat the above constructions
with w, ¢" in place of 7, ¢ and then get a morphism of (’-algebra schemes ®': Wy — Ag‘?
defined by the Witt polynomials

—1)

(2.2) O (Xo,..., Xn) = X¢" +wx?" Y 4 onX,

By [Dri] there is a natural morphism of functors from the category of (O'-algebras to the
category of O-algebras

u = w0y Wo— Wor (Drinfeld’s functor)
such that for any O’-algebra B the following diagram

Wo(B) - Wor (B)

Jes o

BNo I BNo

commutes, where the upper arrow is induced by w on B-sections and II' maps (bg, b1, ... )
to (bo, by, by, ... ). Further

w(]) = [, u(F7b) = F(u(b), u(Vb) = ZV(u(F""'b)),

where [ |, F,V denote, respectively, the Teichmiiller map, the Frobenius and the Ver-
schiebung both in Wp(B) and in Wy/(B), and F" is the r-fold composition of F with
itself. By construction Drinfeld’s functor behave well with respect to base change, i.e. if
O" /O’ is another extension, then

(2.3) U0,0) = W©,0) ° U0,0")

as functors from the category of O”-algebras to the one of O-algebras. More details on u
and its scheme theoretic interpretation will be given in Section 4.
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3. PERFECTION

A k-scheme X is called perfect if the absolute Frobenius endomorphism Fx is an iso-
morphism. For any x-scheme X one constructs its (inverse) perfection XP! as the inverse
limit of copies of X with F as transition maps. It is known that the functor (—)P! is right
adjoint of the forgetful functor from the category of perfect x-schemes to the category of
k-schemes, i.e., if p: XPf — X denotes the canonical projection, there is a bjection

(3.1) Hom,(Z, XP') ~ Hom,(Z,X),  fr—pof

for any perfect k-scheme Z; see [BGA2, Lemma 5.15 and (5.5)] for more details on this.

In the next sections we will need the following result.

Lemma 3.2. Let ¢¥: X — Y be a morphism of k-schemes such that 5: X(A) — Y (A)
is a bijection for any perfect k-algebra A. Then YP': XP' — YPf is an isomorphism and
Y is a universal homeomorphism.
Proof. By hypothesis
(3.3) Hom(Z, X) ~ Hom,(Z,Y), f—=olf,
for any perfect k-scheme Z. In particular,

Hom,,(YP", XPf) ~ Hom, (YP!, X) ~ Hom, (YP!,Y) ~ Hom, (YPf, YPf),

where the first and third bijections follow from (3.1) and the second from (3.3). By
standard arguments the inverse of 1P is then the morphism associated with the identity
on YPf via the above bijections. Consider further the following commutative square

xpf _~_ yof

T

X Y

Since the canonical morphisms p are universal homeomorphisms [BGA2, Rem. 5.4], the
same is 1. O

4. RESULTS ON RAMIFIED WITT VECTORS

In this section we study more closely ramified Witt vectors. When possible we use a
scheme theoretic approach that makes evident functorial properties and shortens proofs.
Let notation be as in Section 2.
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4.1. Frobenius, Verschiebung, Teichmiiller maps. In this subsection we present clas-
sical constructions in the scheme-theoretic language. Their properties naturally descend
from (4.1) and Remark 4.5.

Let B be an O-algebra. If B admits an endomorphism of O-algebras o such that
o(b) = b? mod 7B for any b € B, then the image of the homomorphism ®p in (2.1) can
be characterized as follows

(4.1) (an)nen, € Im®Pp < o(an) = aps1 mod "B Vn e Ny;
see [Sch, Prop. 1.1.5]. We will apply this fact to polynomial rings O[T;,i € I] with o the
endomorphism of O-algebras mapping T; to T}.
Lemma 4.2. Let 0: B — B be an endomorphism of O-algebras, w € B an element such
that m € wB and f € N. If o(b) = v’ mod wB for any b € B, then

o(® (b)) = @py1)(b) mod w/"HB
for all b= (bo,b1,...) € Wo(B) and n > 0.

Proof. Let b = (b, b1,...). Since @1, 41)(b) = q)fn(bgf, b‘ff, ...) mod /1B, we are left
to prove that
(@ (b)) = B (b 57 ,..) mod /B,
We first note that o(b) = b7 mod wB implies that
(4.3) o(b?) = 57" mod @t Vs >0,

(cf. [Sch, Lemma 1.1.1]). Hence by (4.3)

o(@pa(®) =0 (0§ 4" Iy, ) =

J(bo)qfn + 7T<7(b1)qf%1 +...7l0 (b)) =

(n+1)f f(n4+1)—1 f
bt 4 b o T = B, (b7,

where the equivalence holds modulo w/" ! B. O

Let B be an O-algebra, o: B — B an endomorphism of O-algebras such that o(b) = b?
modulo 7B, and let h: Spec(B) — Ago = Spec(O[Zy, Z1,...]) be a morphism of O-
schemes; the latter is uniquely determined by (hg,...) € BYo with h; = h*(Z;). The
morphism h factors through ®: Wp — Ago if and only if (hg, hq,...) € Im®p. Hence we
can rephrase (4.1) as follows:

(4.4) h factors through ® < o(h*(Z,)) = h*(Zn4+1) mod 7" 1B Vn € Nj.
Remarks 4.5. a) Note that if 7 is not a zero divisor in B and h factors through ®,

then it factors uniquely. Indeed, let g,¢": Spec(B) — Wp be such that ® o g =
h=®og and let b,b' € Wn(B) = Wp(B) be the corresponding sections. Then
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Pp(b) = Pp(b') and one concludes that ¢ = ¢’ by the injectivity of ®p [Sch,
Lemma 1.1.3].

b) Since the above constructions depend on m, it seems that one should write ®,
and Wo . above. However, if @ is another uniformizing parameter of O, let o
be the O-algebra endomorphism on B = O[Xj, X1, ...] mapping X; to X/. Then
0(@pn(X)) = Pppp1(X)) modulo w"HB = 7"F1B; hence by (4.4) and a)
one deduces the existence of a unique morphism hr : Wo » — Wo 5 such that
®, = P 0 hy . Similarly one constructs hg r: Wo o — Wo » and a) implies
that hg x 0 hr o and hy o © he o are the identity morphisms.

c) Note that if h: Go — Ago is a morphism of group (respectively, ring) schemes
with Gp ~ Ag‘) or Go ~ A7y as schemes, and there exists a morphism g: Go —
Woe, unique by point a), such that h = ® o g, then ¢ is a morphism of group
(respectively, ring) schemes. Indeed let ug, pw, 1 be the group law on Gop, Wp
and Ag‘) respectively. Since Gp xo Go = Spec(C) with C reduced, in order to
prove that g o ug = uw o (g X 9): Go xo Go — W, it suffices to prove that
Pogopug = Popuwo(gxg). Now Pogopug = hopug = pao(h x h) =
pp o (@ x ®)o (g xg) = ®Popuwo(gxg). Similar arguments work for the
multiplication law when considering morphisms of ring schemes.

As applications of (4.1) and (4.4) one proves the existence of the Frobenius, Ver-
schiebung and Teichmiiller morphisms as well as of endomorphisms A: Wy — We for
any A € O.

We now see how to deduce the existence of classical group/ring endomorphisms of We
from endomorphisms of Ago.

Proposition 4.6. i) Let f be the endomorphism of ANo = Spec(O[Zy, Z1,...]) such
that f*(Zy,) = Zn+1. There exists a unique morphism of ring schemes F: Wp —
Wo such that ® o F = f o ®.

ii) Let v be the endomorphism of ANo = Spec(O[Zy, Z1,...]) such that v*(Zy) = 0
and v*(Zp41) = wZy, for n > 0. Then there exists a unique morphism of O-group
schemes V: Wy — Wp such that oV =vo ®.

iii) For X\ € O let f\ be the group endomorphism of Ag‘) = Spec(0|Zy,...]) such
that f(Zn) = AZn. Then there exists a unique morphism of O-group schemes
A: Wo — Weo such that ®o X = f) o P.

w) Let o: AL — ALy = Spec(O[T)) be the morphism of O-schemes such that o*(T) =
T9 and let o = (id,0,02,...): A}Q — Ag‘). Then there exists a unique morphism
of O-schemes T: A}g — Wp such that ® o™ = o. It is a multiplicative section of
the projection onto the first component ®¢: Wo — A%Q.
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Proof. For proving i)-iii) we use (4.4) with B = O[Xj, X1, ...], the ring of global sections of
Wo, endowed with its unique lifting of Frobenius, more precisely with the morphism of O-
algebras o mapping X; to X/. Let X denote the vector (Xo, X1,...) € Wo(O[Xo, X1,...])
and and set X7 = (X{, X7,...).

The morphism F exists as soon as the condition in (4.4) is satisfied for h = fo ® |
ie., if ®,41(X7) = ®,,2(X) modulo 7"*! for any n. This is evident since ®,,2(X) =
P (X)) + 7" 2X,, 1.

The morphism V' exists as soon as the condition in (4.4) is satisfies for h = v o @, i.e.,
if 0 = 7Xo modulo 7B and 7®,,_1(X?) = 7®,(X) modulo 7"*'B for any n > 1. The
first fact is trivial while the second is evident since ®,(X7) = ®,,_1(X?) + 7" X,,.

The morphism X exists as soon as the condition in (4.4) is satisfies for h = fyo®, i.e., if
AP, (X7) = AP, 11(X) modulo 7"t for any n. This is evident since ®,(X7) = ®,,1(X)
modulo 7% by Lemma 4.2 with f = 1,w = 7.

Uniqueness of F, VA follows by Remark 4.5 a). The fact that they are group/ring
scheme morphisms follows by Remark 4.5 c).

For iv), we consider condition (4.4) for B = O[T] and h = o. It is satisfied since
h*(Z,) = T?"; whence T exists. Uniqueness follows again by Remark 4.5 a) and mul-
tiplicativity of 7 follows from multiplicativity of o as in Remark 4.5 ¢). Finally, by
construction, 7 is a section of ®y. O

The ring scheme endomorphism F is called Frobenius and the O-scheme endomorphism
V is called Verschiebung. By a direct computation one checks that for any O-algebra A,
the induced homomorphism F4: Wp(A) — W (A) satisfies

(4.7) Fa(ag,ai,...) = (ag,a1,...)? (mod 71Wp(A)),
and, if A is a k-algebra,

(4.8) Fa(ag,a1,...) = (ad,ai,...)

holds. Further, both F4 and Vj are O-linear [Sch, Sect. 1] and

(4.9) FaVa =m-idw, ),

(4.10) VaFa =7 idyyay, i TA=0,

a - VA(C) = VA(FA((L) . C), for all a,ce€ Wo(A).

Finally V;!Wo(A) is an ideal of Wp(A) for any n > 0 where V;* denotes the n-fold
composition of V4. Note that Wo(A) = lim _ Wo(A)/V'Wo(A) and if A is a semiperfect
r-algebra, i.e., the Frobenius is surjective on A, then V;!Wp(A) = n"Wp(A).

The morphism 7 is called Teichmiiller map. For any O-algebra B, we have 75: B —
Wo(B),b ~ [b] == (b,0,0,...), since ®p([b]) = (b,b9,b7",...). Note that o is not a
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morphism of O-group schemes and hence we can not expect that 7 is a morphism of
group schemes.

Remark 4.11. For any subset I C Ny and any O-algebra A, let Wo ;(A) denote the
subset of Wp(A) consisting of vectors b = (bp,...) such that b; = 0ifi ¢ I. If J C Ny
satisfies I N J = o, then the sum in Wp(A) of a vector b = (by,...) € Wp 1(A) and
a vector ¢ = (cp,...) € Wo, j(A) is simply obtained by ”gluing” the two vectors, i.e.,
b+c=d=(dy,...) € Wouj(A) with d; = b; if i € [ and d; = ¢; if i € J. For
proving this fact, since A can be written as quotient of a polynomial algebra over O
with possibly infinitely many indeterminates, we may assume that A is 7-torsion free.
In this case d is uniquely determined by the condition Yoo 7Tialgn7Z = ®,(do,...,) =
Pp(bo,...)+ Prlco,...) =2 iy ﬂibgn C+ S g """ since for any index i either b; or
¢; (or both) is zero, the above choice of d; works. More generally, if Iy, ..., I, are disjoint
subsets of No, and b; are vectors in Wo,1,(A), then the sum by + - - - + b, is obtained by
7gluing” the vectors b;. As immediate consequence, any element in W (A) can be written

as
00

(4.12) (ag,ar, ... Vilail,
=0

since V'[b] = (0,...,0,b,0,...) € Wo ).

Lemma 4.13. Let B be a k-algebra and consider the map
B" = Won(B) == Wo(B)/VEWo(B), (b, bu-1) = > _[bj]n

If B is reduced (respectively, semiperfect, perfect) the above map is injective (respec-
tively, surjective, bijective). Hence if B is semiperfect (respectively, perfect), any ele-
ment of Wo(B) = l'&lWom(B) can be written (respectively, uniquely written) in the form

Z;io [b; .

Proof. By (4.9), (4. 10) (4.7) and Remark 4.11 it is

n— 1

7TJ V]F] ijqj bo,...,bqrfl,O,...),
: 0 n—1
J=

where we have omltted the subscrlpt Bon F and V. Injectlwty is clear when B is reduced.
Assume now B semiperfect and let b = (bg, b1,...) € Wp(B). Then by Remark 4.11

b= (bo,...,bn_l,0,0,...)—i— (0, ,O,bn,...) S (bo,...,bn_l,O,O,...)+V"WO(B),
and by (4.12) & (4.8)

n—1 n—1 ) n—1 )
(B0, bao1,0,...) =Y Vi) =Y VIF /) =3 b}/
§=0 j=0 j=0
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where bi1 /" denotes any ¢'th root of b;, which exists since B is semiperfect. Hence surjec-
tivity is clear too. O

4.2. The Drinfeld morphism. Let K’ denote a finite extension of K with residue field
k' = F,r, ring of integers O’ and ramification degree e; since we don’t work with absolute
ramification indices in this section, there is no risk of confusion with notation of Section
1. Let w € O be a uniformizing parameter and write 7 = aw® with « a unit in O’. Let
O (Xo,..., Xn) = XI" + waT(nil) + -+ + @w"X, be the polynomials as in (2.2) that
define the morphism ®': Wy — Al(\g?.

Proposition 4.14. There exists a unique morphism of O'-ring schemes u = Uo,0r) such
that the following diagram

u

(4.15) Wo xo Spec O’ Wor
l@xidor l@’
A — A

commutes, where ® x ide is the base change of ® to Spec(O') and I is the morphism
mapping (xo,x1,...) to (o, Tr, T, ...). For any N € O it is Aou =wuo (X x ide/), i.e.,
u induces homomorphisms of O-algebras up: Wo(B) — Wei(B) for any O'-algebra B.

Proof. (Cf. [Dri, Prop. 1.2].) Let B = O'[Xy,...]| be the ring of global sections of
Wo X0 SpecO’ and let o be the endomorphism the O’-algebra B mapping X; to Xgr.
Let h =II' o (® x idey): Spec(B) — Ag‘?. Then by (4.4) the morphism of ('-schemes u
exists as soon as o(h*(Z,)) = h*(Z,,1) modulo w" ™! B. By definition of h, this condition
is equivalent to o(®,,) = ®(,41), modulo w"t1B, and the latter holds by Lemma 4.2
with f = r and b = (X, X1,...) € Wor(B). Hence u exists as morphism of schemes.
Uniqueness follows by Remark 4.5 a). Since @ X idp and II' are morphism of ring schemes,
the same is w by the commutativity of (4.15) and Remark 4.5 c).

Finally, since both A o u and w o (A x idps) correspond to the endomorphism of AIE‘?
mapping Z, to AZ,, on algebras, the result is clear. O
The morphism u is called the Drinfeld morphism. Note that the commutativity of
(4.15) says that for any O’-algebra B and any b € Wp(B) it is
P, (up(b)) = Ppr(b).
Lemma 4.16. Let 7,7’ be the Teichmiiller maps of Wo,Wer respectively. Then 7 =

uo (7 xidor).

Proof. Let A}, = Spec O[T] and Ago = Spec O0[Zy, Z1,...]. Let o: ALy — Ago be the
morphism in Proposition 4.6 mapping Z,, to T?" on algebras, and let /: AL, — Ag‘} be the
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analogous morphism O’ mapping Z, to T?" on algebras. Then 7’ is uniquely determined
by the property ® o7’ = ¢’. Since @' ouo (7 x idpy) = ' o (P x idey) o (7 x idey) =
IT' o (o x ide) = o’ the conclusion follows. 0

Let B be an (O'-algebra B. As a consequence of the above lemma and O-linearity of
the Drinfeld map up, it is up(> 1 [bi]7") = D o [bs]7* and hence
(4.17) up (D _[biln') = [bilr,
i=0 i=0
where [b;] in the left-hand side (respectively, in the right-hand side) is the Teichmiiller
representative of b; in Wp(B) (respectively, in We/(B)) and 7 in the right-hand side is
viewed as element of O'.

Lemma 4.18. Let F,F’ be the Frobenius maps on Wo and W, respectively. Then
wo (F" xido) = F' o u, where F" is the r-fold composition of F.

Proof. Let f also denote the endomorphism of Ag‘? = Spec(O’[Zy, Z1, .. .]) associated to
F’ as in Proposition 4.6 i), which maps Z,, to Z,,1 on algebras, and let f” denote the r-fold
composition of f. Since ®' o F'ou = fo®' ou = foll'o(® xidey) =I'o fTo (P xidp/) =
IT'o (® x ide) o (F" xider) = @ owo (F" x idey), the conclusion follows by Remark 4.5
a). O

Lemma 4.19. Let g denote the group homomorphism of Wor associated with = € O as
in Proposition 4.6 w). Then wo (V xido) = Z o V' ouo (F'~! xidey).

Proof. We keep notation as in Proposition 4.6: v is the endomorphism of the affine space
Ag‘) associated with V', similarly for v/, V'’ over O'; f is the endomorphism associated
with F' and fx the one associated with .

Note that IT' o (v X idpr) maps Zy to 0 and Z,, to 7Z,,—1 if n > 0. Now
®' ouo (V X ido/) =1II'o (q) X ido/) o (V X ido/) =1II'o (?} X ido/) o (q) X id@/).
On the other hand,
™
®o—oVou=fzod®oVou=fzovo® ou=fzov oll'o(® xide).
w w w w
Hence
03

®' o —oV'ouo(F ! xidp) = fr ot/ oIl' o (f7 xider) o (® x ider).
w w

Since both IT' o (v x idey) and fz oo o II' o (f7~! x idep/) induce the endomorphism
of O'Zy, Z1,...] mapping Zy to 0 and Z,, to 7Z,,—1 for n > 0, they coincide and the
conclusion follows by Remark 4.5 a). g

We now discuss properties of the Drinfeld morphism.
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Lemma 4.20. Let B be a reduced x’'-algebra. Then Drinfeld morphism induces an injective
map ug: Wo(B) — Weor(B) on B-sections.

Proof. Let BPf denote the perfect closure of B, i.e., BPf = h‘gieNO B; with B; = B and
Frobenius b — bP as transition maps. Since B is reduced, the canonical map ¢: B = By —
BP! is injective and thus the same is We(¢)). Hence, it suffice to consider the case where
B is perfect. By Lemma 4.13, any element b of W (B) is of the form Y oo [bi]n’, b; €
B, and hence ug(b) = Y:°,[b;]n" by (4.17). Injectivity of up is then clear since m' €
(VE)4Wer(B) and Wer(B) has no m-torsion. O

Note that if @' # O and B is a non-reduced x’-algebra, then up is not injective. Indeed
let 0 # b € B such that ¥ = 0. Then by (4.9) & (4.10) with O’ in place of O and Lemmas
4.16 and 4.19 we have

up(V[b]) = aw*™Va([b]) = a(VE)*(F5) " ([b]) = a(VE)*(0) = 0
if r=1and e > 1, and up(Vg[b]) = aw* V4 (up(0)) =0 if r > 1.

More precise statements can be given in the unramified or totally ramified cases.

4.2.1. The unramified case.

Lemma 4.21. Let O'/O be an unramified extension and let B be a k'-algebra. Then
up: Wo(B) — Wei(B) is injective (respectively, surjective, bijective) if B is reduced
(respectively, semiperfect, perfect).

Proof. Let W = Spec O[Xg, X1,...], Wor = Spec O'[Yp, Y1,...] and set u; = u*(Y;) €
O'[Xo,...,], so that ®/ (ug,u,...) = ®pr(Xo, X1,...) by commutativity of (4.15). We
claim that

uo = Xo, Uy = Xﬁnm(rfl) mod (7) for m > 0.
Since ug = Xy is clear by construction, only the second equivalence has to be proved. We

proceed by induction on m. First note that for any m > 0
(m+1)r (m+1)r—m (m+1)r—m—1
Blminyr(Xo,- )= XL e mXG T X mod (7""+?)

and
q(m+1)7‘

;n+1(YOa---):Y0

i(r—1) i
Assume that u; = Xlg mod () for 0 < i < m, then

i SR LS T
. (m+1—i)r . (m+1)r—i . .
mul B ' X U mod (riH1IF(mAl=iry
where i + 14+ (m+1—1i)r >i+1+m+1>m+ 2. Hence
(m+41)r—m—1
0=, (uo, ..) = Puny1y(Xo,. ) = L T 7Tm+1Xgl+1 mod (72),

thus the claim.
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Now, if B is any O-algebra, b = (bo,...) € Wo(B) and up(b) = ¢ = (co,c1,...) it is
m(r—1)

co = by and ¢, = b, mod 7B. In particular, if B is a x/-algebra, it is

(4.22) em =" Ym > 0.
This implies that up is injective if B is reduced (as already seen in Lemma 4.20), surjective
if B is semiperfect and bijective if B is perfect. O

The above lemma has the following geometric interpretation.

Proposition 4.23. Assume that the extension O'/O is unramified. Then Drinfeld’s mor-
phism u restricted to special fibers is a universal homeomorphism with pro-infinitesimal
i(r—1)

kernel isomorphic to Spec(r'[Xo, X1,...]/(Xo,..., X] ,...) where ¢" is the cardinality
of K.

Proof. The first assertion follows from Lemmas 3.2 and 4.21. By the very explicit descrip-
tion of u,; in (4.22) one gets the assertion on the kernel. O

4.2.2. The totally ramified case. Let O'/O be a totally ramified extension of degree e > 1.
Then v’ =k, O’ = @f:_&Owi as O-module, and m = aw® with a a unit in @’. Let B be
a (O0'-algebra. We can not expect ug: Wo(B) — Weor(B) to be surjective, even if B is a
perfect k-algebra; indeed (4.17) shows that w is not in the image of up. Note that upg is
a morphism of O-algebras and hence we can extend it to a morphism of (’-algebras

e—1 e—1

(424)  uE =up®id: Wo(B)®o O’ = Woi(B), Y bow =Y up(b)w',
i=0 i=0

with b; € Wo(B). Since for any O-algebra A it is

(4.25) Wo(A) @0 O = Wo(A) @0 85, 0w’ = & Wo(A)w',

forgetting about the multiplication on Wo(B) ®o O, v} is the group homomorphism
making the following diagram commute

ra

(4.26)  TIiZy Wo(B) = Wo(B)

[[®5 I I P'p

[1;=, B Bt
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We deduce from (4.25) that the product group scheme Hf:_é Weo, whose group of A-
sections is ®;_ W@(A), for any O-algebra A, can be endowed with a ring scheme structure
that depends on the Eisenstein polynomial of @ and mixes components. We denote by
[I¥ Wo the resulting ring scheme over O. In particular the functoriality of the maps u}3
say the existence of a morphism of ring schemes over O’

. HWO X0 SpeC(O/) — Wo/

ra

which induces u}§ on B-sections. More precisely, 4™ is a morphism of schemes of O'-

algebras. Let

(4.27) u,’: HWO,R — Wor

be the restriction of u™ to special fibers.

We can not expect that results in Lemma 4.21 and Proposition 4.23 hold in the totally
ramified case, but they hold for 4™ in place of u.

Lemma 4.28. Let O'/O be a totally ramified extension of degree e and let B be a k-algebra.
If B is reduced (respectively, semiperfect, perfect) then the homomorphism uly = up ® id
in (4.24) is injective (respectively, surjective, bijective).

Proof. For the injectivity, as in the proof of Lemma 4.20, we may assume that B is perfect.
Let ¢ = .5 b; ®w’ with b; = Z;‘;O[bi,j]wj € Wo(B) by Lemma 4.13. Then by (4.17) it
is wig (@) = 3755 Y3 biglr e = g 0520 (V) Hi[bi ) with a = 7/ a unit in
O, b;; the ¢®Tith power of b; ; and V}j the Verschiebung on We/(B). Hence injectivity
follows.

Now we prove surjectivity in the case where B is semiperfect. By Lemma 4.13 any
element of Wy (B) can be written in the form

Z[CL]]

7=0 i

1

e

o
E ahe+Z7T w /a

I\
o

It suffices to check that Eﬁ“;o[aheﬂ]ﬂha_h is in the image of w}3 for all i. Note that the
series Y72 olaneri] ® 7™ is in Wo(B) @0 O’ since

Wo(B) @0 O ~ (Q_WO )/7"Wo(B)) ®0 O ~

@ﬂ(( Wo(B)/m"Wo(B)) ®o O') = LWO ) @0 O /7™ (Wo(B) @0 O'),

m
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where the first isomorphism follows by Lemma 4.13 and the second by the fact that O’ is
a finite free O-module. Now by O'-linearity of u}3 and Lemma 4.16
o0 (e e]
u?( Z[ahe-l-i] ® ﬂ'ha_h) = Z[ahe—l—i]ﬂ'ha_ha
h=0 h=0
and we are done. O

We now study morphisms v and u".

Proposition 4.29. Let O'/O be a totally ramified extension of degree e. Then the mor-
phism uwl? in (4.27) is a universal homeomorphism with pro-infinitesimal kernel isomorphic
to

n(e—1)+1

Spec(k[Xpi;n € No,0 <i < e]/(ng,i )-

Proof. The first assertion follows from Lemmas 3.2 and 4.28.

We now describe the kernel of the morphism of (’-group schemes

u'®: HWO/ = Spec O'[X,,;,n € Np,0 < i <e,] — Weo = Spec O'[Y, Y1,...].

Set uf? = u*(Y,,) € O'[ X, i,n € Ny, 0 < i < e,] where u"* is the homomorphism induced
by u' on global sections. The kernel of u™ is the closed subscheme of [[* Weo whose
ideal I is generated by the polynomials u;5,m > 0. Let J be the ideal generated by the
monomials ng(eilm. We want to prove that I coincides with J modulo w. Both ideals
admit a filtration by subideals Iy C I, J; C J where I, is generated by those w5 with
m < s and J; is generated by monomials Xf:;kl)ﬂ such that me 4+ j < s. It is sufficient

to check that I coincides with Js modulo w for any s. We prove it by induction on s.

Clearly Iy = (ui*) = (Xo0) = Jo. Assume s > 0, write it as s = ne + i with 0 <

i < e and assume (w, ;) = (w,J,,) for all m < s. Note that Iy = ([;_1,u:*) and
n(e— i .. .
Js = (Js_l,Xfm. v ). Hence it is sufficient to prove that
n(e—1)+1i
(4.30) Upey; = Uy = a" X1, T mod (w®, Js—1)
since o := 7/w® is a unit in O’.
Note that
e—1 '
(4.31) N @ (X ) = B () = D (), ) +
j=0

where the first equality follows by the commutativity of diagram (4.26) and the second
one by definition of the polynomials ®/ . The left hand side of (4.31) is sum of monomials
of the form

m s—m

wiam X" = gmetigm x4
m,) m,j
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withm<s=ne+iand 0 < j <e.

If m > n, the w-order of the coefficient is bigger than s; similarly if m = n and j > i.
Hence

7 s nyq " me+j myvq® ™" s+1
g @@, =wa X, + w o X7, mod (w®"),

me+j5<s
and one concludes that
(4.32) Zw O,y =w'a"X?, " mod (@, J,1).
since qu "= ane+Z "isa power of Xm(e AR Js—1 when me +j <ne+1i=s.

We now discuss the right hand side in (4.31).
! ra\gq S ra __ q =l s, ra — __S, T2 s+1
. _ 5 - = yJs—1)y
(4.33) @ ((ug?) ) + @i g w( +wu = wul  mod (@, Js_1)

where the last equivalence follows from the fact that «;* = 0 modulo (ww, Js—1) by inductive
hypothesis. We conclude then by (4.31), (4.32) and (4.33) that
wiuy = soz"Xf:;n mod (@**1, J,_1),

whence claim (4.30) is true and the proof is finished. O

4.2.3. The general case. Let O" be the maximal unramified extension of O in @’. Then
by (2.3) up = u(,0,p is the composition

(o oun) B U(oun, o') B

(4.34) Wo(B) Wou (B) Woi(B)

and results on up are usually deduced by a dévissage argument. We see here below an
example.
Lemma 4.35. Set Oy = W (k) and let B be a reduced (respectively semiperfect, perfect)
k-algebra. Then the homomorphism

rg: W(B) ®o, O = Wo(B)
induced by the Drinfeld functor is an injective (respectively, surjective, bijective). In par-
ticular the natural map O — Wo(k) is an isomorphism.

Proof. Recall that Oy/Z, is unramified, W(B) = Wz (B) and the extension O/0 is
totally ramified. The homomorphism in the lemma is then the composition

(4.36) W (B) 8o, 0" =5 Woy(B) @0, 0 “= Wo(B),
where u": w051 W(B) = Wo,(B) and u™ = u,0)p ® ido. Since O is a free

Op-module, it suffices to check the indicated properties for v"" and u". These follow by
Lemmas 4.21 and 4.28. O
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4.2.4. The case m = w®. The description of up is particularly nice under the assumption
that 7 = w® Note that if O'/O is tamely ramified the hypothesis is satisfied up to
enlarging O'.

Lemma 4.37. Let B be a k'-algebra and assume m = w®. Then ug: Wo(B) — We (B)
factors through the subset Wey on,(B) consisting of vectors b = (b, ...) such that bj =0
if ef j. If B is semiperfect its image is Wor on, (B), thus in this hypothesis, Wor en, (B)
is a subring of Wor(B). If B is perfect then Wo(B) is isomorphic to Wor en, (B).

Proof. By Lemma 4.21 the case e = 1 is clear. Since up = u(,0r),p is the composi-
tion of the maps in (4.34) we may assume that O'/O is totally ramified. Let Wy =
Spec O[Xy,...], Wor = Spec O'[Yp, . ..] and set u; = u*(Y;). It is

(I)n(X(),Xl,...):(I)n_l(Xg,...)—i-?Tan forn>1,
P, (Yo, Y1,...) =@, _(Y{,...)+="Y, forn > 1,
O (ug,uy,...) = D,(Xo, X1,...) for m > 0.

One checks recursively that ug = Xg, u; = 0 mod (w) if e 1 i and upe = Xﬁn(eil) mod (w).

Hence, if B is any O’-algebra and b = (bg,...) € Wp(B), then ug(b) = ¢ = (¢g,c1,...)

e(n—1)

with ¢y = by, Cpe = b mod wB and ¢; € wB otherwise. In particular, if B is
L. e(n—1) . .. .

a r'-algebra, it is c,e = b} Y for any n > 0 and zero otherwise. This implies that

up(Wo(B)) € Wor en, (B) with equality if B is semiperfect. O

If k = k' we have a better understanding of u'®.

Lemma 4.38. Let O'/O be a totally ramified extension of degree e. Assume m = w® and
let B be a k'-algebra. Then the homomorphism

e—1 e—1
ulf: Wo(B) @0 0' = & Wo(B)@' = Wor(B), > biw' = > up(b)w’,
=0 =0

b, € Wo(B), maps the module Wo(B)w' into Wer iren,(B) and it is injective (respec-
tively, surjective, bijective) if B is reduced (respectively, semiperfect, perfect).

Proof. We have seen in Lemma 4.37 that for any b € Wo(B) it is up(b) € Wor en, (B);
hence by (4.9) and (4.8) up(b)w = VFup(b) € VWor n,(B) = Wor 14en, (B) and recur-
sively up(b)w® € Wor iteny (B). Note further that the subsets eNp, 1+¢eNp,...,e—14eNy
form a partition of Ny so that the sum Zf;é up(b;)w’ is simply obtained by “glueing” the
components of each vector up(b;)w’ = ViFiug(b;) (see Remark 4.11). As a consequence
the injectivity (respectively, surjectivity) statement follows from Lemma 4.20. (]
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5. THE COMPARISON RESULT

Let O be a complete discrete valuation ring with residue field  of cardinality ¢ = p”,
and absolute ramification e. Set Oy = W (k). As seen in Lemma 4.35 we may consider
the Drinfeld map u: W(A) — Wp(A) for any s-algebra A and hence we extend it to a
natural homomorphism of O-algebras

r4 = u®idp: W(A) ®W(n) 0 — WO(A)

In other word, due to the description of A-sections of Ry in (1.1), there exists a morphism
of k-ring schemes

(5.1) r: Ro = Wo . := Wp xo Spec(k)
that coincides with r4 on A-sections. Then Lemma 4.35 can be rewritten as follows.

Lemma 5.2. If A is a reduced (respectively, semiperfect, perfect) k-algebra thenrs: Ro(A) —
Wo(A) is injective (respectively, surjective, bijective).

We can now prove the comparison result announced in the introduction.

Theorem 5.3. The morphism r: Ro — Wp , defined in (5.1) induces an isomorphism
rPf: }R%f — W%f’ .. on perfections. Hence r is a universal homeomorphism, thus surjective,
and it has pro-infinitesimal kernel.

Proof. By Lemma 5.2 and 3.2 the morphism 7P is invertible and 7 is a universal homeo-
morphism. Further, r is a morphism of affine x-group schemes and

ker(r)(Rr) = ker (Rp(k) = Wo(R)) ~ ker (Rg(&) — Wg(ﬁ)) = ker(rP!) (%) = {0},

where k denotes an algebraic closure of x and the bijection in the middle follows by (3.1).
Hence ker(r) is proinfinitesimal by [DG, V §3 Lemme 1.4]. O

We can say something more on the kernel of r.

Lemma 5.4. a) If O = W(k) then © = uz, w(x)),x and

i(h—1)

ker r ~ Spec(k[Xo, X1,...]/(Xo,..., XP ...).

b) If k =TFyp, then r = uw}* and

n(e—1)+1i
K

ker r ~ Spec(F,[X,, ;;n € N, 0 < i < e]/(X? ;n € No, 0 <i<e)).

¢) In general, ker(r) is extension of a proinfinitesimal group scheme as in Proposition
4.29 by the product of e proinfinitesimal group schemes as in a).
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Proof. Consider the extension O/Z,. Statements a) and b) follow from Propositions 4.23
and 4.29. For the general case, note that (4.36) implies that 7, as morphism of k-group
schemes, is the composition

e—1 e—1
IT; us w,l
H W, — H WOO,/@ — WO,R
i=0 i=0
where uy, on the first arrow stays for u(z, o) «, whose kernel was described in a), and u;?* is
the morphism in Proposition 4.29 for the ramified extension O/Oy. Hence the conclusion
follows. O
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