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ON AN UPPER BOUND FOR THE GLOBAL DIMENSION OF

AUSLANDER–DLAB–RINGEL ALGEBRAS

MAYU TSUKAMOTO

Abstract. Lin and Xi introduced Auslander–Dlab–Ringel (ADR) algebras of semilocal
modules as a generalization of original ADR algebras and showed that they are quasi-
hereditary. In this paper, we prove that such algebras are always left-strongly quasi-
hereditary. As an application, we give a better upper bound for global dimension of
ADR algebras of semilocal modules. Moreover, we describe characterizations of original
ADR algebras to be strongly quasi-hereditary.

Introduction

Quasi-hereditary algebras were introduced by Cline, Parshall and Scott to study high-
est weight categories which arise in the representation theory of semisimple complex Lie
algebras and algebraic groups [CPS88, Sco87]. Dlab and Ringel intensely studied quasi-
hereditary algebras from the viewpoint of the representation theory of artin algebras
[DR89a, DR89c, DR92].

Motivated by Iyama’s finiteness theorem, Ringel introduced the notion of left-strongly
quasi-hereditary algebras in terms of highest weight categories [Rin10]. One of the advan-
tages of left-strongly quasi-hereditary algebras is that they have better upper bound for
global dimension than that of general quasi-hereditary algebras. Moreover, Ringel studied
a special class of left-strongly quasi-hereditary algebras called strongly quasi-hereditary
algebras.

Let A be an artin algebra with Loewy length m. In [Aus71], Auslander studied the
endomorphism algebra B := EndA(

⊕m
j=1A/J(A)

j) and proved that B has finite global
dimension. Furthermore, Dlab and Ringel showed that B is a quasi-hereditary algebra
[DR89b]. Hence B is called an Auslander–Dlab–Ringel (ADR) algebra. Recently, Conde
gave a left-strongly quasi-hereditary structure on ADR algebras [Con16]. Moreover, ADR
algebras were studied in [Con18, CE18] and appeared in [Cou17, KK17].

In this paper, we study ADR algebras of semilocal modules introduced by Lin and Xi
[LX93]. Recall that a module M is called semilocal if M is a direct summand of modules
which have a simple top. Since any artin algebra is a semilocal module, the ADR algebras
of semilocal modules are a generalization of the original ADR algebras. In [LX93], they
proved that ADR algebras of semilocal modules are quasi-hereditary. We refine this result
in Section 2.

Theorem A (Theorem 2.2). The Auslander–Dlab–Ringel algebra of any semilocal module

is left-strongly quasi-hereditary.

As an application, we give a tightly upper bound for global dimension of an ADR
algebra (see Corollary 2.8).
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In Section 3, we study a connection between ADR algebras and strongly quasi-hereditary
algebras. An ADR algebra is a left-strongly quasi-hereditary algebra but not necessar-
ily strongly quasi-hereditary. We give characterizations of original ADR algebras to be
strongly quasi-hereditary.

Theorem B (Theorem 3.1). Let A be an artin algebra with Loewy length m ≥ 2 and J
the Jacobson radical of A. Let B := EndA(

⊕m
j=1A/J

j) be the ADR algebra of A. Then

the following statements are equivalent.

(i) B is a strongly quasi-hereditary algebra.

(ii) gldimB = 2.
(iii) J ∈ add(

⊕m
j=1A/J

j).

It is known that if B is strongly quasi-hereditary, then the global dimension of B is at
most two [Rin10, Proposition A.2]. We note that algebras with global dimension at most
two are not necessarily strongly quasi-hereditary. However, for original ADR algebras, the
converse is also true.

1. Preliminaries

Notation. Let A be an artin algebra, J(A) the Jacobson radical of A and D the Matlis
dual. We denote by gldimA the global dimension of A. We fix a complete set of repre-
sentatives of isomorphism classes of simple A-modules {S(i) | i ∈ I}. We denote by P (i)
the projective cover of S(i) and E(i) the injective hull of S(i) for any i ∈ I.

We write modA for the category of finitely generated right A-modules and projA for
the full subcategory of modA consisting of finitely generated projective A-modules. For
M ∈ modA, we denote by addM the full subcategory of modA whose objects are direct
summands of finite direct sums of M .

The composition of two maps f : X → Y and g : Y → Z is denoted by g ◦ f . For a
quiver Q, we denote by αβ the composition of two arrows α : x → y and β : y → z in Q.

We denote by K an algebraically closed field.

In this section, we quickly review a relationship between strongly quasi-hereditary al-
gebras and rejective chains. For more detail, we refer to [Iya03b, Tsu17].

We start this section with recalling the definition of left-strongly quasi-hereditary alge-
bras. Let ≤ be a partial order on the index set I of simple A-modules. For each i ∈ I, we
denote by ∇(i) the maximal submodule of E(i) whose composition factors have the form
S(j) for some j ≤ i. The module ∇(i) is called the costandard module corresponding to
i. Let ∇ := {∇(i) | i ∈ I} be the set of costandard modules. We denote by F(∇) the full
subcategory of modA whose objects are the modules which have a ∇-filtration, that is,
M ∈ F(∇) if and only if there exists a chain of submodules

M = M0 ⊇ M1 ⊇ · · · ⊇ Ml = 0

such that Mi/Mi+1 is isomorphic to a module in ∇. For M ∈ F(∇), we denote by
(M : ∇(i)) the filtration multiplicity of ∇(i), which dose not depend on the choice of
∇-filtrations.

Definition 1.1 ([Rin10, §4]). Let A be an artin algebra and ≤ a partial order on I.

(1) A pair (A,≤) (or simply A) is called left-strongly quasi-hereditary if there exists a
short exact sequence

0 → ∇(i) → E(i) → E(i)/∇(i) → 0
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for any i ∈ I with the following properties:
(a) E(i)/∇(i) ∈ F(∇) for any i ∈ I;
(b) if (E(i)/∇(i) : ∇(j)) 6= 0, then we have i < j;
(c) E(i)/∇(i) is an injective A-module, or equivalently, ∇(i) has injective dimen-

sion at most one.
(2) We say that a pair (A,≤) (or simply A) is right-strongly quasi-hereditary if (Aop,≤)

is left-strongly quasi-hereditary.
(3) We say that a pair (A,≤) (or simply A) is strongly quasi-hereditary if (A,≤) is

left-strongly quasi-hereditary and right-strongly quasi-hereditary.

By definition, strongly quasi-hereditary algebras are left-strongly quasi-hereditary alge-
bras. Since a pair (A,≤) satisfying the conditions (a) and (b) is a quasi-hereditary algebra,
left-strongly quasi-hereditary algebras are quasi-hereditary.

Left-strongly (resp. right-strongly) quasi-hereditary algebras are characterized by total
left (resp. right) rejective chains, which are chains of certain left (resp. right) rejective
subcategories. We recall the notion of left (resp. right) rejective subcategories. Let C be
an additive category, and put C(X,Y ) := HomC(X,Y ). In this section, we assume that

any subcategory is full and closed under isomorphisms, direct sums and direct summands.

Definition 1.2 ([Iya03a, 2.1(1)]). Let C be an additive category. A subcategory C′ of C
is called

(1) a left (resp. right) rejective subcategory of C if, for any X ∈ C, there exists an epic
left (resp. monic right) C′-approximation fX ∈ C (X,Y ) (resp. fX ∈ C (Y,X)) of
X,

(2) a rejective subcategory of C if C′ is a left and right rejective subcategory of C.

To define a total left (resp. right) rejective chain, we need the notion of cosemisimple
subcategories. Let JC be the Jacobson radical of C. For a subcategory C′ of C, we
denote by [C′] the ideal of C consisting of morphisms which factor through some object
of C′, and by C/[C′] the factor category (i.e., ob(C/[C′]) := ob(C) and (C/[C′])(X,Y ) :=
C(X,Y )/[C′](X,Y ) for any X,Y ∈ C). Recall that an additive category C is called a Krull–

Schmidt category if any object of C is isomorphic to a finite direct sum of objects whose
endomorphism rings are local. We denote by indC the set of isoclasses of indecomposable
objects in C.

Definition 1.3. Let C be a Krull–Schmidt category. A subcategory C′ of C is called
cosemisimple in C if JC/[C′] = 0 holds.

We give a characterization of cosemisimple left rejective subcategories.

Proposition 1.4 ([Iya03b, 1.5.1]). Let C be a Krull–Schmidt category and let C′ be a

subcategory of C. Then C′ is a cosemisimple left (resp. right) rejective subcategory of C
if and only if, for any X ∈ indC \ indC′, there exists a morphism ϕ : X → Y (resp.

ϕ : Y → X) such that Y ∈ C′ and C(Y,−)
−◦ϕ
−−→ JC(X,−) (resp. C(−, Y )

ϕ◦−
−−→ JC(−,X))

is an isomorphism on C.

Now, we introduce the following key notion in this paper.

Definition 1.5 ([Iya03a, 2.1(2)]). Let C be a Krull–Schmidt category. A chain

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0

of subcategories of C is called
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(1) a rejective chain if Ci is a cosemisimple rejective subcategory of Ci−1 for 1 ≤ i ≤ n,
(2) a total left (resp. right) rejective chain if the following conditions hold for 1 ≤ i ≤ n:

(a) Ci is a left (resp. right) rejective subcategory of C;
(b) Ci is a cosemisimple subcategory of Ci−1.

The following proposition gives a connection between left-strongly quasi-hereditary al-
gebras and total left rejective chains.

Proposition 1.6 ([Tsu17, Theorem 3.22]). Let A be an artin algebra. Let M be a right

A-module and B := EndA(M). Then the following conditions are equivalent.

(i) B is a left-strongly (resp. right-strongly) quasi-hereditary algebra.

(ii) projB has a total left (resp. right) rejective chain.

(iii) addM has a total left (resp. right) rejective chain.

In particular, B is strongly quasi-hereditary if and only if addM has a rejective chain.

We end this section with recalling a special total left rejective chain, which plays an
important role in this paper.

Definition 1.7 ([Iya03b, Definition 2.2]). Let A be an artin algebra and C a subcategory
of modA. A chain

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0

of subcategories of C is called an A-total left (resp. right) rejective chain of length n if the
following conditions hold for 1 ≤ i ≤ n:

(a) for any X ∈ Ci−1, there exists an epic (resp. monic) in modA left (resp. right)
Ci-approximation of X;

(b) Ci is a cosemisimple subcategory of Ci−1.

All A-total left rejective chains of C are total left rejective chains. Moreover, If DA ∈ C,
then the converse also holds.

We can give an upper bound for global dimension by using A-total left rejective chains.

Proposition 1.8 ([Iya03b, Theorem 2.2.2]). Let A be an artin algebra and M a right

A-module. If addM has an A-total left (resp. right) rejective chain of length n > 0, then
gldimEndA(M) ≤ n holds.

2. ADR algebras of semilocal modules

The aim of this section is to show Theorem A. First, we recall the definition of semilocal
modules.

Definition 2.1. Let M be an A-module.

(1) M is called a local module if topM is isomorphic to a simple A-module.
(2) M is called a semilocal module if M is a direct sum of local modules.

Clearly, any local module is indecomposable and any projective module is semilocal.
Throughout this section, suppose that M is a semilocal module with Loewy length

ℓℓ(M) = m. We denote by M̃ the basic module of ⊕m
i=1M/MJ(A)i and call EndA(M̃ )

the Auslander–Dlab–Ringel algebra (ADR algebra) of M . Note that EndA(Ã) is an ADR
algebra in the sense of [Con16].

Lin and Xi showed that the ADR algebras of semilocal modules are quasi-hereditary
(see [LX93, Theorem]). In this section, we refine this result.

Theorem 2.2. The ADR algebra of any semilocal module is left-strongly quasi-hereditary.
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Observe that Theorem 2.2 gives a better upper bound for global dimension of ADR
algebras (see Remark 2.9).

In the following, we give a proof of Theorem 2.2. Let F be the set of pairwise non-

isomorphic indecomposable direct summands of M̃ and Fi the subset of F consisting of
all modules with Loewy length m− i. We denote by Fi,1 the subset of Fi consisting of all
modules X which do not have a surjective map in JmodA(X,N) for all modules N in Fi.
For any integer j > 1, we inductively define the subsets Fi,j of Fi as follows: Fi,j consists
of all modules X ∈ Fi \

⋃
1≤k≤j−1 Fi,k which do not have a surjective map in JmodA(X,N)

for all modules N ∈ Fi \
⋃

1≤k≤j−1 Fi,k. We set ni := min{j | Fi =
⋃

1≤k≤j Fi,k} and

nM :=
∑m−1

i=0 ni. For 0 ≤ i ≤ m− 1 and 1 ≤ j ≤ ni, we set

F>(i,j) := F \ ((∪−1≤k≤i−1Fk) ∪ (∪1≤l≤jFi,l)),

Ci,j := add
⊕

N∈F>(i,j)

N,

where F−1 := ∅.
Now, we display an example to explain how the subsets Fi,j are given.

Example 2.3. Let A be the K-algebra defined by the quiver

1 // 2 //

��

3

4

and M := P (1) ⊕ P (1)/S(3) ⊕ P (1)/S(4) ⊕ P (2)/S(3). We can easily check that M is a
semilocal module. The ADR algebra B of M is given by the quiver

P (1)/S(4)
a // P (1) P (1)/S(3)

boo

c

((PP
PPP

PPP

P (1)/P (1)J(A)2
d

ii❙❙❙❙❙❙❙❙❙ e

55❦❦❦❦❦❦❦❦❦

f ))❙❙❙
❙❙❙

❙❙❙
❙❙

P (2)/S(3)

S(1)

g
OO

S(2)
h

66♥♥♥♥♥♥♥♥♥

with relations da−eb, ec−fh and gf . Then F0,1 = {P (1)/S(4), P (1)/S(3)}, F0,2 = {P (1)},
F1,1 = {P (1)/P (1)J(A)2 , P (2)/S(3)}, F2,1 = {S(1), S(2)}.

To prove Theorem 2.2, we first show the following proposition.

Proposition 2.4. Let A be an artin algebra and M a semilocal A-module. Then addM̃
has the following A-total left rejective chain with length nM .

addM̃ =: C0,0 ⊃ C0,1 ⊃ · · · ⊃ C0,n0 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,nm−1 = 0.

To show Proposition 2.4, we need the following lemma.

Lemma 2.5. For any M ′ ∈ F0,1, the canonical surjection ρ : M ′
։ M ′/M ′J(A)m−1

induces an isomorphism

ϕ : HomA(M
′/M ′J(A)m−1, M̃ )

−◦ρ
−−→ JmodA(M

′, M̃).

Proof. Since ϕ is a well-defined injective map, we show that ϕ is surjective. Let N be

an indecomposable summand of M̃ with Loewy length k and let f : M ′ → N be any
morphism in JmodA(M

′, N). Then we show f(M ′J(A)m−1) = 0.
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(i) Assume that topM ′ 6∼= topN or k = m. Then we have Im f ⊂ NJ(A), and hence

f(M ′J(A)m−1) = f(M ′)J(A)m−1 ⊂ (NJ(A))J(A)m−1 = 0.

(ii) Assume that topM ′ ∼= topN and k < m. Since m− k > 0 holds, we obtain

f(M ′J(A)m−1) = f(M ′)J(A)m−1 ⊂ NJ(A)m−1 = (NJ(A)k)J(A)m−k−1 = 0.

Since f(M ′J(A)m−1) = 0 holds, there exists g : M ′/M ′J(A)m−1 → N such that f =
g ◦ ρ.

0 // M ′J(A)m−1 //

0
%%▲▲

▲▲
▲▲

▲▲
▲▲

▲
M ′ ρ //

f

��

M ′/M ′J(A)m−1 //

∃g
ww♣ ♣

♣
♣
♣
♣

0

N

Hence the assertion follows. �

Now, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4. We show by induction on nM . If nM = 1, then this is clear.
Assume that nM > 1. By Proposition 1.4 and Lemma 2.5, C0,1 is a cosemisimple left

rejective subcategory of addM̃ . Since N := M/(⊕X∈F0,1X)⊕ (⊕X∈F0,1X/XJ(A)m−1) is a

semilocal module satisfying Ñ = M̃/⊕X∈F0,1 X and nN < nM , we obtain that

addÑ = C0,1 ⊃ · · · ⊃ C0,n0 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,nm−1 = 0

is an A-total left rejective chain by induction hypothesis. By composing C0,0 ⊃ C0,1 and
it, we have the desired A-total left rejective chain. �

Proof of Theorem 2.2. By Proposition 1.6, it is enough to show that addM̃ has a total left
rejective chain. Hence the assertion follows from Proposition 2.4. �

We give some remark on partial orders for left-strongly quasi-hereditary algebras

Remark 2.6. We define two partial orders on the isomorphism classes of simple B-
modules. One is {F0,1 < · · · < F0,n0 < F1,1 < · · · < Fm−1,nm−1}, called the ADR order.
Another one is {F0 < F1 < · · · < Fm−1}, called the length order.

By Proposition 2.4, ADR algebras of semilocal modules are left-strongly quasi-hereditary
with respect to the ADR order. On the other hand, Conde shows that original ADR al-
gebras are left-strongly quasi-hereditary with respect to the length order [Con16]. Since,
for an original ADR algebra, the length order coincides with the ADR order, we can re-
cover Conde’s result. However, the ADR algebra of a semilocal module is not necessarily
left-strongly quasi-hereditary with respect to the length order, as shown by the following
example.

Example 2.7. Let A and M be in Example 2.3. Then we can check that the ADR algebra
B of M is left-strongly quasi-hereditary with respect to the ADR order

{F0,1 < F0,2 < F1,1 < F2,1}.

However, we can also check that B is not left-strongly quasi-hereditary with respect to
the length order

{{P (1)/S(3), P (1)/S(4), P (1)} < {P (1)/P (1)J(A)2 , P (2)/S(3)} < {S(1), S(2)}}.

As an application, we give an upper bound for global dimension of ADR algebras.
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Corollary 2.8. Let A be an artin algebra and M a semilocal A-module. Then

gldimEndA(M̃) ≤ nM .

Proof. By Proposition 2.4, addM̃ has an A-total left rejective chain with length nM . Hence
the assertion follows from Proposition 1.8. �

Remark 2.9. In [LX93], they showed that the ADR algebra of a semilocal module M is

quasi-hereditary. This implies gldimEndA(M̃) ≤ 2(nM − 1) by [DR89c, Statement 9]. By
Corollary 2.8, we can obtain a better upper bound for global dimension of ADR algebras.
This can be seen by the following example.

The following example tells us that the upper bound for the global dimension in Corol-
lary 2.8 is tightly.

Let n ≥ 2. Let A be the K-algebra defined by the quiver

1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��☞☞
☞☞
☞☞

...
��✼

✼✼
✼✼

✼✼

$$❍
❍❍

❍❍
❍❍

❍❍
❍

2 3 ...... n−1 n

and M a direct sum of all factor modules of P (1). Clearly, M is semilocal and nM = n.
Let B be its ADR algebra. Then we have

gldimB =

{
n− 1 (n ≥ 3)

2 (n = 2).

Indeed, the assertion for n = 2 clearly holds. Assume n ≥ 3. It is easy to check that, for
X ∈ F0,l (1 ≤ l ≤ n0),

pdBop top(HomA(X, M̃ )) = l.

Thus we have

max{pdBop top(HomA(X, M̃ )) | X ∈ F} = n0 = nM − 1.

Hence the assertion for n ≥ 3 holds.

3. Strongly quasi-hereditary ADR algebras

In this section, we prove Theorem B. We keep the notation of the previous section.

Throughout this section, A is an artin algebra with Loewy length m and B := EndA(Ã)
the ADR algebra of A. Then nj = 1 holds for any 0 ≤ j ≤ m − 1. Hence we obtain the
following A-total left rejective chain by Proposition 2.4.

addÃ ⊃ C0,1 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,1 = 0. (3.0.1)

Note that if m = 1, then B is semisimple. Hence we always assume m ≥ 2 in the rest of
section.

Theorem 3.1. Let A be an artin algebra with Loewy length m ≥ 2 and B the ADR algebra

of A. Then the following statements are equivalent.

(i) B is a strongly quasi-hereditary algebra.

(ii) The chain (3.0.1) is a rejective chain of addÃ.
(iii) gldimB = 2.

(iv) J(A) ∈ addÃ.
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To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Let A be an artin algebra. If P (i)J(A) ∈ addÃ for any i ∈ I, then

P (i)J(A)/P (i)J(A)j ∈ addÃ for 1 ≤ j ≤ m.

Proof. Since P (i)J(A) ∈ addÃ, we have P (i)J(A) ∼=
⊕

k,l

P (k)/P (k)J(A)l . For sim-

plicity, we write P (i)J(A) ∼= P (k)/P (k)J(A)l . Then we have P (i)J(A)/P (i)J(A)j ∼=
(P (k)/P (k)J(A)l)/(P (k)J(A)j/P (k)J(A)l) ∼= P (k)/P (k)J(A)j ∈ addÃ. �

Proof of Theorem 3.1. (ii) ⇒ (i): The assertion follows from Proposition 1.6.
(i) ⇒ (iii): It follows from [Rin10, Proposition A.2] that the global dimension of B is

at most two. It is enough to show that there exists a B-module such that its projective
dimension is two. Let S be a simple A-module. Then we have the following short exact
sequence.

0 → JmodA(Ã, S) → HomA(Ã, S) → topHomA(Ã, S) → 0.

Assume that JmodA(Ã, S) is a projective right B-module. Then there exists an A-module

Y ∈ addÃ such that JmodA(Ã, S) ∼= HomA(Ã, Y ). By S ∈ addÃ, there exists a non-zero

morphism f : Y → S such that HomA(Ã, f) : HomA(Ã, Y ) → HomA(Ã, S) is an injective

map. Since the functor HomA(Ã,−) is faithful, f is an injective map. Hence f is an

isomorphism. This is a contradiction since JmodA(Ã, S) ∼= HomA(Ã, S). Therefore, we
obtain the assertion.

(iii) ⇔ (iv): This follows from [Sma78, Proposition 2].

(iv) ⇒ (ii): First, we show that C0,1 is a cosemisimple rejective subcategory of addÃ.

By Proposition 2.4, it is enough to show that C0,1 is a right rejective subcategory of addÃ.

For any X ∈ ind(addÃ) \ ind(C0,1), there exists an inclusion map ϕ : XJ(A) →֒ X with
XJ(A) ∈ C0,1 by the condition (iv). Since X is a projective A-module such that its Loewy
length coincides with the Loewy length of A, the map ϕ induces an isomorphism

HomA(Ã,XJ(A))
ϕ◦−
−−→ JmodA(Ã,X).

It follows from Proposition 1.4 that C0,1 is a cosemisimple right rejective subcategory of

addÃ. Hence we obtain that C0,1 is a cosemisimple rejective subcategory of addÃ.

Next, we prove that addÃ has a rejective chain

addÃ ⊃ C0,1 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,1 = 0

by induction on m. If m = 2, then the assertion holds. Assume that m ≥ 3. Let
X ∈ ind(C0,1) \ ind(C1,1). Then X = P (i)/P (i)J(A)m−1 for some i ∈ I and we have

(P (i)/P (i)J(A)m−1)J(A/Jm−1(A)) ∼= P (i)J(A)/P (i)J(A)m−1 .

Since P (i)J(A) ∈ addÃ, we obtain P (i)J(A)/P (i)J(A)m−1 ∈ C0,1 by Lemma 3.2. By
induction hypothesis, C0,1 has the following rejective chain.

C0,1 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,1 = 0.

Composing it with addÃ ⊃ C0,1, we obtain a rejective chain of addÃ. �

By Theorem 3.1(i) ⇒ (ii), a strongly quasi-hereditary structure of the ADR algebra
B can be always realized by the ADR order. However, for a semilocal module, such an
assertion does not necessarily hold. In fact, we give an example that the ADR algebra
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of a semilocal module is strongly quasi-hereditary but not strongly quasi-hereditary with
respect to the ADR order.

Example 3.3. Let A be the K-algebra defined by the quiver

1α 99
β // 2

with relations αβ and α3. Clearly, M := P (1) ⊕ P (1)/ socP (1) ⊕ P (2) is a semilocal
module. The ADR algebra B of M is given by the quiver

P (1)

a

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

b

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

P (1)/P (1)J(A)2
c
OO

d ��

P (1)/ socP (1)e
oo

P (2) S(1)
f

55❥❥❥❥❥❥❥❥❥❥❥❥

with relations eca, fed and cb− df . Then B is not strongly quasi-hereditary with respect
to the ADR order {F0,1 < F1,1 < F1,2 < F2,1}, but B is strongly quasi-hereditary with
respect to {P (1) < P (1)/P (1)J(A)2 < P (1)/ socP (1) < {P (2), S(1)}}.

Acknowledgment. The author wishes to express her sincere gratitude to Takahide Adachi
and Professor Osamu Iyama. The author thanks Teresa Conde and Aaron Chan for in-
forming her about the reference [Sma78, Proposition 2], which greatly shorten her original
proof.
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